ORIGINAL ARTICLES |
|
|
|
|
|
Kaemtakols A–D, highly oxidized pimarane diterpenoids with potent anti-inflammatory activity from Kaempferia takensis |
Orawan Jongsomjainuk1, Jutatip Boonsombat1,4, Sanit Thongnest1,4, Hunsa Prawat1,4, Paratchata Batsomboon2, Sitthivut Charoensutthivarakul5, Saroj Ruchisansakun6, Kittipong Chainok7, Jitnapa Sirirak8, Chulabhorn Mahidol1,3, Somsak Ruchirawat2,3,4 |
1. Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, Thailand; 2. Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, Thailand; 3. Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand; 4. Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand; 5. Excellent Center for Drug Discovery (ECDD), School of Bioinnovation and Bio-Based Product Intelligence, and Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand; 6. Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand; 7. Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand; 8. Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand |
|
|
Abstract Four highly oxidized pimarane diterpenoids were isolated from Kaempferia takensis rhizomes. Kaemtakols A–C possess a tetracyclic ring with either a fused tetrahydropyran or tetrahydrofuran motif. Kaemtakol D has an unusual rearranged A/B ring spiro-bridged pimarane framework with a C-10 spirocyclic junction and an adjacent 1-methyltricyclo[3.2.1.02,7]octene ring. Structural characterization was achieved using spectroscopic analysis, DP4+ and ECD calculations, as well as X-ray crystallography, and their putative biosynthetic pathways have been proposed. Kaemtakol B showed significant potency in inhibiting nitric oxide production with an IC50 value of 0.69 μM. Molecular docking provided some perspectives on the action of kaemtakol B on iNOS protein.
|
Keywords
Kaempferia takensis
Diterpenoid
Structure elucidation
Anti-inflammatory
DP4+
Molecular docking
|
Fund:Thailand Science Research and Innovation, 36824/4274394, Sanit Thongnest, 36827/4274406, Sanit Thongnest. |
Corresponding Authors:
Sanit Thongnest,E-mail:sanit@cri.or.th
E-mail: sanit@cri.or.th
|
Issue Date: 26 December 2023
|
|
|
[1] Singh A, Singh N, Singh S, Srivastav RP, Singh L, Verma PC, et al. The industrially important genus Kaempferia: an ethnopharmacological review. Front Pharmacol. 2023. https://doi.org/10.3389/fphar.2023.1099523. [2] Techaprasan J, Klinbunga S, Ngamriabsakul C, Jenjittikul T. Genetic variation of Kaempferia (Zingiberaceae) in Thailand based on chloroplast DNA (psbA-trnH and petA-psbJ) sequences. Genet Mol Res. 2010;9:1957-73. https://doi.org/10.4238/vol9-4gmr873. [3] Thongnest S, Mahidol C, Sutthivaiyakit S, Ruchirawat S. Oxygenated pimarane diterpenes from Kaempferia marginata. J Nat Prod. 2005;68:1632-6. https://doi.org/10.1021/np0501861. [4] Boonsombat J, Mahidol C, Chawengrum P, Reuk-Ngam N, Chimnoi N, Techasakul S, et al. Roscotanes and roscoranes: oxygenated abietane and pimarane diterpenoids from Kaempferia roscoeana. Phytochemistry. 2017;143:36-44. https://doi.org/10.1016/j.phytochem.2017.07.008. [5] Booranaseensuntorn P, Boonsombat J, Mahidol C, Reuk-Ngam N, Khlaychan P, Batsomboon P, et al. Diterpenoids and p-methoxycinnamic acid diol esters from Kaempferia saraburiensis Picheans. (Zingiberaceae): structural assignment of saraburol and their biological activities. Phytochemistry. 2022. https://doi.org/10.1016/j.phytochem.2022.113181. [6] Kongwaen P, Boonsombat J, Thongnest S, Ruchisansakun S, Mahidol C, Ruchirawat S. Cytotoxic isopimarane diterpenoids from Kaempferia koratensis rhizomes. Rev Bras Farmacogn. 2023;33:415-21. https://doi.org/10.1007/s43450-023-00359-w. [7] Chawengrum P, Boonsombat J, Mahidol C, Eurtivong C, Kittakoop P, Thongnest S, et al. Diterpenoids with aromatase inhibitory activity from the rhizomes of Kaempferia elegans. J Nat Prod. 2021;84:1738-47. https://doi.org/10.1021/acs.jnatprod.0c01292. [8] Chokchaisiri R, Chaichompoo W, Chunglok W, Cheenpracha S, Ganranoo L, Phutthawong N, et al. Isopimarane diterpenoids from the rhizomes of Kaempferia marginata and their potential anti-inflammatory activities. J Nat Prod. 2020;83:14-9. https://doi.org/10.1021/acs.jnatprod. [9] Chokchaisiri R, Thothaisong T, Chunglok W, Chulrik W, Yotnoi B, Chokchaisiri S, et al. Marginaols G-M, anti-inflammatory isopimarane diterpenoids, from the rhizomes of Kaempferia marginata. Phytochemistry. 2022;200: 113225. https://doi.org/10.1016/j.phytochem.2022.113225. [10] Win NN, Hardianti B, Ngwe H, Hayakawa Y, Morita H. Anti-inflammatory activities of isopimara-8(9), 15-diene diterpenoids and mode of action of kaempulchraols B-D from Kaempferia pulchra rhizomes. J Nat Med. 2020;74:487-94. https://doi.org/10.1007/s11418-020-01389-7. [11] Win NN, Hardianti B, Kasahara S, Ngwe H, Hayakawa Y, Morita H. Anti-inflammatory activities of isopimara-8(14),-15-diene diterpenoids and mode of action of kaempulchraols P and Q from Kaempferia pulchra rhizomes. Bioorg Med Chem Lett. 2020;30: 126841. https://doi.org/10.1016/j.bmcl.2019.126841. [12] Pretsch E, Seibl J, Clerc T, Biemann, K. editors. Tables of spectral data for structure determination of organic compounds. Berlin, Heidelberg: Springer Berlin Heidelberg; 1989, pp H190. [13] Fraga BM. The trachylobane diterpenes. Phytochem Anal. 1994;5:49-56. https://doi.org/10.1002/pca.2800050202. [14] Graikou K, Aligiannis N, Skaltsounis AL, Chinou I, Michel S, Tillequin F, et al. New diterpenes from Croton insularis. J Nat Prod. 2004;67:685-8. https://doi.org/10.1021/np030423p. [15] Pelletier SW, Mody NV, Djarmati Z, Lajsic SD. The structures of staphigine and staphirine. Two novel bisditerpene alkaloids from Delphinium staphisagria. J Org Chem. 1976;41:3042. https://doi.org/10.1021/jo00880a032. [16] Bohlmann F, Jakupovic J, Ahmed M, Grenz M, Suding H, Robinson H, et al. Germacranolides and diterpenes from Viguiera species. Phytochemistry. 1981;20:113-6. https://doi.org/10.1016/0031-9422(81)85228-4. [17] Garcin E, Arvai A, Rosenfeld R, Kroeger MD, Crane BR, Andersson G, et al. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Nat Chem Biol. 2008;4:700-7. https://doi.org/10.1038/nchembio.115. [18] Kaweetripob W, Thongnest S, Boonsombat J, Batsomboon P, Salae AW, Prawat H, et al. Phukettosides A-E, mono- and bis-iridoid glycosides, from the leaves of Morinda umbellata L. Phytochemistry. 2023;216: 113890. https://doi.org/10.1016/j.phytochem.2023.113890. [19] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016. [20] Dennington R, Keith Todd A, Millam John M. GaussView, Version 6.1. Semichem Inc., Shawnee Mission, KS, 2016. [21] Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 2008;120:215-41. https://doi.org/10.1007/s00214-007-0310-x. [22] Weigend F. Accurate coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys. 2006;8:1057-65. https://doi.org/10.1039/B515623H. [23] Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys. 2005;7:3297-305. https://doi.org/10.1039/B508541A. [24] Bruhn T, Schaumlöffel A, Hemberger Y, Bringmann G. SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality. 2013;25:243-9. https://doi.org/10.1002/chir.22138. [25] Bruhn T, Schaumlöffel A, Hemberger Y, Pescitelli G. SpecDis, ver. 1.71 Berlin, Germany, 2017, http:/specdis-software.jimdo.com. [26] Zanardi MM, Sarotti AM. Sensitivity analysis of DP4+ with the probability distribution terms: development of a universal and customizable method. J Org Chem. 2021;86:8544-8. https://doi.org/10.1021/acs.joc.1c00987. [27] CYLview20; Legault CY. Université de Sherbrooke. 2020. http://www.cylview.org. [28] Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61:3891-8. https://doi.org/10.1021/acs.jcim.1c00203. [29] Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455-61. https://doi.org/10.1002/jcc.21334. [30] Biovia DS, Discovery studio visualizer. San Diego. 2019. [31] Cheenpracha S, Park EJ, Rostama B, Pezzuto JM, Chang LC. Inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-activated murine macrophage RAW 264.7 cells by the norsesterterpene peroxide, epimuqubilin A. Mar Drugs. 2010;8:429-37. https://doi.org/10.3390/md8030429. [32] Min HY, Kim MS, Jang DS, Park EJ, Seo EK, Lee SK. Suppression of lipopolysaccharide-stimulated inducible nitric oxide synthase (iNOS) expression by a novel humulene derivative in macrophage cells. Int Immunopharmacol. 2009;9:844-9. https://doi.org/10.1016/j.intimp.2009.03.005. [33] Olivera A, Moore TW, Hu F, Brown AP, Sun A, Liotta DC, Snyder JP, Yoon Y, Shim H, Marcus AI, Miller AH, Pace TW. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): anti-inflammatory and anti-cancer properties. Int Immunopharmacol. 2012;12:368-77. https://doi.org/10.1016/j.intimp.2011.12.009. [34] Wongkrasant P, Pongkorpsakol P, Chitwattananont S, Satianrapapong W, Tuangkijkul N, Muanprasat C. Fructo-oligosaccharides alleviate inflammation-associated apoptosis of GLP-1 secreting L cells via inhibition of iNOS and cleaved caspase-3 expression. J Pharmacol Sci. 2020;143:65-73. https://doi.org/10.1016/j.jphs.2020.03.001. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|