Natural Products and Bioprospecting    2023, Vol. 13 Issue (6) : 43-43     DOI: 10.1007/s13659-023-00407-x
ORIGINAL ARTICLES |
The antifungal properties of terpenoids from the endophytic fungus Bipolaris eleusines
Yin-Zhong Fan, Chun Tian, Shun-Yao Tong, Qing Liu, Fan Xu, Bao-Bao Shi, Hong-Lian Ai, Ji-Kai Liu
School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
Download: PDF(1366 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  A series of terpenoids (1–17), comprising six new compounds designated bipolariterpenes A-F (1–6) and eleven recognized compounds (7–17), were isolated from the wheat culture of the potato endophytic fungus Bipolaris eleusines. Their structures and stereochemistry were clarified by HRESIMS, NMR, DP4+probability analyses, and computations for electronic circular dichroism (ECD). All compounds are made up of six meroterpenoids, four sesterterpenes and seven sesquiterpenes. Among them, four sesterterpenes (4, 5, 10, 11) were investigated for their antifungal, antibacterial and cytotoxic properties, and six meroterpenoids (1–3, 7–9) were evaluated for their antifungal properties. The compounds 7, 9, and 10 had substantial antifungal activity against Epidermophyton floccosum at a concentration of 100 μM. No antibacterial and cytotoxic activities were observed.
Keywords Endophytic fungus      Bipolaris eleusines      Terpenoids      Isolation and structure elucidation      Antifungal activity     
Fund:This work was financially supported by the National Natural Science Foundation of China (32000011, 82204239), Hubei Provincial Natural Science Foundation of China (2022CFB462), the Fund of State Key Laboratory of Phytochemistry and Plant Resources in West China (P2022-KF03), the Fundamental Research Funds for the Central Universities, South-Central MinZu University (CZY23024).
Corresponding Authors: Bao-Bao Shi,E-mail:shibb0505@163.com;Hong-Lian Ai,E-mail:aihonglian@mail.scuec.edu.cn;Ji-Kai Liu,E-mail:liujikai@mail.scuec.edu.cn     E-mail: shibb0505@163.com;aihonglian@mail.scuec.edu.cn;liujikai@mail.scuec.edu.cn
Issue Date: 26 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yin-Zhong Fan
Chun Tian
Shun-Yao Tong
Qing Liu
Fan Xu
Bao-Bao Shi
Hong-Lian Ai
Ji-Kai Liu
Trendmd:   
Cite this article:   
Yin-Zhong Fan,Chun Tian,Shun-Yao Tong, et al. The antifungal properties of terpenoids from the endophytic fungus Bipolaris eleusines[J]. Natural Products and Bioprospecting, 2023, 13(6): 43-43.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-023-00407-x     OR     http://npb.kib.ac.cn/EN/Y2023/V13/I6/43
[1] Rudolf JD, Alsup TA, Xu B, Li Z. Bacterial terpenome. Nat Prod Rep. 2021;38:905-80.
[2] Hillier SG, Lathe R. Terpenes, hormones and life: isoprene rule revisited. J Endocrinol. 2019;242:R9-22.
[3] Rudolf JD, Chang CY. Terpene synthases in disguise: enzymology, structure, and opportunities of non-canonical terpene synthases. Nat Prod Rep. 2020;37:425-63.
[4] Silva BIM, Nascimento EA, Silva CJ, Silva TG, Aguiar JS. Anticancer activity of monoterpenes: a systematic review. Mol Biol Rep. 2021;48:5775-85.
[5] Hoang LS, Tran MH, Lee JS, Ngo QMT, Woo MH, Min BS. Inflammatory inhibitory activity of sesquiterpenoids from Atractylodes macrocephala rhizomes. Chem Pharm Bull. 2016;64:507-11.
[6] Vo QV, Tam NM, Hieu LT, Van Bay M, Thong NM, Le Huyen T, Hoa NT, Mechler A. The antioxidant activity of natural diterpenes: theoretical insights. RSC Adv. 2020;10:14937-43.
[7] Ortega HE, Torres-Mendoza D, Caballero EZ, Cubilla-Rios L. Structurally uncommon secondary metabolites derived from endophytic fungi. J Fungi. 2021;7:570.
[8] Amirzakariya BZ, Shakeri A. Bioactive terpenoids derived from plant endophytic fungi: an updated review (2011-2020). Phytochemistry. 2022;197: 113130.
[9] Manamgoda DS, Rossman AY, Castlebury LA, Crous PW, Madrid H, Chukeatirote E, Hyde KD. The genus Bipolaris. Stud Mycol. 2014;79:221-88.
[10] Takemoto D, Shibata Y, Ojika M, Mizuno Y, Imano S, Ohtsu M, Sato I, Chiba S, Kawakita K, Rin S, Camagna M. Resistance to Phytophthora infestans: exploring genes required for disease resistance in Solanaceae plants. J Gen Plant Pathol. 2018;84:312-20.
[11] Miyagawa H, Nagai S, Tsurushima T, Sato M, Ueno T, Fukami H. Phytotoxins produced by the plant pathogenic fungus bipolar is bicolor El-1. Biosci Biotechnol Biochem. 1994;58:1143-5.
[12] Yu JJ, Wei WK, Zhang Y, Cox RJ, He J, Liu JK, Feng T. Terpenoids from Kiwi endophytic fungus Bipolaris sp. and their antibacterial activity against Pseudomonas syringae pv. actinidiae. Front Chem. 2022;10:1-12.
[13] Feng L, Wang XJ, Li L, Zhang AX, Shang RR, Tan NH, Wang Z. Identification of meroterpenoids from Bipolaris victoriae S27 and their potential activity against tumor metastasis and inhibition of the NF-κB signaling pathway. Phytochemistry. 2022;200: 113180.
[14] Ai HL, Shi BB, Li W, He J, Li ZH, Feng T, Liu JK. Bipolarithizole A, an antifungal phenylthiazole-sativene merosesquiterpenoid from the potato endophytic fungus Bipolaris eleusines. Org Chem Front. 2022;9:1814-9.
[15] He J, Yang MS, Wang WX, Li ZH, Elkhateeb WAM, Wen TC, Ai HL, Feng T. Anti-phytopathogenic sesquiterpenoid-xanthone adducts from potato endophytic fungus Bipolaris eleusines. RSC Adv. 2019;9:128-31.
[16] He J, Li ZH, Ai HL, Feng T, Liu JK. Anti-bacterial chromones from cultures of the endophytic fungus Bipolaris eleusines. Nat Prod Res. 2019;33:3515-20.
[17] Han JY, Zhang JY, Song ZJ, Zhu GL, Liu MM, Dai HQ, Hsiang T, Liu XT, Zhang LX, Quinn RJ, Feng Y. Genome-based mining of new antimicrobial meroterpenoids from the phytopathogenic fungus Bipolaris sorokiniana strain 11134. Appl Microbiol Biotechnol. 2020;104:3835-46.
[18] Liu M, Gu L, Shen L, Zhang X, Lin S, Ye Y, Wang J, Hu Z, Zhang Y. Bipolaquinones A-J, immunosuppressive meroterpenoids from a soil-derived Bipolaris zeicola. J Nat Prod. 2021;84:2427-36.
[19] Zhang X, Wang TT, Xu QL, Xiong Y, Zhang L, Han H, Xu K, Guo WJ, Xu Q, Tan RX, Ge HM. Genome mining and comparative biosynthesis of meroterpenoids from two phylogenetically distinct fungi. Angew Chem Int Ed. 2018;57:8184-8.
[20] Santini A, Ritieni A, Fogliano V, Randazzo G, Mannina L, Logrieco A, Benedetti E. Structure and absolute stereochemistry of fusaproliferin, a toxic metabolite from Fusarium proliferatum. J Nat Prod. 1996;59:109-12.
[21] Mukai A, Takahashi K, Ashitani T. Natural autoxidation of longifolene and anti-termite activities of the products. J Wood Sci. 2017;63:360-8.
[22] Long Y, Tang T, Wang LY, He B, Gao K. Absolute configuration and biological activities of meroterpenoids from an endophytic fungus of Lycium barbarum. J Nat Prod. 2019;82:2229-37.
[23] Huber C. The structure of stemphone, a yellow fungal metabolite. Acta Crystallogr B. 1975;31:108-13.
[24] Chan J, Jamison TF. Synthesis of (-)-terpestacin via catalytic, stereoselective fragment coupling: siccanol is terpestacin, not 11-epi-terpestacin. J Am Chem Soc. 2003;125:11514-5.
[25] Nukina M, Hattori H, Marumo S. Cis-sativenediol, a plant growth promotor, produced by fungi. J Am Chem Soc. 1975;97:2542-3.
[26] Li YY, Tan XM, Wang YD, Yang J, Zhang YG, Sun BD, Gong T, Guo LP, Ding G. Bioactive seco-sativene sesquiterpenoids from an Artemisia desertorum endophytic fungus, Cochliobolus sativus. J Nat Prod. 2020;83:1488-94.
[27] Osterhage C, König GM, Höller U, Wright AD. Rare sesquiterpenes from the algicolous fungus Drechslera dematioidea. J Nat Prod. 2002;65:306-13.
[28] Yu JJ, Jin YX, Huang SS, He J. Sesquiterpenoids and xanthones from the kiwifruit-associated fungus Bipolaris sp. and their anti-pathogenic microorganism activity. J Fungi. 2022;8:9.
[29] Wu M, Su X, Wu Y, Luo Y, Guo Y, Xue Y. Glycosylated coumarins, flavonoids, lignans and phenylpropanoids from Wikstroemia nutans and their biological activities. Beilstein J Org Chem. 2022;18:200-7.
[30] Liu YP, Cai XH, Feng T, Li Y, Li XN, Luo XD. Triterpene and sterol derivatives from the roots of Breynia fruticose. J Nat Prod. 2011;74:1161-8.
[31] Liu MT, Yan HE, Shen L, Hu ZX, Zhang YH. Bipolarins A-H, eight new ophiobolin-type sesterterpenes with antimicrobial activity from fungus Bipolaris sp. TJ403-B1. Chin J Nat Med. 2019;17(12):935-44.
[32] Liu BQ, Wu YW, Qin DM, Wang HR, Chen HJ, Zhang Y, Xiao WL, Li XL, Wang RR, Zhang RH. Discovery of deguelin derivatives in combination with fluconazole against drug-resistant Candida albicans. Med Chem Res. 2023;32:2196-207.
[1] Rostanie Dongmo Zeukang, Jarmo-Charles Kalinski, Babalwa Tembeni, Eleonora D. Goosen, Jacqueline Tembu, Turibio Tabopda Kuiate, Dominique Serge Ngono Bikobo, Maurice Tagatsing Fotsing, Alex de Théodore Atchadé, Xavier Siwe-Noundou. Quinones from Cordia species from 1972 to 2023: isolation, structural diversity and pharmacological activities[J]. Natural Products and Bioprospecting, 2023, 13(6): 52-52.
[2] Jin-Ning Chu, Premanand Krishnan, Kuan-Hon Lim. A comprehensive review on the chemical constituents, sesquiterpenoid biosynthesis and biological activities of Sarcandra glabra[J]. Natural Products and Bioprospecting, 2023, 13(6): 53-53.
[3] Teresa S. Catalá, Linn G. Speidel, Arlette Wenzel-Storjohann, Thorsten Dittmar, Deniz Tasdemir. Bioactivity profile of dissolved organic matter and its relation to molecular composition[J]. Natural Products and Bioprospecting, 2023, 13(5): 32-32.
[4] Yun Zhao, Qiong Jin, Zi-Jiao Wang, Xing-Yu Tao, Xiao-Dong Luo. Quality assurance of postharvest grapes against Botrytis cinerea by terbinafine[J]. Natural Products and Bioprospecting, 2023, 13(4): 25-25.
[5] Xun Wei, Jia-Luo Huang, Hua-Hua Gao, Fang-Yu Yuan, Gui-Hua Tang, Sheng Yin. New halimane and clerodane diterpenoids from Croton cnidophyllus[J]. Natural Products and Bioprospecting, 2023, 13(3): 21-21.
[6] Li Hou, Cui-Xuan Mei, Chun-Mao Yuan, Gui-Hua Tang, Duo-Zhi Chen, Qing Zhao, Hong-Ping He, Ming-Ming Cao, Xiao-Jiang Hao. Five new limonoids isolated from Walsura robusta[J]. Natural Products and Bioprospecting, 2023, 13(2): 7-7.
[7] Qi-Qi Zhang, Kun Hu, Han-Dong Sun, Pema-Tenzin Puno. Four new lanostane triterpenoids featuring extended π-conjugated systems from the stems of Kadsura coccinea[J]. Natural Products and Bioprospecting, 2023, 13(2): 12-12.
[8] Jingwen Niu, Jianzhao Qi, Pengchao Wang, Chengwei Liu, and Jin, ming Gao, Abstract. The chemical structures and biological activities of indole diterpenoids[J]. Natural Products and Bioprospecting, 2023, 13(1): 3-3.
[9] Sitian Zhang, Shuyuan Mo, Fengli Li, Yaxin Zhang, Jianping Wang, Zhengxi Hu, Yonghui Zhang. Drimane sesquiterpenoids from a wetland soil-derived fungus Aspergillus calidoustus TJ403-EL05[J]. Natural Products and Bioprospecting, 2022, 12(4): 27-27.
[10] Shui-Mei Zhang, Kun Hu, Xiao-Nian Li, Han-Dong Sun, Pema-Tenzin Puno. Lignans and sesquiterpenoids from the stems of Schisandra bicolor var. tuberculata[J]. Natural Products and Bioprospecting, 2022, 12(3): 19-19.
[11] Xin Zhang, Yun-Bao Ma, Xiao-Feng He, Tian-Ze Li, Chang-An Geng, Li-Hua Su, Shuang Tang, Zhen Gao, Ji-Jun Chen. Artemyrianosins A–J, cytotoxic germacrane-type sesquiterpene lactones from Artemisia myriantha[J]. Natural Products and Bioprospecting, 2022, 12(3): 16-16.
[12] Jun Yang, Dong-Bao Hu, Meng-Yuan Xia, Ji-Feng Luo, Xing-Yu Li, Yue-Hu Wang. Bioassay-guided isolation of cytotoxic constituents from the fowers of Aquilaria sinensis[J]. Natural Products and Bioprospecting, 2022, 12(2): 11-11.
[13] Pan-Pan Wei, Jia-Cheng Ji, Xu-Jun Ma, Zheng-Hui Li, Hong-Lian Ai, Xin-Xiang Lei, Ji-Kai Liu. Three new pyrrole alkaloids from the endophytic fungus Albifimbria viridis[J]. Natural Products and Bioprospecting, 2022, 12(1): 1-5.
[14] Lu Zhang, Ping Yi, Hui Yan, Xiao-Nian Li, Meng-Yuan Xia, Jun Yang, Ji-Feng Luo, Yue-Qiu He, Yue-Hu Wang. Five new 2-(2-phenylethyl)chromone derivatives and three new sesquiterpenoids from the heartwood of Aquilaria sinensis, an aromatic medicine in China[J]. Natural Products and Bioprospecting, 2022, 12(1): 1-14.
[15] Shu-Ya Wei, Dong-Bao Hu, Meng-Yuan Xia, Ji-Feng Luo, Hui Yan, Jing-Hua Yang, Yun-Song Wang, Yue-Hu Wang. Sesquiterpenoids and 2-(2-Phenylethyl) chromone Derivatives from the Resinous Heartwood of Aquilaria sinensis[J]. Natural Products and Bioprospecting, 2021, 11(5): 545-555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed