Natural Products and Bioprospecting    2022, Vol. 12 Issue (1) : 1-15     DOI: 10.1007/s13659-022-00324-5
REVIEW |
Recent advances on the synthesis of natural pyrrolizidine alkaloids: alexine, and its stereoisomers
Ghodsi Mohammadi Ziarani, Negar Jamasbi, Fatemeh Mohajer
Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, P. O. Box 1993893973, Tehran, Iran
Download: PDF(1865 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Natural products have attracted the interest of the scientific community due to their importance and application. Alexine is a naturally polyhydroxylated pyrrolizidine alkaloid that is broadly found in plant sources and isolated from Alexa leiopetala. The biological properties such as glycosidase inhibitors, anti-virus, and anti-HIV activities, makes it interesting target for synthetical studies. This review reports different approaches and methodologies to the synthesis of alexine, and its stereoisomers as the target compounds in numerous studies.
Keywords Polyhydroxylated pyrrolizidine alkaloids      Alexine      Natural products      Alexa leiopetala     
Fund:The authors thank the Research Council of Alzahra University for its support.
Corresponding Authors: Ghodsi Mohammadi Ziarani     E-mail: gmohammadi@alzahra.ac.ir
Issue Date: 12 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ghodsi Mohammadi Ziarani
Negar Jamasbi
Fatemeh Mohajer
Trendmd:   
Cite this article:   
Ghodsi Mohammadi Ziarani,Negar Jamasbi,Fatemeh Mohajer. Recent advances on the synthesis of natural pyrrolizidine alkaloids: alexine, and its stereoisomers[J]. Natural Products and Bioprospecting, 2022, 12(1): 1-15.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-022-00324-5     OR     http://npb.kib.ac.cn/EN/Y2022/V12/I1/1
1. Smith LW, Culvenor CC. Plant sources of hepatotoxic pyrrolizidine alkaloids. J Nat Prod. 1981;44:129-52.
2. Hartmann T, Witte L. Chemistry, biology and chemoecology of the pyrrolizidine alkaloids. In:Pelletier SW, editor. Alkaloids:chemical and biological perspectives, vol. 9. Oxford:Pergamon; 1995. p. 155-233.
3. Nash RJ, Fellows LE, Plant AC, Fleet GWJ, Derome AE, Baird PD, Hegarty MP, Scofield AM. Isolation from castanospermum australe and x-ray crystal structure of 3,8-diepialexine, (1r, 2r, 3s, 7s, 8r)-3-hydroxymethyl-1,2,7-trihydroxypyrrolizidine[(2s, 3r, 4r, 5s, 6r)-2-hydroxymethyl-1-azabicyclo[3.3.0]octan-3,4,6-triol]. Tetrahedron. 1988;44:5959-64.
4. Nash RJ, Fellows LE, Dring JV, Fleet GWJ, Girdhar A, Ramsden NG, Peach JM, Hegarty MP, Scofield AM. Two alexines[3-hydroxymethyl-1,2,7-trihydroxypyrrolizidines] from Castanospermum australe. Phytochemistry. 1990;29:111-4.
5. Nash RJ, Fellows LE, Dring JV, Fleet GWJ, Derome AE, Hamor TA, Scofield AM, Watkin DJ. Isolation from alexa leiopetala and x-ray crystal structure of alexine, (1r, 2r, 3r, 7s, 8s)-3-hydroxymethyl-1,2,7-trihydroxypyrrolizidine[(2r, 3r, 4r, 5r, 6s)-2-hydroxymethyl-1 azabicyclo[3.3.0]octan-3,4,6-triol], a unique pyrrolizidine alkaloid. Tetrahedron Lett. 1988;29:2487-90.
6. Jones L, Hollinshead J, Fleet GW, Thompson AL, Watkin DJ, Gal ZA, Jenkinson SF, Kato A, Nash RJ. Isolation of the pyrrolizidine alkaloid 1-epialexine from Castanospermum australe. Phytochem Lett. 2010;3:133-5.
7. Tropea JE, Molyneux RJ, Kaushal G, Pan Y, Mitchell M, Elbein AD. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing. Biochemistry. 1989;28:2027-34.
8. Kato A, Kano E, Adachi I, Molyneux RJ, Watson AA, Nash RJ, Fleet GWJ, Wormald MR, Kizu H, Ikeda K, Asano N. Australine and related alkaloids:easy structural confirmation by 13CNMR spectral data and biological activities. Tetrahedron Asymmetry. 2003;14:325-31.
9. Taylor D, Nash R, Fellows L, Kang M, Tyms A. Naturally occurring pyrrolizidines:inhibition of α-glucosidase 1 and anti-HIV activity of one stereoisomer. Antivir Chem Chemother. 1992;3:273-7.
10. Asano N, Ikeda K, Kasahara M, Arai Y, Kizu H. Glycosidase-inhibiting pyrrolidines and pyrrolizidines with a long side chain in Scilla peruviana. J Nat Prod. 2004;67:846-50.
11. Pyne SG, Tang M. The structure, biological activities and synthesis of 3-hydroxylpyrrolizidine alkaloids and related compounds. Curr Org Chem. 2005;9:1393-418.
12. Robertson J, Stevens K. Pyrrolizidine alkaloids:occurrence, biology, and chemical synthesis. Nat Prod Rep. 2017;34:62-89.
13. Mohammadi Ziarani G, Mohajer F, Moradi R, Mofatehnia P. The molecular diversity scope of urazole in the synthesis of organic compounds. Curr Org Synth. 2019;16:953-67.
14. Mohammadi Ziarani G, Mohajer F, Kheilkordi Z. Recent progress towards synthesis of the Indolizidine alkaloid 195B. Curr Org Synth. 2020;17:82-90.
15. Mohajer F, Mohammadi Ziarani G, Moradi R. The study of several synthesis methods of Indolizidine (±)-209I and (±)-209B as natural alkaloids. Curr Org Chem. 2020;24:516-35.
16. Mohammadi Ziarani G, Mohajer F, Jamali SM, Ebrahim NA. Quantitative and qualitative bibliometric scope toward the synthesis of rose oxide as a natural product in perfumery. Curr Org Synth. 2020;17:610-24.
17. Mohajer F, Mohammadi Ziarani G, Taghipour F. The multi steps synthetic methods of (±)-Indolizidine 209D as an amphibian natural product in the family of alkaloids. Nat Prod J. 2020;11:448-62.
18. Mohammadi Ziarani G, Chênevert R, Badiei A. Chemoenzymatic enantioselective formal synthesis of (-)-gephyrotoxin-223. Iran J Chem Chem Eng. 2006;25:31-8.
19. Chênevert R, Mohammadi Ziarani G, Morin MP, Dasser M. Enzymatic desymmetrization of meso cis-2, 6-and cis, cis-2, 4, 6-substituted piperidines. Chemoenzymatic synthesis of (5S, 9S)-(+)-indolizidine 209D. Tetrahedron Asymmetry. 1999;10:3117-22.
20. Chênevert R, Mohammadi Ziarani G, Dasser M. Chemoenzymatic enantoselective synthesis of (-)-Indolizidine 167 B. Heterocycles. 1999;51:593-8.
21. Chênevert R, Mohammadi Ziarani G, Caron D, Dasser M. Chemoenzymatic enantioselective synthesis of (-)-enterolactone. Can J Chem. 1999;77:223-6.
22. Fleet GW, Haraldsson M, Nash RJ, Fellows LE. Synthesis from d-glucose of alexine[(1R, 2R, 3R, 7S, 8S)-3-hydroxymethyl-1,2,7-trihydroxypyrrolizidine], 3-epialexine and 7-epialexine. Tetrahedron Lett. 1988;29:5441-4.
23. Fleet GW, Smith PW. Methyl 2-azido-3-O-benzyl-2-deoxy-α-dmamnofuranoside as a divergent intermediate for the synthesis of polyhydroxylated piperidines and pyrrolidines:synthesis of 2,5-dideoxy-2,5-imino-d-mannitol[2R,5R-dihydroxymethyl-3R,4R-dihydroxypyrrolidine]. Tetrahedron. 1987;43:971-8.
24. Mancuso AJ, Huang SL, Swern D. Oxidation of long-chain and related alcohols to carbonyls by dimethyl sulfoxide "activated" by oxalyl chloride. J Org Chem. 1978;12:2480-2.
25. Choi S, Bruce I, Fairbanks A, Fleet G, Jones A, Nash R, Fellows L. Alexines from heptonolactones. Tetrahedron Lett. 1991;32:5517-20.
26. Beacham AR, Bruce I, Choi S, Doherty O, Fairbanks AJ, Fleet GW, Skead BM, Peach JM, Saunders J, Walking DJ. Acetonides of heptonolactones:powerful chirons. Tetrahedron Asymmetry. 1991;2:883-900.
27. Ikota N, Hanaki A. Synthesis of (2S, 3S, 4S)-4-amino-2, 3-dihydroxyhexanedioic acid derivatives from (R)-pyroglutamic acid. Chem Pharm Bull. 1989;37:1087-9.
28. Ikota N, Hanaki A. Synthesis of (-)-Swainsonine and optically active 3,4-dihydroxy-2-hydroxymethylpyrrolidines. Chem Pharm Bull. 1987;35:2140-3.
29. Ikota N. Synthesis of (2R, 3R, 4R, 5R)-3,4-dihydroxy-2,5-dihydroxymethylpyrrolidine and (-)-anisomycin derivative from (S)-pyroglutamic acid derivative. Heterocycles. 1995;5:983-94.
30. Ikota N. Stereocontrolled synthesis of 1,7a-diepialexine. Tetrahedron Lett. 1992;33:2553-6.
31. Ikota N, Nakagawa H, Ohno S, Noguchi K, Okuyama K. Stereoselective synthesis of alexine stereoisomers from (S)-pyroglutamic acid. Tetrahedron. 1998;54:8985-98.
32. Yoda H, Katoh H, Takabe K. Asymmetric total synthesis of natural pyrrolizidine alkaloid,(+)-alexine. Tetrahedron Lett. 2000;41:7661-5.
33. Takahashi M, Maehara T, Sengoku T, Fujita N, Takabe K, Yoda H. New asymmetric strategy for the total synthesis of naturally occurring (+)-alexine and (-)-7-epi-alexine. Tetrahedron. 2008;64:5254-61.
34. Kawana M, Kuzuhara H, Emoto S. The use of Grignard reagents in the synthesis of carbohydrates. III. The one-way anomerization of methyl glycofuranosides and the opening of their furanose rings. Bull Chem Soc Jpn. 1981;54:1492-504.
35. Cram DJ, Elhafez FAA. Studies in stereochemistry. X. The rule of "Steric control of asymmetric induction" in the syntheses of acyclic systems. J Am Chem Soc. 1952;74:5828-35.
36. Luche JL. Lanthanides in organic chemistry. 1. Selective 1,2 reductions of conjugated ketones. J Am Chem Soc. 1978;100:2226-7.
37. Pearson WH, Hines JV. A synthesis of (+)-7-epiaustraline and (-)-7-epialexine. Tetrahedron lett. 1991;32:5513-6.
38. Pearson WH, Hines JV. Total syntheses of (+)-australine and (-)-7-epialexine. J Org Chem. 2000;65:5785-93.
39. MacCoss M, Chen A, Tolman RL. Syntheses of all four possible diastereomers of the acyclonucleoside 9-(1,3,4-trihydroxy-2-butoxymethyl) guanine from carbohydrate precursors. Tetrahedron Lett. 1985;26:4287-90.
40. Romero A, Wong C-H. Chemo-enzymatic total synthesis of 3-epiaustraline, australine, and 7-epialexine. J Org Chem. 2000;65:8264-8.
41. Donohoe TJ, Cheeseman MD, O'Riordan TJC, Kershaw JA. Synthesis of (+)-DGDP and (-)-7-epialexine. Org Biomol Chem. 2008;6:3896-8.
42. Donohoe TJ, Thomas RE, Cheeseman MD, Rigby CL, Bhalay G, Linney ID. Flexible strategy for the synthesis of pyrrolizidine alkaloids. Org Lett. 2008;10:3615-8.
43. Chikkanna D, Singh OV, Kong SB, Han H. A general asymmetric route for the synthesis of the alexine and australine family of pyrrolizidine alkaloids. The first asymmetric synthesis of 1,2-diepi-alexine and 1,2,7-triepi-australine. Tetrahedron Lett. 2005;46:8865-8.
44. Chatterjee AK, Choi T-L, Sanders DP, Grubbs RH. A general model for selectivity in olefin cross metathesis. J Am Chem Soc. 2003;125:11360-70.
45. Dressel M, Restorp P, Somfai P. Total synthesis of (+)-alexine by utilizing a highly stereoselective[3 + 2] annulation reaction of an N-tosyl-α-amino aldehyde and a 1,3-bis(silyl)propene. Chem A Eur J. 2008;14:3072-7.
46. Jurczak J, Gryko D, Kobrzycka E, Gruza H, Prokopowicz P. Effective and mild method for preparation of optically active α-amino aldehydes via TEMPO oxidation. Tetrahedron. 1998;54:6051-64.
47. Guijarro A, Yus M. 1,3-dichloropropene as a source of the 1,3-dianion derived from propene:synthesis of unsaturated 1,5-diols and dihydropyrans. Tetrahedron. 1994;50:13269-76.
48. Yu W, Mei Y, Kang Y, Hua Z, Jin Z. Improved procedure for the oxidative cleavage of olefins by OsO4-NaIO4. Org lett. 2004;6:3217-9.
49. Yu L, Somfai P. Enantioselective synthesis of anti-3-alkenyl-2-amido-3-hydroxy esters:application to the total synthesis of (+)-alexine. RSC Adv. 2019;9:2799-802.
50. Seashore-Ludlow B, Saint-Dizier F, Somfai P. Asymmetric transfer hydrogenation coupled with dynamic kinetic resolution in water:synthesis of anti-β-hydroxy-α-amino acid derivatives. Org Lett. 2012;14:6334-7.
51. Brock EA, Davies SG, Lee JA, Roberts PM, Thomson JE. Polyhydroxylated pyrrolizidine alkaloids from transannular iodoaminations:application to the asymmetric syntheses of (-)-hyacinthacine A1, (-)-7a-epi-hyacinthacine A1, (-)-hyacinthacine A2, and (-)-1-epi-alexine. Org Biomol Chem. 2013;11:3187-202.
52. Brock EA, Davies SG, Lee JA, Roberts PM, Thomson JE. Asymmetric synthesis of polyhydroxylated pyrrolizidines via transannular iodoamination with concomitant N-debenzylation. Org Lett. 2011;13:1594-7.
53. Myeong I-S, Jung C, Ham W-H. Total syntheses of (-)-7-epi-alexine and (+)-alexine using stereoselective allylation. Synthesis. 2019;51:3471-6.
54. Myeong I-S, Jung C, Kim J-Y, Park S-H, Ham W-H. Asymmetric total syntheses of (+)-2,5-dideoxy-2,5-imino-d-glucitol[(+)-DGDP] and (-)-1-deoxymannojirimycin[(-)-DMJ] via an extended chiral 1,3-oxazine. Tetrahedron Lett. 2018;59:2422-5.
[1] Christian Bailly, Gérard Vergoten. Anticancer Properties and Mechanism of Action of Oblongifolin C, Guttiferone K and Related Polyprenylated Acylphloroglucinols[J]. Natural Products and Bioprospecting, 2021, 11(6): 629-641.
[2] Oyere Tanyi Ebob, Smith B. Babiaka, Fidele Ntie-Kang. Natural Products as Potential Lead Compounds for Drug Discovery Against SARS-CoV-2[J]. Natural Products and Bioprospecting, 2021, 11(6): 611-628.
[3] Patrick O. Sakyi, Richard K. Amewu, Robert N. O. A. Devine, Emahi Ismaila, Whelton A. Miller, Samuel K. Kwofie. The Search for Putative Hits in Combating Leishmaniasis: The Contributions of Natural Products Over the Last Decade[J]. Natural Products and Bioprospecting, 2021, 11(5): 489-544.
[4] Darko Jenic, Helen Waller, Helen Collins, Clett Erridge. Reversal of Tetracycline Resistance by Cepharanthine, Cinchonidine, Ellagic Acid and Propyl Gallate in a Multi-drug Resistant Escherichia coli[J]. Natural Products and Bioprospecting, 2021, 11(3): 345-356.
[5] Christian Bailly. Anticancer Properties of Lobetyolin, an Essential Component of Radix Codonopsis (Dangshen)[J]. Natural Products and Bioprospecting, 2021, 11(2): 143-153.
[6] Min Huang, Jin-Jian Lu, Jian Ding. Natural Products in Cancer Therapy: Past, Present and Future[J]. Natural Products and Bioprospecting, 2021, 11(1): 5-13.
[7] Christian Bailly. Anticancer Activities and Mechanism of Action of Nagilactones, a Group of Terpenoid Lactones Isolated from Podocarpus Species[J]. Natural Products and Bioprospecting, 2020, 10(6): 367-375.
[8] Sumel Ashique, Navjot Kaur Sandhu, Sk. Niyamul Haque, Kartick Koley. A Systemic Review on Topical Marketed Formulations, Natural Products, and Oral Supplements to Prevent Androgenic Alopecia: A Review[J]. Natural Products and Bioprospecting, 2020, 10(6): 345-365.
[9] Ilkay Erdogan Orhan, F. Sezer Senol Deniz. Natural Products as Potential Leads Against Coronaviruses: Could They be Encouraging Structural Models Against SARS-CoV-2?[J]. Natural Products and Bioprospecting, 2020, 10(4): 171-186.
[10] Qi Zhao, Jia-Le Zhang, Fei Li. Application of Metabolomics in the Study of Natural Products[J]. Natural Products and Bioprospecting, 2018, 8(4): 321-334.
[11] Yue-mao Shen, Duo-zhi Chen. An Explorer of Chemical Biology of Plant Natural Products in Southwest China, Xiaojiang Hao[J]. Natural Products and Bioprospecting, 2018, 8(4): 217-226.
[12] Gao-Wei Li, Han Liu, Feng Qiu, Xiao-Juan Wang, Xin-Xiang Lei. Residual Dipolar Couplings in Structure Determination of Natural Products[J]. Natural Products and Bioprospecting, 2018, 8(4): 279-295.
[13] Conrad V. Simoben, Fidele Ntie-Kang, Sergi H. Akone, Wolfgang Sippl. Compounds from African Medicinal Plants with Activities Against Selected Parasitic Diseases: Schistosomiasis, Trypanosomiasis and Leishmaniasis[J]. Natural Products and Bioprospecting, 2018, 8(3): 151-169.
[14] Ai-Jun Ding, Shan-Qing Zheng, Xiao-Bing Huang, Ti-Kun Xing, Gui-Sheng Wu, Hua-Ying Sun, Shu-Hua Qi, Huai-Rong Luo. Current Perspective in the Discovery of Anti-aging Agents from Natural Products[J]. Natural Products and Bioprospecting, 2017, 7(5): 335-404.
[15] Fidele Ntie-Kang, Leonel E. Njume, Yvette I. Malange, Stefan Günther, Wolfgang Sippl, Joseph N. Yong. The Chemistry and Biological Activities of Natural Products from Northern African Plant Families: From Taccaceae to Zygophyllaceae[J]. Natural Products and Bioprospecting, 2016, 6(2): 63-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed