Natural Products and Bioprospecting    2023, Vol. 13 Issue (6) : 52-52     DOI: 10.1007/s13659-023-00414-y
REVIEWS |
Quinones from Cordia species from 1972 to 2023: isolation, structural diversity and pharmacological activities
Rostanie Dongmo Zeukang1, Jarmo-Charles Kalinski2, Babalwa Tembeni3, Eleonora D. Goosen4, Jacqueline Tembu5, Turibio Tabopda Kuiate1, Dominique Serge Ngono Bikobo1, Maurice Tagatsing Fotsing1, Alex de Théodore Atchadé1, Xavier Siwe-Noundou3
1. Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon;
2. Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, PO Box 94, Makhanda, 6140, South Africa;
3. Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Medunsa, PO Box 218, Pretoria, 0204, South Africa;
4. Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, PO Box 94, Makhanda, 6140, South Africa;
5. Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
Download: PDF(2540 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Plants of the genus Cordia (Boraginaceae family) are widely distributed in the tropical regions of America, Africa, and Asia. They are extensively used in folk medicine due to their rich medicinal properties. This review presents a comprehensive analysis of the isolation, structure, biogenesis, and biological properties of quinones from Cordia species reported from 1972 to 2023. Meroterpenoids were identified as the major quinones in most Cordia species and are reported as a chemotaxonomic markers of the Cordia. In addition to this property, quinones are reported to display a wider and broader spectrum of activities, are efficient scaffold in biological activity, compared to other classes of compounds reported in Cordia, hence our focus on the study of quinones reported from Cordia species. About 70 types of quinones have been isolated, while others have been identified by phytochemical screening or gas chromatography. Although the biosynthesis of quinones from Cordia species is not yet fully understood, previous reports suggest that they may be derived from geranyl pyrophosphate and an aromatic precursor unit, followed by oxidative cyclization of the allylic methyl group. Studies have demonstrated that quinones from this genus exhibit antifungal, larvicidal, antileishmanial, anti-inflammatory, antibiofilm, antimycobacterial, antioxidant, antimalarial, neuroinhibitory, and hemolytic activities. In addition, they have been shown to exhibit remarkable cytotoxic effects against several cancer cell lines which is likely related to their ability to inhibit electron transport as well as oxidative phosphorylation, and generate reactive oxygen species (ROS). Their biological activities indicate potential utility in the development of new drugs, especially as active components in drug-carrier systems, against a broad spectrum of pathogens and ailments.
Keywords Cordia      Boraginaceae      Quinones      Meroterpenoids      Biogenesis      Pharmacological activities     
Fund:This work did not receive any funding.
Corresponding Authors: Rostanie Dongmo Zeukang,E-mail:zeukangrostanie@yahoo.com;Xavier Siwe-Noundou,E-mail:xavier.siwenoundou@smu.ac.za     E-mail: zeukangrostanie@yahoo.com;xavier.siwenoundou@smu.ac.za
Issue Date: 26 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rostanie Dongmo Zeukang
Jarmo-Charles Kalinski
Babalwa Tembeni
Eleonora D. Goosen
Jacqueline Tembu
Turibio Tabopda Kuiate
Dominique Serge Ngono Bikobo
Maurice Tagatsing Fotsing
Alex de Théodore Atchadé
Xavier Siwe-Noundou
Trendmd:   
Cite this article:   
Rostanie Dongmo Zeukang,Jarmo-Charles Kalinski,Babalwa Tembeni, et al. Quinones from Cordia species from 1972 to 2023: isolation, structural diversity and pharmacological activities[J]. Natural Products and Bioprospecting, 2023, 13(6): 52-52.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-023-00414-y     OR     http://npb.kib.ac.cn/EN/Y2023/V13/I6/52
[1] Nigussie G, Ibrahim F, Neway S. A Phytopharmacological review on a medicinal plant: Cordia africana Lam. J Trop Pharm Chem. 2021;5:254-63. https://doi.org/10.25026/jtpc.v5i3.267.
[2] Retief E. The genus Cordia L. (Boraginaceae: Cordioideae) in Southern Africa. S Afr J Bot. 2008;74:389. https://doi.org/10.1016/j.sajb.2008.01.152.
[3] Diniz JC, Viana FA, Oliveira OF, Maciel MAM, Torres MCM, Braz-Filho R, et al. 1H and 13C NMR assignments for two new cordiaquinones from roots of Cordia leucocephala. Magn Reson Chem. 2009;47:190-3. https://doi.org/10.1002/mrc.2373.
[4] Freitas HPS, Maia AIV, Silveira ER, Filho JDBM, Moraes MO, Pessoa C, et al. Cytotoxic cordiaquinones from the roots of Cordia polycephala. J Braz Chem Soc. 2012;23:1558-62. https://doi.org/10.1590/S0103-50532012005000019.
[5] Silva AKO, Oliveira ALL, Pinto FDCL, Lima KSB, Braz-Filho R, Silveira ER, et al. Meroterpenoid hydroquinones from Cordia globosa. J Braz Chem Soc. 2016;27:510-4. https://doi.org/10.5935/0103-5053.20150278.
[6] Ismail MA, Abdallah EM, Qureshi KA. Physicochemical, phytochemical, and antibacterial properties of Cordia myxa bark used in Darfur for drinking water treatment. Indian J Adv Chem Sci. 2019;7:20-4. https://doi.org/10.22607/IJACS.2019.701003.
[7] Matias EFF, Alves EF, Silva MKN, Carvalho VRA, Melo Coutinho HD, da Costa JGM. The genus Cordia: botanists, ethno, chemical and pharmacological aspects. Braz J Pharmacogn. 2015;25:542-52. https://doi.org/10.1016/j.bjp.2015.05.012.
[8] Oza M, Kulkarni YA. Traditional uses, phytochemistry and pharmacology of the medicinal species of the genus Cordia (Boraginaceae). J Pharm Pharmacol. 2017;69:755-89. https://doi.org/10.1111/jphp.12715.
[9] Dongmo ZR, Siwe-Noundou X, Tagatsing FM, Tabopda KT, Mbafor TJ, Krause WMR, et al. Cordidepsine is a potential new anti-HIV depsidone from Cordia millenii, Baker. Molecules. 2019;24:1-14. https://doi.org/10.3390/molecules24173202.
[10] Sánchez-Recillas A, Rivero-Medina L, Ortiz-Andrade R, Araujo-León JA, Flores-Guido JS. Airway smooth muscle relaxant activity of Cordia dodecandra A. DC. mainly by CAMP increase and calcium channel blockade. J Ethnopharmacol. 2019;229:280-7. https://doi.org/10.1016/j.jep.2018.10.013.
[11] Moura-Costa GF, Panizzon GP, Oliveira TZ, Costa MA, Mello JCP, Nakamura CV, Kaneshima EN, Filho BPD, Ueda-Nakamura T. Cordia americana: evaluation of in vitro anti-herpes simplex virus activity and in vivo toxicity of leaf extracts. Aust J Crop Sci. 2021;15:362-8. https://doi.org/10.21475/ajcs.21.15.03.p2729.
[12] Nakamura N, Kojima S, Lim YA, Meselhy MR, Hattori M, Gupta MP, Correa M. Dammarane-type triterpenes from Cordia spinescens. Phytochemistry. 1997;46:1139-41. https://doi.org/10.1016/S0031-9422(97)00407-X.
[13] Dabole B, Zeukang R, Atchade AT, Tabopda T, Koubala BB, Mbafor JT. Cinnamoyl derivatives from Cordia Platythyrsa and chemotaxonomical value of the Cordia genus. Sci J Chem. 2016;4:36-40. https://doi.org/10.11648/j.sjc.20160403.12.
[14] Nariya B, Shukla VJ, Acharya R, Nariya MB. Isolation and simultaneous determination of three biologically active Flavonoids from some indigenous Cordia species by Thin-Layer Chromatography with UV absorption densitometry method Pankajkumar. J Planar Chromatogr. 2017;30:264-70. https://doi.org/10.1556/1006.2017.30.4.5.
[15] Abdel-Aleem ER, Attia EZ, Farag FF, Samy MN, Desoukey SY. Total phenolic and flavonoid contents and antioxidant, anti-inflammatory, analgesic, antipyretic and antidiabetic activities of Cordia myxa L. leaves. Clin Phytosci. 2019;5:1-9. https://doi.org/10.1186/s40816-019-0125-z.
[16] Hormaza IM, Amador MCV, Álvarez GB, Rodríguez FM, Barreiro ML, Hernández AIG, et al. Preclinical validation of antinociceptive, anti-inflammatory, and antipyretic activities of Cordia martinicensis leaf decoction. Rev Cuba Plantas Med. 2014;19:29-39.
[17] Dettrakul S, Surerum S, Rajviroongit S, Kittakoop P. Biomimetic transformation and biological activities of globiferin, a terpenoid benzoquinone from Cordia globifera. J Nat Prod. 2009;72:861-5. https://doi.org/10.1021/np9000703.
[18] Rackett SC, Zug KA. Contact dermatitis to multiple exotic woods. Am J Contact Dermat. 1997;8:114-7. https://doi.org/10.1016/S1046-199X(97)90004-X.
[19] Menezes JESA, Machado FEA, Lemosa TLG, Silveira ER, Filho RB, Pessoa ODL. Sesquiterpenes and a phenylpropanoid from Cordia trichotoma. Z Naturforsch. 2004;59c:19-22.
[20] El-Najjar N, Gali-Muhtasib H, Ketola RA, Vuorela P, Urtti A, Vuorela H. The chemical and biological activities of quinones: overview and implications in analytical detection. Phytochem Rev. 2011;10:353-70. https://doi.org/10.1007/s11101-011-9209-1.
[21] Junior MAD, Nguema Edzang RW, Catto AL, Raimundo JM. Quinones as an efficient molecular scaffold in the antibacterial/antifungal or antitumoral arsenal. Int J Mol Sci. 2022;23:1-16. https://doi.org/10.3390/ijms232214108.
[22] O’Brien PJ. Molecular mechanisms of quinone cytotoxicity. Chem Biol Inter. 1991;80:1-41. https://doi.org/10.1016/0009-2797(91)90029-7.
[23] Su C, Liu Z, Wang Y, Wang Y, Song E, Song Y. The electrophilic character of quinones is essential for the suppression of Bach 1. Toxicol. 2017;387:17-26. https://doi.org/10.1016/j.tox.2017.06.006.
[24] Fukumuto SI, Yamauchi N, Moriguchi H, Hippo Y, Watanabe A, Shibahara J, et al. Overexpression of the aldo-keto reductase family protein AKR1B10 is highly correlated with smoker’s non-small cell lung carcinomas. Clin Cancer Res. 2005;5:1776-85. https://doi.org/10.1158/1078-0432.CCR-04-1238.
[25] Crooke S, Bradner WT. Mitomycin C: a review. Cancer Treat Rev. 1976;3:121-39. https://doi.org/10.1016/S0305-7372(76)80019-9.
[26] Silva RE, Ribeiro FOS, Araújo GS, Iles B, Pessoa ODL, Araújo AR, Soares MJS. Biological properties of oncocalyxone A: a review. Res Soc Dev. 2021;10:1-14. https://doi.org/10.33448/rsd-v10i4.14343.
[27] Greish K, Sawa T, Fang J, Akaike T, Maeda H. SMA-doxorubicin, a new polymeric micellar drug for effective targeting to solid tumours. J Control Release. 2004;97:219-30. https://doi.org/10.1016/j.jconrel.2004.03.027.
[28] Joshi S, Fedoseyenko D, Mahanta N, Manion H, Naseem S, Dairi T, Begley TP. Novel enzymology in futalosine-dependent menaquinone biosynthesis. Curr Opin Chem Biol. 2018;47C:134-41. https://doi.org/10.1016/j.cbpa.2018.09.015.
[29] Ioset JR, Marston A, Gupta MP, Hostettmann K. Antifungal and larvicidal compounds from the root bark of Cordia alliodora. J Nat Prod. 2000;63:424-6. https://doi.org/10.1021/np990393j.
[30] Ioset JR, Marston A, Gupta MP, Hostettmann K. Antifungal and larvicidal cordiaquinones from the roots of Cordia curassavica. Phytochemistry. 2000;53:613-7. https://doi.org/10.1016/S0031-9422(99)00604-4.
[31] de Menezes JESA, Lemo TLG, Pessoa ODL, Braz-Filho R, Montenegro RC, Wilke DV, et al. A cytotoxic meroterpenoid benzoquinone from roots of Cordia globosa. Planta Med. 2005;71:54-8. https://doi.org/10.1055/s-2005-837751.
[32] Matos TS, Silva AKO, Quintela AL, Pinto LFC, Canuto KM, Braz-Filho R, et al. Neuroinhibitory meroterpenoid compounds from Cordia oncocalyx. Fitoterapia. 2017;123:65-72. https://doi.org/10.1016/j.fitote.2017.09.021.
[33] Moir M, Thomson RH, Hausen BM, Simatupa MH. Cordiachromes: a new group of terpenoid quinones from Cordia spp. J Chem Soc Perkin I. 1972;166:363-4. https://doi.org/10.1039/p19730001352.
[34] Silva AKO, Pinto FCL, Canuto KM, Braz-Filho R, Silva RAC, Santos FA, et al. Anti-inflammatory meroterpenoids of Cordia glazioviana (Boraginaceae). J Braz Chem Soc. 2021. https://doi.org/10.21577/0103-5053.20210041.
[35] Dantas DL, Araújo CA, Neto PRS, Freitas JJR, Câmara CAG, Oliveira RN, et al. Advances in the synthesis, biological activities and applications of cordiaquinones in the Cordia genus: a review. Rev Virtual Quim. 2021. https://doi.org/10.21577/1984-6835.20210088.
[36] Manners GD, Jurd L. The hydroquinone terpenoids of Cordia alliodora. J Chem Soc. 1977;4:405-10. https://doi.org/10.1039/p19770000405.
[37] Manners GD, Jurd L. New natural products from marine borer resistant woods: a review. J Agri Food Chem. 1977;25:726-30. https://doi.org/10.1021/jf60212a033.
[38] Gomes ARQ, Brígido HPC, Vale VV, Correa-Barbosa J, Percário S, Dolabela MF. Antimalarial potential of quinones isolated from plants: an integrative review. Res Soc Dev. 2021;10:1-13. https://doi.org/10.33448/rsd-v10i2.12507.
[39] Abraham I, Joshi R, Pardasani P, Pardasani RT. Recent advances in 1,4-benzoquinone chemistry. J Braz Chem Soc. 2011;22:385-421. https://doi.org/10.1590/S0103-50532011000300002.
[40] Leistner E. Biosynthesis of plant quinones. In: Conn EE, editor. the Biochemistry of plants. New York: Academic Press; 1981. p. 403-23.
[41] Gutiérrez I, Bertolotti SG, Biasutti MA, Soltermann AT, García NA. Quinones and hydroquinones as generators and quenchers of singlet molecular. Can J Chem. 1997;75:423-8. https://doi.org/10.1139/v97-048.
[42] Khan K, Firdous S, Ahmad A, Fayyaz N, Nadir M, Rasheed M, Faizi S. GC-MS profile of antimicrobial and antioxidant fractions from Cordia rothii roots. Pharm Biol. 2016. https://doi.org/10.3109/13880209.2016.1172320.
[43] Geris R, Simpson TJ. Meroterpenoids produced by fungi. Nat Prod Rep. 2009;26:1063-94. https://doi.org/10.1039/b820413f.
[44] Matsuda Y, Abe I. Biosynthesis of fungal meroterpenoids. Nat Prod Rep. 2016;33:26-53. https://doi.org/10.1039/c5np00090d.
[45] Thomson RH, et al. Recent advances in the chemistry and biochemistry of quinone pigments. In: Swain T, et al., editors. Biochemistry of plant phenolics. New York: Plenum Press; 1979. p. 287-312.
[46] Fuloria ANK, Raheja RK, Shah KH, Oza MJ, Kulkarni YA, Subramaniyan V, et al. Biological activities of meroterpenoids isolated from different sources. Front Pharmacol. 2022;13:1-36. https://doi.org/10.3389/fphar.2022.830103.
[47] Nazir M, Saleem M, Tousif MI, Anwar MA, Ali FSI, Wang D, et al. Meroterpenoids: a comprehensive update insight on structural diversity and biology. Biomolecules. 2021;11:1-56. https://doi.org/10.3390/biom11070957.
[48] Russo D, Milella L. Analysis of meroterpenoids. In: Silva AS, Nabavi SF, Saeedi M, Nabavi SM, editors. Recent advances in natural products analysis. Oxford: Elsevier; 2020. p. 477-501.
[49] Faqueti LG, Farias IV, Sabedot EC, Delle Monache F, San Feliciano A, Schuquel ITA, et al. Macrocarpal-like compounds from Eugenia umbelliflora fruits and their antibacterial activity. J Agril Food Chem. 2015;63:8151-5. https://doi.org/10.1021/acs.jafc.5b03562.
[50] Zhang P, Li Y, Jia C, Lang J, Niaz SI, Li J, et al. Antiviral and anti-inflammatory meroterpenoids: stachybonoids A-F from the crinoid-derived fungus Stachybotrys chartarum 952. R Soc Chem Adv. 2017;7:49910-6. https://doi.org/10.1039/c7ra09859f.
[51] Ebada SS, Voogd N, Kalscheuer R, Muller WE, Proksch P. Cytotoxic drimane meroterpenoids from the indonesian marine sponge Dactylospongia elegans. Phytochem Lett. 2017;22:154-8. https://doi.org/10.1016/j.phytol.2017.09.026.
[52] Shaaban M, El-Metwally MM, Abdel-Razek AA, Laatsch H. Terretonin M: a new meroterpenoid from the thermophilic Aspergillus terreus TM8 and revision of the absolute configuration of penisimplicins. Nat Prod Res. 2017;32:1-10. https://doi.org/10.1080/14786419.2017.1419230.
[53] Zhang J, Yuan B, Liu D, Gao S, Proksch P, Lin W. Brasilianoids A-F, new meroterpenoids from the sponge-associated fungus Penicillium brasilianum. Front Chem. 2018;6:1-13. https://doi.org/10.3389/fchem.2018.00314.
[54] Seong SH, Ali MY, Kim HR, Jung HA, Choi JS. BACE1 inhibitory activity and molecular docking analysis of meroterpenoids from Sargassum serratifolium. Bioorg Med Chem. 2017;25:3964-70. https://doi.org/10.1016/j.bmc.2017.05.033.
[55] Cheng S, Ding M, Liu W, Huang X, Liu Z, Lu Y, et al. Anti-inflammatory meroterpenoids from the mangrove endophytic fungus Talaromyces amestolkiae YX1. Phytochemistry. 2018;146:8-15. https://doi.org/10.1016/j.phytochem.2017.11.011.
[56] Zhao J, Feng J, Tan Z, Liu J, Zhao J, Chen R, et al. Stachybotrysins A-G, phenylspirodrimane derivatives from the fungus Stachybotrys chartarum. J Nat Prod. 2017;80:1819-26. https://doi.org/10.1021/acs.jnatprod.7b00014.
[57] Perveen I, Raza MA, Iqbal T, Naz I, Sehar S, Ahmed S. Isolation of anticancer and antimicrobial metabolites from Epicoccum nigrum; endophyte of Ferula sumbul. Microb Pathog. 2017;110:214-24. https://doi.org/10.1016/j.micpath.2017.06.033.
[58] Asolkar RN, Singh A, Jensen PR, Aalbersberg W, Carte BK, Feussner KD, et al. Marinocyanins, cytotoxic bromo-phenazinone meroterpenoids from a marine bacterium from the streptomycete clade MAR4. Tetrahedron. 2017;73:2234-41. https://doi.org/10.1016/j.tet.2017.03.003.
[59] Cao QX, Wei JH, Deng R, Feng GK, Zhu XF, Lan WJ, Li HJ. Two new pyripyropenes from the marine fungus Fusarium lateritium 2016F18-1. Chem Biodivers. 2017;14:1-6. https://doi.org/10.1002/cbdv.201600298.
[60] Hamed A, Abdel-Razek AS, Frese M, Stammler HG, El-Haddad AF, Ibrahim T, et al. Terretonin N: a new meroterpenoid from Nocardiopsis sp. Molecules. 2018;23:1-12. https://doi.org/10.3390/molecules23020299.
[61] Park JS, Quang TH, Yoon CS, Kim HJ, Sohn JH, Oh H. Furanoaustinol and 7-acetoxydehydroaustinol: new meroterpenoids from a marine derived fungal strain Penicillium sp. SF-5497. J Antibiot. 2018;71:557-63. https://doi.org/10.1038/s41429-018-0034-2.
[62] Qin XJ, Yu Q, Yan H, Khan A, Feng MY, Li PP, et al. Meroterpenoids with antitumor activities from guava (Psidium guajava). J Agri Food Chem. 2017;65:4993-9. https://doi.org/10.1021/acs.jafc.7b01762.
[63] Wang J, Mu FR, Jiao WH, Huang J, Hong LL, Yang F, et al. Meroterpenoids with protein tyrosine phosphatase 1B inhibitory activity from a Hyrtios sp. marine sponge. J Nat Prod. 2017;80:2509-14. https://doi.org/10.1021/acs.jnatprod.7b00435.
[64] Macías FA, Varela RM, Simonet AM, Cutler HG, Cutler SJ, Ross SA, et al. (+)-Brevione A. The first member of a novel family of bioactive spiroditerpenoids isolated from Penicillium brevicompactum Dierckx1. Tetrahedron Lett. 2000;41:2683-6. https://doi.org/10.1016/s0040-4039(00)00223-9.
[65] Choi JH, Rho MC, Lee SW, Choi JN, Lee HJ, Bae KS, et al. Penicillium griseofulvum F1959, high-production strain of pyripyropene A, specific inhibitor of acyl-CoA: cholesterol acyltransferase 2. J Microbiol Biotechnol. 2008;18:1663-5.
[66] Qin XJ, Liu H, Yu Q, Yan H, Tang JF, An LK, et al. Acylphloroglucinol derivatives from the twigs and leaves of Callistemon salignus. Tetrahedron. 2017;73:1803-11. https://doi.org/10.1016/j.tet.2017.01.052.
[67] Menna M, Imperatore C, D’Aniello F, Aiello A. Meroterpenes from marine invertebrates: structures, occurrence, and ecological implications. Mar Drugs. 2013;11:1602-43. https://doi.org/10.3390/md11051602.
[68] Luo Q, Wang Z, Luo JF, Tu ZC, Cheng YX. (±)-Applanatumines B-D: novel dimeric meroterpenoids from Ganoderma applanatum as inhibitors of JAK3. R Soc Chem Adv. 2017;7:38037-43. https://doi.org/10.1039/C7RA04862A.
[69] Li H, Sun W, Deng M, Qi C, Chen C, Zhu H, et al. Asperversins A and B, two novel meroterpenoids with an unusual 5/6/6/6 ring from the marine-derived fungus Aspergillus versicolor. Mar Drugs. 2018;16:1-13. https://doi.org/10.3390/md16060177.
[70] Zhao J, Feng J, Tan Z, Liu J, Zhang M, Chen R, et al. Bistachybotrysins A-C, three phenylspirodrimane dimers with cytotoxicity from Stachybotrys chartarum. Bioorg Med Chem Lett. 2018;28:355-9. https://doi.org/10.1016/j.bmcl.2017.12.039.
[71] Hou JQ, Guo C, Zhao JJ, Dong YY, Hu XL, He QW, Zhang BB, Yan M, Wang H. Antiinflammatory meroterpenoids from Baeckea frutescens. J Nat Prod. 2017;80:2204-14. https://doi.org/10.1021/acs.jnatprod.7b00042.
[72] Moir M, Thomson RH. Naturally occurring quinones. Part XXII. Terpenoid quinones in Cordia Spp. Chem Soc Perkin I. 1973. https://doi.org/10.1039/p19730001352.
[73] Ogungbe IV, Singh M, Setzer WN. Antileishmanial natural products from plants. In: Rahman A, editor. Bioactive Natural products: studies in natural products chemistry. Oxford: Elsevier; 2012. p. 331-82.
[74] Stevens KL, Jurd L, Manners G. Alliodorin, a phenolic terpenoid from Cordia alliodora. Tetrahedron Lett. 1973;31:2955-8. https://doi.org/10.1016/S0040-4039(01)96291-4.
[75] Moir M, Thomson RH. Naturally occurring quinones Part XXIII. Cordiachromes from Patagonula Americana L. Chem Soc Perkin I. 1973. https://doi.org/10.1039/P19730001556.
[76] Manners GD. The hydroquinone terpenoids of Cordia elaeagnoides. J Chem Soc Perkin Trans. 1983;I(39):39-43. https://doi.org/10.1039/p19830000039.
[77] Bieber L, Messana I, Lins SN, Filho AS, Chiappeta AA, Mello JF. Meroterpenoid naphthoquinones from Cordia corymbosa. Phytochemistry. 1990;29:1955-9. https://doi.org/10.1016/0031-9422(90)85047-J.
[78] Bieber L, Krebs HC, Schäfer W. Further meroterpenoid naphthoquinones from Cordia Corymbosa. Phytochemistry. 1994;35:1027-8. https://doi.org/10.1016/S0031-9422(00)90661-7.
[79] Mori K, Kawano M, Fuchino H, Ooi T, Satake M, Agatsuma Y, et al. Antileishmanial compounds from Cordia fragrantissima collected in Burma (Myanmar). J Nat Prod. 2008;71:18-21. https://doi.org/10.1021/np070211i.
[80] Parks J, Gyeltshen T, Prachyawarakorn V, Mahidol C, Ruchirawat S, Kittakoop P. Glutarimide alkaloids and a terpenoid benzoquinone from Cordia globifera. J Nat Prod. 2010;73:992-4. https://doi.org/10.1021/np100078s.
[81] Ioset JR, Marston A, Gupta MP, Hostettmann K. Antifungal and Larvicidal meroterpenoid naphtoquinones and naphthoxirene from the roots of Cordia linnaei. Phytochemistry. 1998;47:729-34. https://doi.org/10.1016/s0031-9422(97)00695-X.
[82] Pessoa ODL, Lemos TLG, Carvalho MG, Braz-Filho ERSR. Cordiachromes from Auxemma oncocalyx. Phytochemistry. 1995;40:1777-86. https://doi.org/10.1016/0031-9422(95)00397-P.
[83] Pessoa C, Vieira FMAC, Lemos TG, Moraes MO, Lima PDL, Rabenhorst SHB, et al. Oncocalyxone A from Auxemma oncocalyx lacks genotoxic activity in phytohemagglutinin-stimulated lymphocytes. Teratog Carcinog Mutagen Suppl. 2003;1:215-20. https://doi.org/10.1002/tcm.10075.
[84] Menezes JESA, Lemosa TLG, Silveira ER, Filho RB, Pessoa ODL. Trichotomol, a new cadinenediol from Cordia trichotoma. J Braz Chem Soc. 2001;12:787-90. https://doi.org/10.1590/S0103-50532001000600016.
[85] Sbardelotto AB, Barros-Nepomuceno FWA, Soares BM, Cavalcanti BC, Sousa RWR, Costa MP, et al. Cellular and biochemical antileukemic mechanisms of the meroterpenoid Oncocalyxone A. J Toxicol Environ Health Part A. 2020;84:95-111. https://doi.org/10.1080/15287394.2020.1835763.
[86] Kaur K, Sharma R, Singh A, Attri S, Arora S, Kaur S, Bedi N. Pharmacological and analytical aspects of alkannin/shikonin and their derivatives: an update from 2008 to 2022. Chin Herb Med. 2022;14:511-27. https://doi.org/10.1016/j.chmed.2022.08.001.
[87] Kourounakis AP, Assimopoulou AN, Papageorgiou VP, Gavalas A, Kourounakis PN. Alkannin and shikonin: effect on free radical processes and on inflammation—a preliminary pharmacochemical investigation. Arch Pharm Pharm Med Chem. 2002;6:262-6. https://doi.org/10.1002/1521-4184(200208/335:6%3c262::AID-ARDP262%3e3.0.CO;2-Y.
[88] Shen CC, Syu WJ, Li SY, Lin CH, Lee GH, Sun CS. Antimicrobial activities of Naphthazarins from Arnebia euchroma. J Nat Prod. 2002;65:1857-62. https://doi.org/10.1021/np010599w.
[89] Rodrigues RRL, Nunes TAL, Araújo AR, Filho JDBM, Silva MV, Carvalho FAA, et al. Antileishmanial activity of cordiaquinone E towards Leishmania (Leishmania) amazonensis. Int Immunopharmacol. 2020. https://doi.org/10.1016/j.intimp.2020.107124.
[90] Marinho-Filho JDB, Bezerra DP, Araújo AJ, Montenegro RC, Pessoa C, Diniz JC, et al. Oxidative stress induction by (+)-cordiaquinone J triggers both mitochondria-dependent apoptosis and necrosis in leukemia cells. Chem Biol Interact. 2010;183:369-79. https://doi.org/10.1016/j.cbi.2009.11.030.
[91] Favre-Godal Q, Pinto S, Dorsaz S, Rutz A, Marcourt L, Gupta M, et al. Identifcation of antifungal compounds from the root bark of Cordia anisophylla J.S. Mill. J Braz Chem Soc. 2019;30:472-8. https://doi.org/10.21577/0103-5053.20180221.
[92] Pessoa ODL, Lemos TLG, Braz-Filho ERSR. Novel cordiachromes isolated from Auxemma oncocalyx. Nat Prod Lett. 1993;2:145-50. https://doi.org/10.1080/1057563930804379.
[93] Pessoa C, Silveira ER, Lemos TLG, Wetmore LA, Moraes MO, Leyva A. Antiproliferative effects of compounds derived from plants of Northeast Brazil. Phytother Res. 2000;14:187-91. https://doi.org/10.1002/(sici)1099-1573(200005)14:3%3c187::AID-PTR572%3e3.0.CO;2-i.
[94] Marques WB, Santos HSD, Pessoa ODL, Braz-Filho R, Lemos TLG. Anthracene derivatives from Auxemma oncocalyx. Phytochemistry. 2000;55:793-7. https://doi.org/10.1016/s0031-9422(00)00325-3.
[95] Hausen BM. Contact allergy to woods. Clin Dermatol. 1986;4:65-76. https://doi.org/10.1016/0738-081X(86)90065-9.
[96] Arkoudis E, Stratakis M. Synthesis of cordiaquinones B, C, J and K on the basis of a bioinspired approach and the revision of the relative stereochemistry of the relative stereochemistry of cordiaquinone C. J Org Chem. 2008;73:4484-90. https://doi.org/10.1021/jo800355y.
[97] Reddy TS, Reddy VG, Kulhari H, Shukla R, Kamal A, Bansal V. Synthesis of (Z)-1-(1,3-diphenyl-1H-pyrazol-4-yl)-3-(phenylamino)prop-2-en-one derivatives as potential anticancer and apoptosis inducing agents. Eur J Med Chem. 2016;117:157-66. https://doi.org/10.1016/j.ejmech.2016.03.051.
[98] Liew SK, Malagobadan S, Arshad NM, Nagoor NH. A review of the structure-activity relationship of natural and synthetic antimetastatic compound. Biomolecules. 2020;138:1-28. https://doi.org/10.3390/biom10010138.
[99] Vennerstrom JL, Eaton JW. Oxidants, oxidant drugs and malaria. J Med Chem. 1988;31:1269-77. https://doi.org/10.1021/jm00402a001.
[100] Kleiner HE, Rivera MI, Pumford NR, Monks TJ, Lau SS. Immunochemical detection of quinol-thioether-derived protein adducts. Chem Res Toxicol. 1998;11:1282-90. https://doi.org/10.1021/tx980134e.
[101] Howland JL. Phosphorylation coupled to the oxidation of tetramethyl-p1-phenylenediamine in rat-liver mitochondria. Biochim Biophys Acta. 1963;77:419-29. https://doi.org/10.1016/0006-3002(63)90516-x.
[102] Monks TJ, Hanzlik P, Cohen GM, Ross D, Graham DG. Quinones chemistry and toxicity. Toxicol Appl Pharmacol. 1992;112:2-16. https://doi.org/10.1016/0041-008x(92)90273-U.
[103] Silva RE, Ribeiro FOS, Carvalho AMA, Daboit TC, Marinho-Filho JDB, Matos TS, et al. Antimicrobial and antibioflm activity of the benzoquinone oncocalyxone A. Microb Pathog. 2020;149:1-7. https://doi.org/10.1016/j.micpath.2020.104513.
[104] Ferreira MAD, Nunes ODRH, Fontenele JB, Pessoa ODL, Lemos TLG, Viana GSB. Analgesic and anti-inflammatory activities of a fraction rich in oncocalyxone A isolated from Auxemma oncocalyx. Phytomedicine. 2004;11:315-22. https://doi.org/10.1078/0944711041495227.
[105] Sunassee SN, Davies-Coleman MT. Cytotoxic and antioxidant marine prenylated quinones and hydroquinones. Nat Prod Rep. 2012;29:505-608. https://doi.org/10.1039/c2np00086e.
[106] Ferreira MAD, Nunes ODRH, Leal LKAM, Pessoa ODL, Lemos TLG, Viana GSB. Antioxidant effects in the quinone fraction from Auxemma oncocalyx TAUB. Biol Pharm Bull. 2003;5:595-9. https://doi.org/10.1248/bpd.26.595.
[107] Kelly RA, Leedale J, Calleja D, Enoch SJ, Harrell A, Chadwick AE, et al. Modelling changes in glutathione homeostasis as a function of quinone redox metabolism. Sci Rep. 2019;9:6333. https://doi.org/10.1038/s41598-019-42799-2.
[108] Michalík M, Poliak P, Lukeš V, Klein E. From phenols to quinones: thermodynamics of radical scavenging activity of para-substituted phenols. Phytochem. 2019;166:1-8. https://doi.org/10.1016/j.phytochem.2019.112077.
[109] Richter BE, Jones BA, Ezzell JL, Porter NL, Avdalovic N, Pohl C. Accelerated solvent extraction: a technique of sample preparation. Anal Chem. 1996;68:1033-9. https://doi.org/10.1021/ac9508199.
[110] Teo CC, Tan SN, Yong JWH, Hew CS, Ong ES. Pressurized hot water extraction (PHWE). J Chromatogr A. 2010;1217:2484-94. https://doi.org/10.1016/j.chrom.2009.12.050.
[111] Zaiter A, Becker L, Karam MC, Dicko A. Effect of particle size on antioxidant activity and catechin content of green tea powders. J Food Sci Techn. 2016;53:2025-32. https://doi.org/10.1007/s13197-016-2201-4.
[112] Becker L, Zaiter A, Petit J, Zimmer D, Karam MC, Baudelaire E, et al. Improvement of antioxidant activity and polyphenol millefolium powders using successive grinding and sieving. Ind Crops Prod. 2016;87:116-23. https://doi.org/10.1016/j.indcrop.2016.04.036.
[1] Daniel W. Armstrong, Alain Berthod. Occurrence of D-amino acids in natural products[J]. Natural Products and Bioprospecting, 2023, 13(6): 47-47.
[2] Jing-Juan Li, Yong-Xiang Li, Na Li, Hong-Tao Zhu, Dong Wang, Ying-Jun Zhang. The genus Rumex (Polygonaceae): an ethnobotanical, phytochemical and pharmacological review[J]. Natural Products and Bioprospecting, 2022, 12(3): 21-21.
[3] Yan-Ni Chen, Xiao Ding, Dong-Mei Li, Qing-Yun Lu, Shuai Liu, Ying-Yao Li, Ying-Tong Di, Xin Fang, Xiao-Jiang Hao. Jatrophane Diterpenoids from the Seeds of Euphorbia peplus with Potential Bioactivities in Lysosomal-Autophagy Pathway[J]. Natural Products and Bioprospecting, 2021, 11(3): 357-364.
[4] Yin-E Zhi, Xu-Jie Qin, Hui Liu, Yuan Zeng, Wei Ni, Li He, Zu-Ding Wang, Hai-Yang Liu. Structurally Diverse Polymethylated Phloroglucinol Meroterpenoids from Baeckea frutescens[J]. Natural Products and Bioprospecting, 2018, 8(6): 431-439.
[5] Yi-Jun Qiao, Jia-Huan Shang, Dong Wang, Hong-Tao Zhu, Chong-Ren Yang, Ying-Jun Zhang. Research of Panax spp. in Kunming Institute of Botany, CAS[J]. Natural Products and Bioprospecting, 2018, 8(4): 245-263.
[6] Xingrong Peng, Minghua Qiu. Meroterpenoids from Ganoderma Species: A Review of Last Five Years[J]. Natural Products and Bioprospecting, 2018, 8(3): 137-149.
[7] Xu-Jie Qin, Tong Shu, Qian Yu, Huan Yan, Wei Ni, Lin-Kun An, Pan-Pan Li, Yin-E Zhi, Afsar Khan, Hai-Yang Liu. Cytotoxic Acylphloroglucinol Derivatives from Callistemon salignus[J]. Natural Products and Bioprospecting, 2017, 7(4): 315-321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed