Natural Products and Bioprospecting    2023, Vol. 13 Issue (6) : 55-55     DOI: 10.1007/s13659-023-00420-0
ORIGINAL ARTICLES |
Kaemtakols A–D, highly oxidized pimarane diterpenoids with potent anti-inflammatory activity from Kaempferia takensis
Orawan Jongsomjainuk1, Jutatip Boonsombat1,4, Sanit Thongnest1,4, Hunsa Prawat1,4, Paratchata Batsomboon2, Sitthivut Charoensutthivarakul5, Saroj Ruchisansakun6, Kittipong Chainok7, Jitnapa Sirirak8, Chulabhorn Mahidol1,3, Somsak Ruchirawat2,3,4
1. Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, Thailand;
2. Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, Thailand;
3. Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand;
4. Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand;
5. Excellent Center for Drug Discovery (ECDD), School of Bioinnovation and Bio-Based Product Intelligence, and Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand;
6. Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand;
7. Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand;
8. Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
Download: PDF(2009 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Four highly oxidized pimarane diterpenoids were isolated from Kaempferia takensis rhizomes. Kaemtakols A–C possess a tetracyclic ring with either a fused tetrahydropyran or tetrahydrofuran motif. Kaemtakol D has an unusual rearranged A/B ring spiro-bridged pimarane framework with a C-10 spirocyclic junction and an adjacent 1-methyltricyclo[3.2.1.02,7]octene ring. Structural characterization was achieved using spectroscopic analysis, DP4+ and ECD calculations, as well as X-ray crystallography, and their putative biosynthetic pathways have been proposed. Kaemtakol B showed significant potency in inhibiting nitric oxide production with an IC50 value of 0.69 μM. Molecular docking provided some perspectives on the action of kaemtakol B on iNOS protein.
Keywords Kaempferia takensis      Diterpenoid      Structure elucidation      Anti-inflammatory      DP4+      Molecular docking     
Fund:Thailand Science Research and Innovation, 36824/4274394, Sanit Thongnest, 36827/4274406, Sanit Thongnest.
Corresponding Authors: Sanit Thongnest,E-mail:sanit@cri.or.th     E-mail: sanit@cri.or.th
Issue Date: 26 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Orawan Jongsomjainuk
Jutatip Boonsombat
Sanit Thongnest
Hunsa Prawat
Paratchata Batsomboon
Sitthivut Charoensutthivarakul
Saroj Ruchisansakun
Kittipong Chainok
Jitnapa Sirirak
Chulabhorn Mahidol
Somsak Ruchirawat
Trendmd:   
Cite this article:   
Orawan Jongsomjainuk,Jutatip Boonsombat,Sanit Thongnest, et al. Kaemtakols A–D, highly oxidized pimarane diterpenoids with potent anti-inflammatory activity from Kaempferia takensis[J]. Natural Products and Bioprospecting, 2023, 13(6): 55-55.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-023-00420-0     OR     http://npb.kib.ac.cn/EN/Y2023/V13/I6/55
[1] Singh A, Singh N, Singh S, Srivastav RP, Singh L, Verma PC, et al. The industrially important genus Kaempferia: an ethnopharmacological review. Front Pharmacol. 2023. https://doi.org/10.3389/fphar.2023.1099523.
[2] Techaprasan J, Klinbunga S, Ngamriabsakul C, Jenjittikul T. Genetic variation of Kaempferia (Zingiberaceae) in Thailand based on chloroplast DNA (psbA-trnH and petA-psbJ) sequences. Genet Mol Res. 2010;9:1957-73. https://doi.org/10.4238/vol9-4gmr873.
[3] Thongnest S, Mahidol C, Sutthivaiyakit S, Ruchirawat S. Oxygenated pimarane diterpenes from Kaempferia marginata. J Nat Prod. 2005;68:1632-6. https://doi.org/10.1021/np0501861.
[4] Boonsombat J, Mahidol C, Chawengrum P, Reuk-Ngam N, Chimnoi N, Techasakul S, et al. Roscotanes and roscoranes: oxygenated abietane and pimarane diterpenoids from Kaempferia roscoeana. Phytochemistry. 2017;143:36-44. https://doi.org/10.1016/j.phytochem.2017.07.008.
[5] Booranaseensuntorn P, Boonsombat J, Mahidol C, Reuk-Ngam N, Khlaychan P, Batsomboon P, et al. Diterpenoids and p-methoxycinnamic acid diol esters from Kaempferia saraburiensis Picheans. (Zingiberaceae): structural assignment of saraburol and their biological activities. Phytochemistry. 2022. https://doi.org/10.1016/j.phytochem.2022.113181.
[6] Kongwaen P, Boonsombat J, Thongnest S, Ruchisansakun S, Mahidol C, Ruchirawat S. Cytotoxic isopimarane diterpenoids from Kaempferia koratensis rhizomes. Rev Bras Farmacogn. 2023;33:415-21. https://doi.org/10.1007/s43450-023-00359-w.
[7] Chawengrum P, Boonsombat J, Mahidol C, Eurtivong C, Kittakoop P, Thongnest S, et al. Diterpenoids with aromatase inhibitory activity from the rhizomes of Kaempferia elegans. J Nat Prod. 2021;84:1738-47. https://doi.org/10.1021/acs.jnatprod.0c01292.
[8] Chokchaisiri R, Chaichompoo W, Chunglok W, Cheenpracha S, Ganranoo L, Phutthawong N, et al. Isopimarane diterpenoids from the rhizomes of Kaempferia marginata and their potential anti-inflammatory activities. J Nat Prod. 2020;83:14-9. https://doi.org/10.1021/acs.jnatprod.
[9] Chokchaisiri R, Thothaisong T, Chunglok W, Chulrik W, Yotnoi B, Chokchaisiri S, et al. Marginaols G-M, anti-inflammatory isopimarane diterpenoids, from the rhizomes of Kaempferia marginata. Phytochemistry. 2022;200: 113225. https://doi.org/10.1016/j.phytochem.2022.113225.
[10] Win NN, Hardianti B, Ngwe H, Hayakawa Y, Morita H. Anti-inflammatory activities of isopimara-8(9), 15-diene diterpenoids and mode of action of kaempulchraols B-D from Kaempferia pulchra rhizomes. J Nat Med. 2020;74:487-94. https://doi.org/10.1007/s11418-020-01389-7.
[11] Win NN, Hardianti B, Kasahara S, Ngwe H, Hayakawa Y, Morita H. Anti-inflammatory activities of isopimara-8(14),-15-diene diterpenoids and mode of action of kaempulchraols P and Q from Kaempferia pulchra rhizomes. Bioorg Med Chem Lett. 2020;30: 126841. https://doi.org/10.1016/j.bmcl.2019.126841.
[12] Pretsch E, Seibl J, Clerc T, Biemann, K. editors. Tables of spectral data for structure determination of organic compounds. Berlin, Heidelberg: Springer Berlin Heidelberg; 1989, pp H190.
[13] Fraga BM. The trachylobane diterpenes. Phytochem Anal. 1994;5:49-56. https://doi.org/10.1002/pca.2800050202.
[14] Graikou K, Aligiannis N, Skaltsounis AL, Chinou I, Michel S, Tillequin F, et al. New diterpenes from Croton insularis. J Nat Prod. 2004;67:685-8. https://doi.org/10.1021/np030423p.
[15] Pelletier SW, Mody NV, Djarmati Z, Lajsic SD. The structures of staphigine and staphirine. Two novel bisditerpene alkaloids from Delphinium staphisagria. J Org Chem. 1976;41:3042. https://doi.org/10.1021/jo00880a032.
[16] Bohlmann F, Jakupovic J, Ahmed M, Grenz M, Suding H, Robinson H, et al. Germacranolides and diterpenes from Viguiera species. Phytochemistry. 1981;20:113-6. https://doi.org/10.1016/0031-9422(81)85228-4.
[17] Garcin E, Arvai A, Rosenfeld R, Kroeger MD, Crane BR, Andersson G, et al. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Nat Chem Biol. 2008;4:700-7. https://doi.org/10.1038/nchembio.115.
[18] Kaweetripob W, Thongnest S, Boonsombat J, Batsomboon P, Salae AW, Prawat H, et al. Phukettosides A-E, mono- and bis-iridoid glycosides, from the leaves of Morinda umbellata L. Phytochemistry. 2023;216: 113890. https://doi.org/10.1016/j.phytochem.2023.113890.
[19] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
[20] Dennington R, Keith Todd A, Millam John M. GaussView, Version 6.1. Semichem Inc., Shawnee Mission, KS, 2016.
[21] Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 2008;120:215-41. https://doi.org/10.1007/s00214-007-0310-x.
[22] Weigend F. Accurate coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys. 2006;8:1057-65. https://doi.org/10.1039/B515623H.
[23] Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys. 2005;7:3297-305. https://doi.org/10.1039/B508541A.
[24] Bruhn T, Schaumlöffel A, Hemberger Y, Bringmann G. SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality. 2013;25:243-9. https://doi.org/10.1002/chir.22138.
[25] Bruhn T, Schaumlöffel A, Hemberger Y, Pescitelli G. SpecDis, ver. 1.71 Berlin, Germany, 2017, http:/specdis-software.jimdo.com.
[26] Zanardi MM, Sarotti AM. Sensitivity analysis of DP4+ with the probability distribution terms: development of a universal and customizable method. J Org Chem. 2021;86:8544-8. https://doi.org/10.1021/acs.joc.1c00987.
[27] CYLview20; Legault CY. Université de Sherbrooke. 2020. http://www.cylview.org.
[28] Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61:3891-8. https://doi.org/10.1021/acs.jcim.1c00203.
[29] Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455-61. https://doi.org/10.1002/jcc.21334.
[30] Biovia DS, Discovery studio visualizer. San Diego. 2019.
[31] Cheenpracha S, Park EJ, Rostama B, Pezzuto JM, Chang LC. Inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-activated murine macrophage RAW 264.7 cells by the norsesterterpene peroxide, epimuqubilin A. Mar Drugs. 2010;8:429-37. https://doi.org/10.3390/md8030429.
[32] Min HY, Kim MS, Jang DS, Park EJ, Seo EK, Lee SK. Suppression of lipopolysaccharide-stimulated inducible nitric oxide synthase (iNOS) expression by a novel humulene derivative in macrophage cells. Int Immunopharmacol. 2009;9:844-9. https://doi.org/10.1016/j.intimp.2009.03.005.
[33] Olivera A, Moore TW, Hu F, Brown AP, Sun A, Liotta DC, Snyder JP, Yoon Y, Shim H, Marcus AI, Miller AH, Pace TW. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): anti-inflammatory and anti-cancer properties. Int Immunopharmacol. 2012;12:368-77. https://doi.org/10.1016/j.intimp.2011.12.009.
[34] Wongkrasant P, Pongkorpsakol P, Chitwattananont S, Satianrapapong W, Tuangkijkul N, Muanprasat C. Fructo-oligosaccharides alleviate inflammation-associated apoptosis of GLP-1 secreting L cells via inhibition of iNOS and cleaved caspase-3 expression. J Pharmacol Sci. 2020;143:65-73. https://doi.org/10.1016/j.jphs.2020.03.001.
[1] Yin-Zhong Fan, Chun Tian, Shun-Yao Tong, Qing Liu, Fan Xu, Bao-Bao Shi, Hong-Lian Ai, Ji-Kai Liu. The antifungal properties of terpenoids from the endophytic fungus Bipolaris eleusines[J]. Natural Products and Bioprospecting, 2023, 13(6): 43-43.
[2] Yang Yu, Yang Wang, Gui-Chun Wang, Cheng-Yong Tan, Yi Wang, Jin-Song Liu, Guo-Kai Wang. Andropanilides A-C, the novel labdane-type diterpenoids from Andrographis paniculata and their anti-inflammation activity[J]. Natural Products and Bioprospecting, 2023, 13(5): 31-31.
[3] Xun Wei, Jia-Luo Huang, Hua-Hua Gao, Fang-Yu Yuan, Gui-Hua Tang, Sheng Yin. New halimane and clerodane diterpenoids from Croton cnidophyllus[J]. Natural Products and Bioprospecting, 2023, 13(3): 21-21.
[4] Cheng-Yong Tan, Bao-Bao Shi, Mei-Fen Bao, Xiang-Hai Cai. Anti-inflammatory maistemonine-class alkaloids of Stemona japonica[J]. Natural Products and Bioprospecting, 2023, 13(2): 8-8.
[5] Jingwen Niu, Jianzhao Qi, Pengchao Wang, Chengwei Liu, and Jin, ming Gao, Abstract. The chemical structures and biological activities of indole diterpenoids[J]. Natural Products and Bioprospecting, 2023, 13(1): 3-3.
[6] Sitian Zhang, Shuyuan Mo, Fengli Li, Yaxin Zhang, Jianping Wang, Zhengxi Hu, Yonghui Zhang. Drimane sesquiterpenoids from a wetland soil-derived fungus Aspergillus calidoustus TJ403-EL05[J]. Natural Products and Bioprospecting, 2022, 12(4): 27-27.
[7] Yue-Hu Wang. Traditional Uses and Pharmacologically Active Constituents of Dendrobium Plants for Dermatological Disorders: A Review[J]. Natural Products and Bioprospecting, 2021, 11(5): 465-487.
[8] Na Zhang, Fan Xia, Song-Yu Li, Yin Nian, Li-Xin Wei, Gang Xu. Diterpenoid Alkaloids from the Aerial Parts of Aconitum flavum Hand. -Mazz[J]. Natural Products and Bioprospecting, 2021, 11(4): 421-429.
[9] Han Wu, Hui-Xiang Yang, Zheng-Hui Li, Tao Feng, Ji-Kai Liu. Psathyrellins A-E, Antibacterial Guanacastane Diterpenoids from Mushroom Psathyrella candolleana[J]. Natural Products and Bioprospecting, 2021, 11(4): 447-452.
[10] Marsya Yonna Nurrachma, Deamon Sakaraga, Ahmad Yogi Nugraha, Siti Irma Rahmawati, Asep Bayu, Linda Sukmarini, Akhirta Atikana, Anggia Prasetyoputri, Fauzia Izzati, Mega Ferdina Warsito, Masteria Yunovilsa Putra. Cembranoids of Soft Corals: Recent Updates and Their Biological Activities[J]. Natural Products and Bioprospecting, 2021, 11(3): 243-306.
[11] Yan-Ni Chen, Xiao Ding, Dong-Mei Li, Qing-Yun Lu, Shuai Liu, Ying-Yao Li, Ying-Tong Di, Xin Fang, Xiao-Jiang Hao. Jatrophane Diterpenoids from the Seeds of Euphorbia peplus with Potential Bioactivities in Lysosomal-Autophagy Pathway[J]. Natural Products and Bioprospecting, 2021, 11(3): 357-364.
[12] Ning-Ning Wang, Chun-Yu Liu, Tian Wang, Yue-Lan Li, Ke Xu, Hong-Xiang Lou. Two New Quinazoline Derivatives from the Moss Endophytic Fungus Aspergillus sp. and Their Anti-inflammatory Activity[J]. Natural Products and Bioprospecting, 2021, 11(1): 105-110.
[13] Feng-Peng Wang, Ruo-Bing Chao. On the Famous Traditional Chinese Medicine “Fu Zi”: Discovery, Research, and Development of Cardioactive Constituent Mesaconine[J]. Natural Products and Bioprospecting, 2021, 11(1): 15-20.
[14] Xiao-Li Cheng, Han-Xiang Li, Juan Chen, Ping Wu, Jing-Hua Xue, Zhong-Yu Zhou, Nia-He Xia, Xiao-Yi Wei. Bioactive Diarylheptanoids from Alpinia coriandriodora[J]. Natural Products and Bioprospecting, 2021, 11(1): 63-72.
[15] Hongjuan Wang, Dezhi Yang, Li Li, Shiying Yang, Guanhua Du, Yang Lu. Anti-inflammatory Effects and Mechanisms of Rhein, an Anthraquinone Compound, and Its Applications in Treating Arthritis: A Review[J]. Natural Products and Bioprospecting, 2020, 10(6): 445-452.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed