Natural Products and Bioprospecting    2023, Vol. 13 Issue (6) : 47-47     DOI: 10.1007/s13659-023-00412-0
REVIEW |
Occurrence of D-amino acids in natural products
Daniel W. Armstrong1, Alain Berthod2
1. Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA;
2. Institut des Sciences Analytiques, CNRS, University of Lyon 1, 69100, Villeurbanne, France
Download: PDF(2094 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Since the identified standard genetic code contains 61 triplet codons of three bases for the 20 L-proteinogenic amino acids (AAs), no D-AA should be found in natural products. This is not what is observed in the living world. D-AAs are found in numerous natural compounds produced by bacteria, algae, fungi, or marine animals, and even vertebrates. A review of the literature indicated the existence of at least 132 peptide natural compounds in which D-AAs are an essential part of their structure. All compounds are listed, numbered and described herein. The two biosynthetic routes leading to the presence of D-AA in natural products are: non-ribosomal peptide synthesis (NRPS), and ribosomally synthesized and post-translationally modified peptide (RiPP) synthesis which are described. The methods used to identify the AA chirality within naturally occurring peptides are briefly discussed. The biological activity of an all-L synthetic peptide is most often completely different from that of the D-containing natural compounds. Analyzing the selected natural compounds showed that D-Ala, D-Val, D-Leu and D-Ser are the most commonly encountered D-AAs closely followed by the non-proteinogenic D-allo-Thr. D-Lys and D-Met were the least prevalent D-AAs in naturally occurring compounds.
Keywords D-amino acid      Chirality      Biogenesis      Natural products     
Fund:Robert A. Welch Foundation (Y-0026)
Corresponding Authors: Daniel W. Armstrong,E-mail:sec4dwa@uta.edu     E-mail: sec4dwa@uta.edu
Issue Date: 26 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Daniel W. Armstrong
Alain Berthod
Trendmd:   
Cite this article:   
Daniel W. Armstrong,Alain Berthod. Occurrence of D-amino acids in natural products[J]. Natural Products and Bioprospecting, 2023, 13(6): 47-47.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-023-00412-0     OR     http://npb.kib.ac.cn/EN/Y2023/V13/I6/47
[1] Berg JM, Tymoczko JL, Stryer JM. Biochemistry. 6th ed. New York, NY: Freeman publishers; 2007.
[2] Delvin MD. Textbook of biochemistry with clinical correlations. Hoboken, NJ: Wiley; 2011.
[3] Fisher E. Einfluss der Configuration auf die Wirkung der Enzyme (Influence of configuration on the action of enzymes). Berich Deutsch Chem Gesell. 1894;27(3):2985-93.
[4] Fisher E. Untersuchungen über aminosäuren, polypeptide und proteïne. Berlin: Verlag Von Julius Spinger; 1906.
[5] Abraham EP. Biochemistry of some peptides and steroid antibiotics. New York: Wiley; 1957.
[6] Montecucchi PC, De Castiglione R, Piani S, Gozzini L, Erspamer V. Amino acid composition and sequence of Dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa Sauvagei. Int J Pept Prot Res. 1981;17(3):275-83.
[7] Jilek A, Kreil G. D-amino acids in animal peptides. Monatsheffe für Chemie. 2008;139:1-5.
[8] Du S, Wey M, Armstrong DW. D-amino acids in biological systems. Chirality. 2023. https://doi.org/10.1002/chir.23562.
[9] Liu Y, Wu Z, Armstrong DW, Wolosker H, Zheng Y. Detection and analysis of chiral molecules as disease biomarkers. Nat Rev Chem. 2023;7:355-73. https://doi.org/10.1038/s41570-023-00476-z.
[10] Ollivaux C, Soyez D, Toullec JY. Biogenesis of D-amino acid containing peptides/proteins: where, when, and how? J Peptide Sci. 2014;20:595-612.
[11] Mast DH, Checco JW, Sweedler JV. Advancing D-amino acid-containing peptide discovery in the metazoan. BBA Proteins Proteom. 2021;1869: 140553.
[12] Walsh CT. Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science. 2004;303:1805-10.
[13] Walsh CT, O’Briaen RV, Khosla C. Nonproteinogenic amino-acids building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew Chem Int Ed. 2013;52:7098-124.
[14] Wang H, Fewer DP, Holm L, Rouhiainen L, Sivonen K. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. PNAS. 2014;111:9259-64.
[15] Barron LD, Hecht L, McColl IH, Blanch EW. Raman optical activity comes to age. Mol Phys. 2004;102:731-44.
[16] Schlesinger DH. Proteins, traditional methods of sequence determination. In Worsfold P, Townsend A, Poole C (Eds) Encyclopedia of analytical science, 3rd edn., Vol. 8, pp. 352-357. https://doi.org/10.1016/B0-12-369397-7/00497-0
[17] Marfey P. Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res Comm. 1984;49(6):591-6.
[18] Sung YS, Berthod A, Roy D, Armstrong DW. A closer examination of 6-aminoquinolyl-N-hydroxysuccinimudyl carbamate amino acid derivation in HPLC with multiple detection modes. Chromatographia. 2021;84:719-27.
[19] Stalcup AM. Chiral separations. Ann Rev Anal Chem. 2010;3:341-63.
[20] Readel ER, Wey M, Armstrong DW. Rapid and selective separation of amyloid beta from its stereoisomeric point mutations implicated in neurodegenerative Alzheimer disease. Anal Chim Acta. 2021;1163: 338506.
[21] Du S, Readel ER, Wey M, Armstrong DW. Complete identification of all 20 relevant epimeric peptides in β-amyloid: a new HPLC-MS based analytical strategy for Alzheimer’s research. Chem Commun. 2020;56(10):1537-40.
[22] Berthod A, Liu Y, Bagwill C, Armstrong DW. Facile LC enantioresolution of native amino acids and peptides using a teicoplanin chiral stationary phase. J Chromatogr A. 1996;731:123-37.
[23] Wimalasinghe R, Breitbach ZS, Lee JT, Armstrong DW. Separation of peptides on superficially porous particles based macrocyclic glycopeptide liquid stationary phases: consideration of fast separations. Anal Bioanal Chem. 2017;409:2437-47.
[24] Arnstein HRV, Margreiter H. The biosynthesis of penicillin. Biochem J. 1958;68:339-48.
[25] Mahariel MA, Essen LO. Nonribosomal peptide synthetases: mechanistic and structural aspects of essential domains. Meth Enzymol. 2009;458:337-51.
[26] Raush C, Hoof I, Weber T, Wohlleben W, Huson D. Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evolution Biol. 2007;7:78-92.
[27] Cheng YQ. Deciphering the biosynthetic codes for the potent anti-SARS-CoV cyclodepsipeptideValinomycin in Streptomyces tsusimaensis ATCC 15141. ChemBioChem. 2006;7:471-7.
[28] Allard STM, Giraud MF, Naismith JH. Epimerases; structure, function and mechanism. Cell Mol Life Sci. 2001;58:1650-5.
[29] Arnison PG, Bibb MJ, Bierbaum G, et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep. 2013;30:108-60.
[30] Cotter PD, O’Connor PM, Draper LA, Lawton EM, Deegan LH, Hill C, Ross RP. Posttranslational conversion of L-serines to D-alanines is vital for optimal production and activity of the lantibiotic lacticin 3147. Proc Natl Acad Sci USA. 2005;102:18584-9.
[31] Miao V, Brost R, Chapple J, et al. The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae. J Ind Microbiol Biotechnol. 2006;33:129-40.
[32] Ciferri O, Albertini A, Cassani G. Origin of the sarcosine molecules of actinomycins. Biochem J. 1965;96:853-61.
[33] Höltzel A, Schmid DG, Nicholson GJ, et al. Arylomycins A and B, new biaryl-bridged lipopeptide antibiotics produced by Streptomyces sp. Tü 6075. II. Structure elucidation. J Antibiot. 2002;55:571-7.
[34] Peypoux F, Pommier MT, Das BC, et al. Structures of bacillomycin D and bacillomycin L peptidolipid antibiotics from Bacillus subtilis. J Antibiot. 1984;37:1600-4.
[35] Ikai Y, Oka H, Hayakawa J, et al. Total structures and antimicrobial activity of bacitracin minor components. J Antibiot. 1995;48:233-42.
[36] Franz J, Kazmaier U, Truman AW, Koehnke J. Bottromycins—biosynthesis, synthesis and activity. Nat Prod Rep. 2021;38:1659-83.
[37] Epperson JD, Ming LJ. Proton NMR studies of Co(ii) complexes of the peptide antibiotic bacitracin and analogues: Insight into structure-activity relationship. Biochemistry. 2000;39:4037-45.
[38] Wu X, Ballard J, Jiang YW. Structure and biosynthesis of the BT peptide antibiotic from Brevibacillus texasporus. Appl Environ Microbiol. 2005;71:8519-30.
[39] Hojati Z, Milne C, Harvey B, et al. Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem Biol. 2002;9:1175-87.
[40] Ramesh S, Govender T, Kruger HG, Alberico F, Dela Torre BG. An improved and efficient strategy for the total synthesis of a colistin-like peptide. Tetrahedron Lett. 2016;57:1885-8.
[41] Baltz RH, Miao V, Wrigley SK. Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep. 2005;22:717-41.
[42] Debono M, Barnhart M, Carrell CB, et al. A21978C, a complex of new acidic peptide antibiotics: isolation, chemistry, and mass spectral structure elucidation. J Antibiot. 1987;40:761-77.
[43] Miao V, Coeffet-Legal MF, Brian P, et al. Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology. 2005;151:1507-23.
[44] Sugawara K, Numata K, Konishi M, Kawaguchi H. Empedopeptin (BMY-28117), a new depsipeptide antibiotic. II. Structure determination. J Antibiot. 1984;37:958-64.
[45] Yin X, Zabriskie TM. The enduracidin biosynthetic gene cluster from Streptomyces fungicidicus. Microbiology. 2006;152:2969-83.
[46] Li J, Jensen SE. Nonribosomal biosynthesis of fusaricidins by Paenibacillus polixyma PKB1 involves direct activation of D-amino acid. Chem Biochem. 2008;15:118-27.
[47] Govaerts C, Orwa J, Schepdael AV, Roets E, Hoogmartens J. Structure elucidation of four related substances in gramicidin with liquid chromatography/mass spectrometry. Rapid Com Mass Spec. 2001;15:128-34.
[48] Tamaki M, Takimoto M, Sofuku S, Muramatsu I. Synthetic studies on gratisin.II. J Antibiot. 1983;36:751-2.
[49] Besson F, Hourdou ML, Michel G. Studies on the biosynthesis of iturin, an antibiotic of Bacillus subtilis, and a lipopeptide containing beta-hydroxy fatty acids. Biochim Biophys Acta. 1990;1036:101-6.
[50] Martin NI, Sprules T, Carpenter MR, Cotter PD, Hill C, Ross RP, Vederas JC. Structural characterization of Lactisin 3147, a two-peptide lantibiotic with synergistic activity. Biochemistry. 2004;43:3049-56.
[51] Arp J, Götze S, Mukherji R, et al. Synergistic activity of cosecreted natural products from amoebae-associated bacteria. Proc Natl Acad Sci USA. 2018;115:3758-63.
[52] O’Sullivan J, McCullough JE, Tymiak AA, Kirsch DR, Trejo WH, Principe PA. Lysobactin, a novel antibacterial agent produced by Lysobacter sp. I. Taxonomy, isolation and partial characterization. J Antibiot. 1988;41:1740-4.
[53] Gerard J, Lloyd R, Barsby T, Haden P, Kelly MT, Andersen RJ. Massetolides A-H, antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats. J Nat Prod. 1997;60:223-9.
[54] Martin NI, Hu H, Moake MM, et al. Isolation, structural characterization, and properties of Mattacin (Polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J Biol Chem. 2003;278:13124-32.
[55] Schlusselhuber M, Godard J, Sebban M, et al. Characterization of Milkisin, a novel lipopeptide with antimicrobial properties produced by pseudomonas sp. ucma 17988 isolated from bovine raw milk. Front Microbiol. 2018;9:1030.
[56] Sengupta S, Banerjee AB, Bose SK. Gamma-glutamyl and D- or L-peptide linkages in mycobacillin, a cyclic peptide antibiotic. Biochem J. 1971;121:839-46.
[57] Okumura Y, Sakamoto M, Takei T, Ishikura T, Fukagawa Y. Controlled biosynthesis of neoviridogriseins, new homologues of viridogrisein. IV. In vitro synergism between neoviridogrisein II and the antibiotics of the mikamycin A group. J Antibiot. 1979;32:1130-6.
[58] Queener SW. Molecular biology of penicillin and cephalosporin biosynthesis. Antimicrob Agents Chemother. 1990;34:943-8.
[59] Shoji J, Hinoo H, Katayama T, Nakagawa Y, Ikenishi Y, Iwatani K, Yoshida T. Structures of new peptide antibiotics, plusbacins A1-A4 and B1-B4. J Antibiot. 1992;45:824-31.
[60] Govaerts C, Orwa J, Schepdael AV, Roets E, Hoogmartens J. Characterization of polypeptide antibiotics of the polymyxin series by LC-ESI-ion trap tandem MS. J Pept Sci. 2002;8:45-55.
[61] Bhattacharjya S, David SA, Mathan VI, Balaram P. Polymyxin B nonapeptide: conformation in water and in the lipopolysaccharide-bound state determined by 2D-NMR and molecular dynamics. Biopol. 1997;41:251-65.
[62] de Crécy-Lagard V, Saurin W, Thibaut D, Gil P, Naudin L, Crouzet J, Blanc V. Streptogramin B biosynthesis in Streptomyces pristinaespiralis and Streptomyces virginiae: molecular characterization of the last structural peptide synthetase gene. Antimicrob Agents Chemother. 1997;41:1904-9.
[63] Martin DG, Mizsak SA, Biles C, Stewart JC, Meulman PA. Structure of quinomycin antibiotics. J Antibiot. 1975;28:332-6.
[64] McCafferty DG, Cudic P, Frankel BA, Barkallah S, Kruger RG, Li W. Chemistry and biology of the ramoplanin family of peptide antibiotics. Biopolymers. 2002;66:261-84.
[65] Harris CM, Kibby JJ, Fehlner JR, Raabe JR, Barber TA, Harris TM. Amino acid constituents of Ristocetin A. J Am Chem Soc. 1979;101(2):437-45.
[66] Segre A, Bachmann RC, Ballio A, et al. The structure of syringomycins A1, E and G. FEBS Lett. 1989;255:27-31.
[67] Grgurina I, Mariotti F. Biosynthetic origin of syringomycin and syringopeptin 22, toxic secondary metabolites of the phytopathogenic bacterium Pseudomonas syringae pv. FEBS Lett. 1999;462:151-4.
[68] Carpaneto A, Dalla Serra M, Menestrina G, Fogliano V, Gambale F. The phytotoxic lipodepsipeptide Syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles. J Membr Biol. 2002;188:237-48.
[69] Berthod A. Macrocyclic glycopeptides chiral stationary phases. In Reference Collection in Chemistry, Molecular Sciences and Chemical Engineering, 2022, Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-32-390644-9.00004-4.
[70] Bassarello C, Lazzaroni S, Bifulco G, et al. Tolaasins A-E, five new lipodepsipeptides produced by Pseudomonas tolaasii. J Nat Prod. 2004;67:811-6.
[71] Otsuka H, Shoji J, Kawano K, Kyogoku Y. Structure confirmation of triostin a by 1H and 13C magnetic resonance. J Antibiot. 1976;29:107-10.
[72] Mootz HD, Marahiel MA. The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J Bacteriol. 1997;179:6843-50.
[73] Cheng YQ. Deciphering the biosynthetic codes for the potent anti-SARS-CoV cyclodepsipeptide valinomycin in Streptomyces tsusimaensis ATCC 15141. ChemBioChem. 2006;7:471-7.
[74] Zhou Q, Grundmann F, Kaiser M, et al. Structure and biosynthesis of Xenoamicins from Entomopathogenic xenorhabdus. Chem Eur J. 2013;19:16772.
[75] Demange P, Bateman A, Dell A, Abdallah MA. Structure of azotobactin D, a siderophore of Azotobacter vinelandii strain D (CCM 289). Biochemistry. 1988;27:2745-52.
[76] Persmark M, Expert D, Neilands JB. Isolation, characterization, and synthesis of chrysobactin, a compound with siderophore activity from Erwinia chrysanthemi. J Biol Chem. 1989;264:3187-93.
[77] Risse D, Beiderbeck H, Taraz K, Budzikiewicz H, Gustine D. Corrugatin, a lipopeptide siderophore from Pseudomonas corrugata. Zeitschrift für Naturforschung C. 1998;53:295-304.
[78] Xu G, Martinez JS, Groves JT, Butler A. Membrane affinity of the amphiphilic Marinobactin siderophores. J Am Chem Soc. 2002;124:13408-15.
[79] Persmark M, Frejd T, Mattiasson B. Purification, characterization, and structure of pseudobactin 589 A, a siderophore from a plant growth promoting Pseudomonas. Biochemistry. 1990;29:7348-56.
[80] Georgias H, Taraz K, Budzikiewicz H, Geoffroy V, Meyer J-M. The structure of the pyoverdin from Pseudomonas fluorescens 1.3. Structural and biological relationships of pyoverdins from different strains. Zeitschrift für Naturforschung C. 1999;54:301-8.
[81] Fernández DU, Fuchs R, Schäfer M, Budzikiewicz H, Meyer JM. The pyoverdin of Pseudomonas fluorescens G173, a novel structural type accompanied by unexpected natural derivatives of the corresponding ferribactin. Zeitschrift fur Naturforschung C. 2003;58:1-10.
[82] Grim KP, Francisco BS, Radin JN, et al. The metallophore Staphylopine enables Staphylococcus aureus to compete with the host for Zinc and overcome nutritional immunity. MBio. 2017;8:e01281-e1317.
[83] Gwose I, Taraz K. Pyoverdins from Pseudomonas putida. Zeitschrift fur Naturforschung C. 1992;47:487-502.
[84] Schalk IJ, Rigouin C, Godet J. An overview of siderophore biosynthesis among fluorescent Pseudomonas and new insights into their complex cellular organization. Env Microbiol. 2020;22:1447-53.
[85] Sørensen D, Nielsen TH, Christophersen C, Sørensen J, Gajhede M. Cyclic lipoundecapeptide amphisin from Pseudomonas sp. strain DSS73. Acta Crystal C Crystal Struct Comm. 2001;57:1123-4.
[86] Fukui Y, Narita K, Dan S, et al. Total synthesis of burkholdacs A and B and 5,6,20-tri-epi-burkholdac A. Eur J Med Chem. 2014;76:301-13.
[87] Ehling-Schulz M, Fricker M, Grallert H, Rieck P, Wagner M, Scherer S. Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol. 2006;6:20-30.
[88] Vanittanakom N, Loeffler W, Koch U, Jung G. Fengycin—a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot. 1986;39:888-901.
[89] Ballio A, Bossa F, Camoni L, et al. Structure of fuscopeptins, phytotoxic metabolites of Pseudomonas fuscovaginae. FEBS Lett. 1996;381:213-6.
[90] Pettit GR, Tan R, Melody N, et al. Antineoplastic agents. Part 409: isolation and structure of montanastatin from a terrestrial actinomycete. Bioorg Med Chem. 1999;7:895-9.
[91] Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE, Gerwick WH. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol. 2007;14:53-63.
[92] Quail JW, Ismail N, Pedras MS, Boyetchko SM. Pseudophomins A and B, a class of cyclic lipodepsipeptides isolated from a Pseudomonas species. Acta Crystal C, Crystal Struct Comm. 2002;58:268-71.
[93] Morikawa M, Daido H, Takao T, Murata S, Shimonishi Y, Imanaka S. A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J Bacteriol. 1993;175:6459-66.
[94] Béchet M, Caradec T, Hussein W, et al. Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Appl Microbiol Biotechnol. 2012;95:593-600.
[95] Matsuyama T, Kaneda K, Nakagawa Y, Isa K, Hara-Hotta H, Yano I. A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens. J Bacteriol. 1992;174:1769-76.
[96] Henriksen A, Anthoni U, Nielsen TH, Sorensen J, Christophersen C, Gajhede M. Cyclic lipoundecapeptide tensin from Pseudomonas fluorescens strain 96.578. Acta Crystal C Crystal Struct Comm. 2000;56:113-5.
[97] Laycock MV, Hildebrand PD, Thibault P, Walter JA, Wright JLC. Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens. J Agric Food Chem. 1991;39:483-9.
[98] Martinez JS, Carter-Franklin JN, Mann EL, Martin JD, Haygood MG, Butler A. Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc Nat Acad Sci. 2003;100:3754-9.
[99] Itou Y, Suzuki S, Ishida K, Murakami M. Anabaenopeptins G and H, potent carboxypeptidase A inhibitors from the cyanobacterium Oscillatoria agardhii (NIES-595). Bioorg Med Chem Lett. 1999;9:1243-6.
[100] Williams DE, Craig M, Holmes CFB, Andersen RJ. Ferintoic acids A and B, new cyclic hexapeptides from the freshwater cyanobacterium Microcystis aeruginosa. J Nat Prod. 1996;59:570-5.
[101] Gao J, Hamann MT. Chemistry and biology of Kahalalides. Chem Rev. 2011;111:3208-35.
[102] Kan Y, Fujita T, Sakamoto B, Hokama Y, Nagai H, Kahalalide K. A new cyclic depsipeptide from the hawaiian green alga bryopsis species. J Nat Prod. 1999;62:1169-72.
[103] Namikoshi M, Rinehart KL, Sakai R, et al. Identification of 12 hepatotoxins from a Homer Lake bloom of the cyanobacteria Microcystis aeruginosa, Microcystis viridis, and Microcystis wesenbergii: nine new microcystins. J Org Chem. 1992;57:866-72.
[104] Sivonen K, Namikoshi M, Evans WR, Färdig M, Carmichael WW, Rinehart KL. Three new microcystins, cyclic heptapeptide hepatotoxins, from Nostoc sp. strain 152. Chem Res Toxicol. 1992;5:464-9.
[105] Mazur-Marzec H, Meriluoto J, Pliński M, Szafranek J. Characterization of nodularin variants in Nodularia spumigena from the Baltic Sea using LC/MS/MS. Rapid Commun Mass Spectrom. 2006;20:2023-32.
[106] Hanessian S, Tremblay M, Petersen JFW. The N-Acyloxyiminium ion aza-prins route to octahydroindoles: total synthesis and structural confirmation of the antithrombotic marine natural product Oscillarin. J Am Chem Soc. 2004;126:6064-71.
[107] Meriluoto JA, Sandström A, Eriksson JE, Remaud G, Grey Craig A, Chattopadhyaya J. Structure and toxicity of a peptide hepatotoxin from the cyanobacterium Oscillatoria agardhii. Toxicon. 1989;27:1021-34.
[108] Singh SB, Zink DL, Liesch JM, et al. Structure and chemistry of Apicidins, a class of novel cyclic tetrapeptides without a terminal α-keto epoxide as inhibitors of histone deacetylase with potent antiprotozoal activities. J Org Chem. 2002;67:815-25.
[109] Kuzma M, Jegorov A, Kačer P, Havlíček V. Sequencing of new beauverolides by HPLC/MS. J Mass Spectrom. 2001;36:1108-15.
[110] Closse A, Huguenin R. Isolierung und strukturaufklärung von Chlamydocin. Helv Chim Acta. 1974;57:533-45.
[111] Lawen A, Zocher R. Cyclosporin synthetase. The most complex peptide synthesizing multienzyme polypeptide so far described. J Biol Chem. 1990;265:11355-60.
[112] Scott-Craig JS, Panaccione DG, Pocard JA, Walton JD. The cyclic peptide synthetase catalyzing HC-toxin production in the filamentous fungus Cochliobolus carbonum is encoded by a 15.7-kilobase open reading frame. J Biol Chem. 1992;267:26044-9.
[113] Walton JD. HC-toxin. Phytochemistry. 2005;67:1406-13.
[114] Baute R, Deffieux G, Merlet D, Baute MA, Neveu A. New insecticidal cyclodepsipeptides from the fungus Isaria feline. II. Structure elucidation of isariins B. C and D J Antibiot. 1981;34:1266-70.
[115] Sugawara F, Kim KW, Uzawa J, Yoshida S, Takahashi N, Curtis RW. Structure of malformin A2, reinvestigation of phytotoxic metabolites produced by aspergillus niger. Tetrahedron Lett. 1990;31:4337-40.
[116] Kim KW, Sugawara F, Yoshida S, Murofushi N, Takahashi N, Curtis RW. Structure of malformin B, a phytotoxic metabolite produced by Aspergillus niger. Biosci Biotechnol Biochem. 1993;57:787-91.
[117] Anderegg RJ, Biemann K, Büchi G, Cushman M. Malformin C, a new metabolite of Aspergillus niger. J Am Chem Soc. 1976;98:3365-70.
[118] Bodanszky M, Bednarek MA, Yiotakis AE, Curtis RW. Allomalformin. Int J Pept Protein Res. 1982;20:16-25.
[119] Nishikawa M, Ogawa K. Occurrence of D-histidine residues in antimicrobial poly(arg-his) conferring resistance to enzymatic hydrolysis. FEMS Microb Lett. 2004;239:255-9.
[120] Goetz G, Nakao Y, Scheuer PJ. Two acyclic Kahalalides from the Sacoglossan mollusk Elysia rufescens. J Nat Prod. 1997;60:562-7.
[121] Tilvi S, Naik CG. Tandem mass spectrometry of kahalalides: identification of two new cyclic depsipeptides, kahalalide R and S from Elysia grandifolia. J Mass Spectrom. 2007;42:70-80.
[122] Rao KV, Na M, Cook JC, Peng J, Matsumoto R, Hamann MT. Kahalalides V-Y isolated from a Hawaiian collection of the sacoglossan mollusk Elysia rufescens. J Nat Prod. 2008;71:772-8.
[123] Fernández R, Rodriguez J, Quiñoa E, et al. Onchidin B: a new cyclodepsipeptide from the mollusc Onchidium sp.. J Am Chem Soc. 1996;118:11635-43.
[124] Katamani Y, Minakata H, Kenny PTM, et al. Achatin I, an endogenous neuroexitatory tetrapeptide for Achata fulica containing a D-amino acid residue. Biochem Biophys Res Comm. 1989;160:1015-20.
[125] Roy MC, Ohtani II, Tanaka J, Higa T, Satari R. Barangamide A, a new cyclic peptide from the Indonesian sponge Theonella swinhoei. Tetrahedron Lett. 1999;40:5373-6.
[126] Trevisi L, Bova G, Cargnelli G, et al. Callipeltin A, a cyclic depsipeptide inhibitor of the cardiac sodium-calcium exchanger and positive inotropic agent. Biochem Biophys Res Commun. 2000;279:219-22.
[127] Calimsiz S, Morales Ramos AI, Lipton MA. Solid-phase synthesis and configurational reassigment of callipeltin E. Implications for the structures of callipeltins A and B. J Org Chem. 2006;71:6351-6.
[128] D’Auria MV, Sepe V, D’Orsi R, Bellotta F, Debitus C, Zampella A, et al. Isolation and structural elucidation of callipeltins J-M: antifungal peptides from the marine sponge Latrunculia sp. Tetrahedron. 2007;63:131-40.
[129] Bonnington LS, Tabaka J, Higa T, Kimura J, Yoshimura Y, Nakao Y, Scheuer PJ. Cupolamide A: a cytotoxic cyclic heptapeptide from two samples of the sponge Theonella cupola. J Org Chem. 1997;62:7765-7.
[130] Nakao Y, Matsunaga S, Fusetani N. Three more cyclotheonamides, C, D, and E, potent thrombin inhibitors from the marine sponge Theonella swinhoei. Biorg Med Chem. 1995;3:1115-22.
[131] Sato K, Horibe K, Amano K, et al. Membrane permeabilization induced by discodermin A, a novel marine bioactive peptide. Toxicon. 2001;39:259-64.
[132] Li HY, Matsunaga S, Fusetani N. Halicylindramides A-C, antifungal and cytotoxic depsipeptides from the marine sponge Halichondria cylindrata. J Med Chem. 1995;38:338-43.
[133] Kobayashi JI, Itagaki F, Shigemori I, Takao T, Shimonishi Y. Keramamides E, G, H, and J, new cyclic peptides containing an oxazole or a thiazole ring from a Theonella sponge. Tetrahedron. 1995;51:2525-32.
[134] Araki T, Matsunaga S, Fusetani N. Koshikamide A2, a cytotoxic linear undecapeptide from a marine sponge of Theonella sp. Biosci Biotech Biochem. 2005;69:1318-22.
[135] Qureshi A, Colin PL, Faulkner DJ. Microsclerodermins F-I, antitumor and antifungal cyclic peptides from the lithistid sponge Microscleroderma sp. Tetrahedron. 2000;56:3679-85.
[136] Rashid MA, Gustafson KR, Cartner LK, Shigematsu N, Pannell LK, Boyd MR. Microspinosamide, a new HIV-inhibitory cyclic depsipeptide from the marine sponge Sidonops microspinosa. J Nat Prod. 2001;64:117-21.
[137] de Silva ED, Williams DE, Andersen RJ, Klix H, Holmes FB, Allen TM. Motuporin, A potent protein phosphatase inhibitor isolated from the papua new guinea sponge Theonella swinhoei Gray. Tetrahedron Lett. 1992;33:1561-4.
[138] Schmidt EW, Harper MK, Faulkner DJ. Mozamides A and B, cyclic peptides from a Theonellid sponge from Mozambique. J Nat Prod. 1997;60:779-82.
[139] Oku N, Gustafson KR, Cartner LK, et al. Neamphamide A, a new HIV-inhibitory depsipeptide from the Papua New Guinea marine sponge Neamphius huxleyi. J Nat Prod. 2004;67:1407-11.
[140] Capon RJ, Ford J, Lacey E, Gill JH, Heiland K, Friedel T. Phoriospongin A and B: two new nematocidal depsipeptides from the Australian marine sponges Phoriospongia sp. and Callyspongia bilamellata. J Nat Prod. 2002;65:358-63.
[141] Gulavita NK, Gunasekera SP, Pomponi SA, Robinson EV. Polydiscamide A: a new bioactive depsipeptide from the marine sponge Discodermia sp. J Org Chem. 1992;57:1767-72.
[142] Feng Y, Carroll AR, Pass DM, Archbold JK, Avery VM, Quinn RJ. Polydiscamides B-D from a marine sponge Ircinia sp. as potent human sensory neuron-specific G protein coupled receptor agonists. J Nat Prod. 2008;71:8-11.
[143] Hamada T, Matsunaga S, Yano G, Fusetani N. Polytheonamides A and B, highly cytotoxic, linear polypeptides with unprecedented structural features, from the marine sponge, Theonella swinhoei. J Am Chem Soc. 2005;127:110-8.
[144] Nakao Y, Masuda A, Matsunaga S, Fusetani N. Pseudotheonamides, serine protease inhibitors from the marine sponge Theonella swinhoei 1. J Am Chem Soc. 1999;121:2425-31.
[145] Roy MC, Ohtani II, Ichiba T, Tanaka J, Satari R, Higa T. New cyclic peptides from the Indonesian sponge Theonella swinhoei. Tetrahedron. 2000;56:9079-92.
[146] Li S, Dumdei EJ, Blunt JW, Munro MHG, Robinson WT, Pannell LK. Theonellapeptolide IIIe, a new cyclic peptolide from the New Zealand deep water sponge, Lamellomorpha strongylata. J Nat Prod. 1998;61:724-8.
[147] Keppel-Hesselink JM, Schatman ME. Rediscovery of old drug: the forgotten case of Dermorphin for postoperative pain and palliation. J Pain Res. 2018;11:2991-5.
[148] Misicka A, Lipkowski AW, Horvath R, Davis P, Kramer TH, Hruby VJ. Topographical requirements for delta opioid ligands: common structural features of dermenkephalin and deltorphin. Life Sci. 1992;51:1025-32.
[149] Mignogna G, Simmaco M, Kreil G, Barra D. Antibacterial and haemolytic peptides containing D-alloisoleucine from the skin of Bombina variegata. EMBO J. 1993;12:4829-32.
[150] Torres AM, Tsampazi C, Geraghty DP, Bansal PS, Alewood PF. D-Amino acid residue in a defensin-like peptide from platypus venom: effect on structure and chromatographic properties. Biochem J. 2005;391:215-20.
[151] Freeman MF, Vagstadt AL, Piel J. Polytheonamide biosynthesis showcasing the metabolic potential of sponge-associated uncultivated Entotheonella bacteria. Curr Op Chem Biol. 2016;31:8-14.
[152] Aliashkevich A, Alvarez L, Cava F. New insights into the mechanisms and biological roles of D-amino acids in complex eco-systems. Front Microbiol. 2018;9:683-93.
[153] Livnat I, Tai HC, Jansson ET, Bai L, Romanova EV, Chen TT, Liu DD, Weiss KR, Jing J, Sweedler JV. A D-amino acid containing neuropeptide discovery funnel. Anal Chem. 2016;88:11868-76.
[154] Blin K, Shaw S, Augustijn HE, et al. AntiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures, and visualization. Nucl Acids Res. 2023;51:gkad344.
[155] Sung YS, Khvalbota L, Dhaubhadel U, Spanik I, Armstrong DW. Teicoplanin aglycone media and carboxypeptidase Y: tools for finding low-abundance D-amino acids and epimeric peptides. Chirality. 2023;35:449-504.
[1] Rostanie Dongmo Zeukang, Jarmo-Charles Kalinski, Babalwa Tembeni, Eleonora D. Goosen, Jacqueline Tembu, Turibio Tabopda Kuiate, Dominique Serge Ngono Bikobo, Maurice Tagatsing Fotsing, Alex de Théodore Atchadé, Xavier Siwe-Noundou. Quinones from Cordia species from 1972 to 2023: isolation, structural diversity and pharmacological activities[J]. Natural Products and Bioprospecting, 2023, 13(6): 52-52.
[2] Dalila Carbone, Carmela Gallo, Genoveffa Nuzzo, Giusi Barra, Mario Dell'Isola, Mario Affuso, Olimpia Follero, Federica Albiani, Clementina Sansone, Emiliano Manzo, Giuliana d'Ippolito, Angelo Fontana. Marine natural product lepadin A as a novel inducer of immunogenic cell death via CD91-dependent pathway[J]. Natural Products and Bioprospecting, 2023, 13(5): 34-34.
[3] Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Warren A. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Leveraging off higher plant phylogenetic insights for antiplasmodial drug discovery[J]. Natural Products and Bioprospecting, 2023, 13(5): 35-35.
[4] Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Andrew W. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Prioritised identification of structural classes of natural products from higher plants in the expedition of antimalarial drug discovery[J]. Natural Products and Bioprospecting, 2023, 13(5): 37-37.
[5] Ji-Kai Liu. Natural products in cosmetics[J]. Natural Products and Bioprospecting, 2022, 12(6): 40-40.
[6] Si-Yuan Luo, Jun-Yu Zhu, Ming-Feng Zou, Sheng Yin, Gui-Hua Tang. Mulberry Diels–Alder-type adducts: isolation, structure, bioactivity, and synthesis[J]. Natural Products and Bioprospecting, 2022, 12(5): 31-31.
[7] Ji-Kai Liu. Antiaging agents: safe interventions to slow aging and healthy life span extension[J]. Natural Products and Bioprospecting, 2022, 12(3): 18-18.
[8] Yulian Lv, Tian Tian, Yong-Jiang Wang, Jian-Ping Huang, Sheng-Xiong Huang. Advances in chemistry and bioactivity of the genus Erythroxylum[J]. Natural Products and Bioprospecting, 2022, 12(3): 15-15.
[9] Ghodsi Mohammadi Ziarani, Negar Jamasbi, Fatemeh Mohajer. Recent advances on the synthesis of natural pyrrolizidine alkaloids: alexine, and its stereoisomers[J]. Natural Products and Bioprospecting, 2022, 12(1): 1-15.
[10] Oyere Tanyi Ebob, Smith B. Babiaka, Fidele Ntie-Kang. Natural Products as Potential Lead Compounds for Drug Discovery Against SARS-CoV-2[J]. Natural Products and Bioprospecting, 2021, 11(6): 611-628.
[11] Christian Bailly, Gérard Vergoten. Anticancer Properties and Mechanism of Action of Oblongifolin C, Guttiferone K and Related Polyprenylated Acylphloroglucinols[J]. Natural Products and Bioprospecting, 2021, 11(6): 629-641.
[12] Patrick O. Sakyi, Richard K. Amewu, Robert N. O. A. Devine, Emahi Ismaila, Whelton A. Miller, Samuel K. Kwofie. The Search for Putative Hits in Combating Leishmaniasis: The Contributions of Natural Products Over the Last Decade[J]. Natural Products and Bioprospecting, 2021, 11(5): 489-544.
[13] Yan-Ni Chen, Xiao Ding, Dong-Mei Li, Qing-Yun Lu, Shuai Liu, Ying-Yao Li, Ying-Tong Di, Xin Fang, Xiao-Jiang Hao. Jatrophane Diterpenoids from the Seeds of Euphorbia peplus with Potential Bioactivities in Lysosomal-Autophagy Pathway[J]. Natural Products and Bioprospecting, 2021, 11(3): 357-364.
[14] Darko Jenic, Helen Waller, Helen Collins, Clett Erridge. Reversal of Tetracycline Resistance by Cepharanthine, Cinchonidine, Ellagic Acid and Propyl Gallate in a Multi-drug Resistant Escherichia coli[J]. Natural Products and Bioprospecting, 2021, 11(3): 345-356.
[15] Christian Bailly. Anticancer Properties of Lobetyolin, an Essential Component of Radix Codonopsis (Dangshen)[J]. Natural Products and Bioprospecting, 2021, 11(2): 143-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed