Natural Products and Bioprospecting    2022, Vol. 12 Issue (6) : 40-40     DOI: 10.1007/s13659-022-00363-y
REVIEWS |
Natural products in cosmetics
Ji-Kai Liu1,2
1 Wuhan Institute of Health, Shenzhen Moore Vaporization Health & Medical Technology Co., Ltd., Wuhan 430074, People's Republic of China;
2 School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
Download: PDF(2852 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The global cosmetics market reached US$500 billion in 2017 and is expected to exceed US$800 billion by 2023, at around a 7% annual growth rate. The cosmetics industry is emerging as one of the fastest-growing industries of the past decade. Data shows that the Chinese cosmetics market was US$60 billion in 2021. It is expected to be the world’s number one consumer cosmetics market by 2050, with a size of approximately US$450 billion. The influence of social media and the internet has raised awareness of the risks associated with the usage of many chemicals in cosmetics and the health benefits of natural products derived from plants and other natural resources. As a result, the cosmetic industry is now paying more attention to natural products. The present review focus on the possible applications of natural products from various biological sources in skin care cosmetics, including topical care products, fragrances, moisturizers, UV protective, and anti-wrinkle products. In addition, the mechanisms of targets for evaluation of active ingredients in cosmetics and the possible benefits of these bioactive compounds in rejuvenation and health, and their potential role in cosmetics are also discussed.
Keywords Natural products, Cosmetics, Skin whitening agents, Skin anti-aging agents, Moisturizers     
Fund:The author would like to thank the funding from the National Natural Science Foundation of China (Grant Numbers 21961142008, 22177138).
Corresponding Authors: Ji-Kai Liu, E-mail: jkliu@mail.kib.ac.cn     E-mail: jkliu@mail.kib.ac.cn
Issue Date: 23 December 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ji-Kai Liu
Trendmd:   
Cite this article:   
Ji-Kai Liu. Natural products in cosmetics[J]. Natural Products and Bioprospecting, 2022, 12(6): 40-40.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-022-00363-y     OR     http://npb.kib.ac.cn/EN/Y2022/V12/I6/40
1. Dhapte-Pawar V, Kadam S, Saptarsi S, Kenjale PP. Nanocosmeceuticals: facets and aspects. Future Sci OA. 2020;6:FSO613.
2. Alves A, Sousa E, Kijjoa A, Pinto M. Marine-derived compounds with potential uses as cosmeceutical and nutricosmetics. Molecules. 2020;25:2536.
3. Butler H. Microbiological control of cosmetics. In: Butler H, editor. Poucher’s, perfumes cosmetics and soaps, vol. 3. Dordrecht: Springer;
1993. p. 572.
4. Siemer E. Preparations for cleansing and caring for blemished skin. In: Umbach W, editor. Cosmetics and toiletries—development, production and use. New York: Ellis Horwood; 1991. p. 124.
5. Shai A, Baran R, Maibach HI, (Eds.) Cosmetics and cosmetic preparations: basic definitions. London: Informa UK Ltd.; 2009, 1.
6. Halla N, Fernades IP, Heleno SA, et al. Cosmetics preservation: a review on present strategies. Molecules. 2018;23:1571.
7. Truswell WH. Prescription skin care products and skin rejuvenation. Facial Plast Surg Clin N Am. 2020;28:59.
8. King BJ. The history and evolution of skin resurfacing. In: Truswell WH, editor. Lasers and light peels and abrasions—applications and techniques. New York: Thieme Medical Publishers; 2016. p. 1.
9. Gomes A, Aguiar L, Ferraz R, et al. The emerging role of ionic liquid-based approaches for enhanced skin permeation of bioactive molecules: a snapshot of the past couple of years. Int J Mol Sci. 2022;22:11991.
10. Juhasz MLW, Levin MK. The role of systemic treatments for skin lightening. J Cosmet Dermotol. 2018;17:1144.
11. Smit N, Vicanova J, Pavel S. The hunt for natural skin whitening agents. Int J Mol Sci. 2009;10:5326.
12. Pillaiyar T, Manickam M, Namasivayam V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2017;32:403.
13. Lee SY, Baek N, Nam TG. Natural, semisynthetic and synthetic tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2016;31:1.
14. Draelos ZD. Skin lightening preparations and the hydroquinone controversy. Dermatol Ther. 2007;20:308.
15. Jimbow K, Obata H, Pathak MA, Fitzpatrick TB. Mechanism of depigmentation by hydroquinone. J Invest Dermatol. 1974;62:436.
16. Findlay GH. Ochronosis following skin bleaching with hydroquinone. J Am Acad Dermatol. 1982;6:1092.
17. Wester RC, Melendres J, Hui X, et al. Human in vivo and in vitro hydroquinone topical bioavailability, metabolism, and disposition. J Toxicol Environ Health A. 1998;54:301.
18. Searle T, Al-Niaimi F, Ali FR. Hydroquinone: myths and reality. Clin Exp Dermatol. 2021;46:636.
19. Boo YC. Arbutin as a skin depigmenting agent with antimelanogenic and antioxidant properties. Antioxidants. 2021;10:1129.
20. Lim YJ, Lee EH, Kang TH, et al. Inhibitory effects of arbutin on melanin biosynthesis of alpha-melanocyte stimulating hormone-induced hyperpigmentation in cultured brownish guinea pig skin tissues. Arch Pharm Res. 2009;32:367.
21. Maeda K, Fukuda M. Arbutin: mechanism of its depigmenting action in human melanocyte culture. J Pharmacol Exp Ther. 1996;276:765.
22. Chakraborty AK, Funasaka Y, Komoto M, Ichihashi M. Effect of arbutin on melanogenic proteins in human melanocytes. Pigment Cell Res. 1998;11:206.
23. Olivares C, Solano F. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment Cell Melanoma Res. 2009;22:750.
24. Tada M, Kohno M, Niwano Y. Alleviation effect of arbutin on oxidative stress generated through tyrosinase reaction with l-tyrosine and L-DOPA. BMC Biochem. 2014;15:23.
25. Zhang B, Zeng M, Li B, et al. Arbutin attenuates LPS-induced acute kidney injury by inhibiting inflammation and apoptosis via the PI3K/ Akt/Nrf2 pathway. Phytomedicine. 2021;82:153466.
26. Choi S, Park YI, Lee SK, et al. Aloesin inhibits hyperpigmentation induced by UV radiation. Clin Exp Dermatol. 2002;27:513.
27. Ertam I, Mutlu B, Unal I, et al. Efficiency of ellagic acid and arbutin in melasma: a randomized, prospective, open-label study. J Dermatol. 2008;35:570.
28. Morag M, Nawrot J, Siatkowski I, et al. A doubleblind, placebocontrolled randomized trial of Serratulae quinquefoliae folium, a new source of beta-arbutin, in selected skin hyperpigmentations. J Cosmet Dermatol. 2015;14:185.
29. Hori I, Nihei K, Kubo I. Structural criteria for depigmenting mechanism of arbutin. Phytother Res. 2004;18:475.
30. Polnikorn N. Treatment of refractory melasma with the MedLite C6 Q-switched Nd:YAG laser and alpha arbutin: a prospective study. J Cosmet Laser Ther. 2010;12:126.
31. Boissy RE, Visscher M, DeLong MA. Deoxyarbutin: a novel reversible tyrosinase inhibitor with effective in vivo skin lightening potency. Exp Dermatol. 2005;14:601.
32. Chawla S, de Long MA, Visscher MO, et al. Mechanism of tyrosinase inhibition by deoxyarbutin and its second-generation derivatives. Br J Dermatol. 2008;159:1267.
33. Frias MA, Winik B, Franzoni MB, et al. Lysophosphatidylcholine arbutin complexes form bilayer-like structures. Biochim Biophys Acta. 2008;1778:1259.
34. Li Y, Li F, Cai HY, et al. Structural characterization of inclusion complex of arbutin and hydroxypropyl β-cyclodextrin. Trop J Pharm Res. 2016;15:2227.
35. Wen AH, Choi MK, Kim DD. Formulation of liposome for topical delivery of arbutin. Arch Pharm Res. 2006;29:1187.
36. Liang K, Xu K, Bessarab D, et al. Arbutin encapsulated micelles improved transdermal delivery and suppression of cellular melanin production. BMC Res Notes. 2016;9:254.
37. Jones K, Hughes J, Hong M, et al. Modulation of melanogenesis by aloesin: a competitive inhibitor of tyrosinase. Pigment Cell Res. 2002;15:335.
38. Huang Q, Chai WM, Ma ZY, et al. Antityrosinase mechanism of ellagic acid in vitro and its effect on mouse melanoma cells. J Food Biochem. 2019;43: e12996.
39. Yang HL, Lin CP, Gowrisankar YV, et al. The anti-melanogenic effects of ellagic acid through induction of autophagy in melanocytes and suppression of UVA-activated α-MSH pathways via Nrf2 activation in keratinocytes. Biochem Pharmacol. 2021;185: 114454.
40. Al-Niaimi F, Chiang NYZ. Topical vitamin C and the skin: mechanisms of action and clinical applications. J Clin Aesthet Dermatol. 2017;10:14.
41. Ros JR, Rodríguez-López JN, García-Cánovas F. Effect of l-ascorbic acid on the monophenolase activity of tyrosinase. Biochem J. 1993;295:309.
42. Espinal-Perez LE, Moncada B, Castanedo-Cazares JP. A double-blind randomized trial of 5% ascorbic acid vs. 4% hydroquinone in melasma. Int J Dermatol. 2004;43:604.
43. Handog EB, Galang DA, De Leon-Godinez MA, Chan GP. A randomized, double-blind, placebo-controlled trial of oral procyanidin with vitamins A, C, E for melasma among Filipino women. Int J Dermatol. 2009;48:896.
44. Saeedi M, Eslamifar M, Khezri K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed Pharmacother. 2019;10:582.
45. Saghaie L, Pourfarzam M, Fassihi A, Sartippour B. Synthesis and tyrosinase inhibitory properties of some novel derivatives of kojic acid. Res Pharm Sci. 2013;8:233.
46. Hollinger JC, Angra K, Halder RM. Are natural ingredients effective in the management of hyperpigmentation? J Clin Aesthet Dermatol. 2018;11:28.
47. Farshi S. Comparative study of therapeutic effects of 20% azelaic acid and hydroquinone 4% cream in the treatment of melasma. J Cosmet Dermatol. 2011;10:282.
48. Kircik LH. Efficacy and safety of azelaic acid (AzA) gel 15% in the treatment of post-inflammatory hyperpigmentation and acne: a 16-week, baseline-controlled study. J Drugs Dermatol. 2011;10:586.
49. Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H. Antioxidant properties of FA and its possible application. Skin Pharmacol Phys. 2018;31:332.
50. Nguyen NT, Nguyen MH, Nguyen HX, et al. Tyrosinase inhibitors from the Wood of Atrocarpus heterophyllus. J Nat Prod. 2012;75:1951.
51. Akazawa H, Akihisa T, Taguchi Y, et al. Melanogenesis inhibitory and free radical scavenging activities of diarylheptanoids and other phenolic compounds from the bark of Acer nikoense. Biol Pharm Bull. 2006;29:1970.
52. Wang HM, Chen CY, Chen CY, et al. (-)-N-Formylanonaine from Michelia alba as a human tyrosinase inhibitor and antioxidant. Bioorg Med Chem. 2010;18:5241.
53. Wang JV, Jhawar N, Saedi N. Tranexamic acid for melasma: evaluating the various formulations. J Clin Aesthet Dermatol. 2019;12:E73.
54. Sieber MA, Hegel JKE. Azelaic acid: properties and mode of action. Skin Pharmacol Physiol. 2014;27(suppl 1):9.
55. Kolbe L, Mann T, Gerwat W, et al. 4-n-butylresorcinol, a highly effective tyrosinase inhibitor for the topical treatment of hyperpigmentation. J Eur Acad Dermatol Venereol. 2013;27:19.
56. Huh SY, Shin JW, Na JI, et al. The Efficacy and safety of 4-n-butylresorcinol 0.1% cream for the treatment of melasma: a randomized controlled split-face Trial. Ann Dermatol. 2010;22:21.
57. Madan Mohan NT, Gowda A, Jaiswal AK, et al. Assessment of efficacy, safety, and tolerability of 4-n-butylresorcinol 0.3% cream: an Indian multicentric study on melasma. Clin Cosmet Investig Dermatol. 2016;9:21.
58. Mann T, Gerwat W, Batzer J, et al. Inhibition of human tyrosinase requires molecular motifs distinctively different from mushroom tyrosinase. J Invest Dermatol. 2018;138:1601.
59. Arrowitz C, Schoelermann AM, Mann T, et al. Effective tyrosinase inhibition by thiamidol results in significant improvement of mild to moderate melasma. J Invest Dermatol. 2019;39:1691.
60. Philipp-Dormston WG, Vila Echagüe A, Pérez Damonte SH, et al. Thiamidol containing treatment regimens in facial hyperpigmentation: an international multi-center approach consisting of a double-blind, controlled, split-face study and of an open label, real-world study. Int J Cosmet Sci. 2020;42:377.
61. Chang TS. An updated review of tyrosinase inhibitors. Int J Mol Sci. 2009;10:2440.
62. Perugini P, Vettor M, Rona C, et al. Efficacy of oleuropein against UVB irradiation: preliminary evaluation. Inter J Cosmet Sci. 2008;30:113.
63. Hsu ML, Huang WC, Zhou YR, et al. Oleuropein protects human retinal pigment epithelium cells from IL-1β–induced inflammation by blocking MAPK/NF-κB signaling pathways. Inflammation. 2022;45:279.
64. Mao GX, Xing WM, Wen XL, et al. Salidroside protects against premature senescence induced by ultraviolet B irradiation in human dermal fibroblasts. Int J Cosmet Sci. 2015;37:321.
65. Yuan XY, Pang XW, Zhang GQ, Guo JY. Salidroside’s protection against UVB-mediated oxidative damage and apoptosis is associated with the upregulation of Nrf2 expression. Photomed Laser Surg. 2016;35:49.
66. Ding XJ, Zhang ZY, Jin J, et al. Salidroside can target both P4HBmediated inflammation and melanogenesis of the skin. Theranostics. 2020;10:11110.
67. Ratz-Łyko A, Arct J. Resveratrol as an active ingredient for cosmetic and dermatological applications: a review. J Cosmet Laser Ther. 2019;21:84.
68. Boo YC. Human skin lightening efficacy of resveratrol and its analogs: from in vitro studies to cosmetic applications. Antioxidants. 2019;8:332.
69. Afaq F, Adhami VM, Ahmad N. Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice. Toxicol Appl Pharmacol. 2003;86:28.
70. Farris P, Yatskayer M, Chen N, et al. Evaluation of efficacy and tolerance of a nighttime topical antioxidant containing resveratrol, baicalin, and vitamin E for treatment of mild to moderately photodamaged skin. J Drugs Dermatol. 2014;13:1467.
71. Shin NH, Ryu SY, Choi EJ, et al. Oxyresveratrol as the potent inhibitor on dopa oxidase activity of mushroom tyrosinase. Biochem Biophys Res Commun. 1998;243:801.
72. Shimizu K, Kondo R, Sakai K, et al. The inhibitory components from Artocarpus incisus on melanin biosynthesis. Planta Med. 1998;64:408.
73. Lam RYY, Lin ZX, Sviderskaya E, Cheng CHK. Application of a combined sulphorhodamine B and melanin assay to the evaluation of Chinese medicines and their constituent compounds for hyperpigmentation treatment. J Ethnopharmacol. 2010;132:274.
74. Britto SM, Shanthakumari D, Agilan B, et al. Apigenin prevents ultraviolet- B radiation induced cyclobutane pyrimidine dimers formation in human dermal fibroblasts. Mutat Res Gen Tox En. 2017;821:28.
75. Abu-Yousif AO, Smith KA, Getsios S, et al. Enhancement of UVB-induced apoptosis by apigenin in human keratinocytes and organotypic keratinocyte cultures. Cancer Res. 2008;68:3057.
76. Mary Britto S, Shanthakumari D, Radhiga T. Apigenin prevents ultraviolet- B radiation induced oxidative stress and DNA damage. Int J Curr Res. 2016;8:32937.
77. Kubo I, Kinst-Hori I, Chaudhuri SK, et al. Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorg Med Chem. 2000;8:1749.
78. Kubo I, Kinst-Hori I, Ishiguro K, et al. Tyrosinase inhibitory flavonoids from Heterotheca inuloides and their structural functions. Bioorg Med Chem Lett. 1994;4:1443.
79. Xie LP, Chen QX, Huang H, et al. Inhibitory effects of some flavonoids on the activity of mushroom tyrosinase. Biochemistry. 2003;68:487.
80. No JK, Soung DY, Kim YJ, et al. Inhibition of tyrosinase by green tea components. Life Sci. 1999;65:PL241.
81. Kim YJ. Rhamnetin attenuates melanogenesis by suppressing oxidative stress and pro-inflammatory mediators. Biol Pharm Bull. 2013;36:1341.
82. Zheng ZP, Tan HY, Chen J, Wang MF. Characterization of tyrosinase inhibitors in the twigs of Cudrania tricuspidata and their structure activity relationship study. Fitoterapia. 2013;84:242.
83. Tan X, Song YH, Park C, et al. Highly potent tyrosinase inhibitor, neorauflavane from Campylotropis hirtella and inhibitory mechanism with molecular docking. Bioorg Med Chem. 2016;24:153.
84. Ko HH, Chiang YC, Tsai MH, et al. Eupofalin, a skin whitening flavonoid isolated from Phyla nodiflora, downregulated melanogenesis: role of MAPK and Akt pathways. J Ethnopharmacol. 2014;151:386.
85. Arroo RRJ, Sari S, Barut B, et al. Flavones as tyrosinase inhibitors: kinetic studies in vitro and in silico. Phytochem Anal. 2020;31:314.
86. Wang YN, Wu W, Chen HC, Fang H. Genistein protects against UVBinduced senescence-like characteristics in human dermal fibroblast by p66Shc down-regulation. J Dermatol Sci. 2010;58:19.
87. Terra VA, Souza-Neto FP, Frade MAC, et al. Genistein prevents ultraviolet B radiation-induced nitrosative skin injury and promotes cell proliferation. J Photochem Photobiol B Biol. 2015;144:20.
88. Amer M, Metwalli M. Topical liquiritin improves melasma. Int J Dermatol. 2000;39:299.
89. Kim SJ, Son KH, Chang HW, et al. Tyrosinase inhibitory prenylated flavonoids from Sophora flavescens. Biol Pharm Bull. 2003;26:348.
90. Hyun SK, Lee WH, Jeong M, et al. Inhibitory effects of kurarinol, kuraridinol, and trifolirhizin from Sophora flavescens on tyrosinase and melanin synthesis. Biol Pharm Bull. 2008;31:154.
91. Fu B, Li H, Wang X, et al. Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase. J Agric Food Chem. 2005;53:7408.
92. Jun N, Hong G, Jun K. Synthesis and evaluation of 2',4',6'-trihydroxychalcones as a new class of tyrosinase inhibitors. Bioorg Med Chem. 2007;15:2396.
93. Philips N, Samuel M, Arena R. Direct inhibition of elastase and matrixmetalloproteinases and stimulation of biosynthesis of fibrillar collagens, elastin, and fibrillins by xanthohumol. J Cosmet Sci. 2010;61:125.
94. Goenka S, Simon SR. Depigmenting effect of Xanthohumol from hop extract in MNT-1 human melanoma cells and normal human melanocytes. Biochem Biophy Rep. 2021;26: 100955.
95. Takahashi M, Takara K, Toyozato T, et al. A novel bioactive chalcone of Morus australis inhibits tyrosinase activity and melanin biosynthesis in B16 melanoma cells. J Oleo Sci. 2012;61:585.
96. Lee HS, Shin KH, Ryu GS, et al. Synthesis of small molecule peptide conjugates as potential whitening agents. Bull Korean Chem Soc. 2012;33:3004.
97. Azhar-Ul-Haq A, Malik A, Khan MT, et al. Tyrosinase inhibitory lignans from the methanol extract of the roots of Vitex negundo Linn, and their structure-activity relationship. Phytomedicine. 2006;13:255.
98. Lembo S, Balato A, Di Caprio R, et al. The modulatory effect of ellagic acid and rosmarinic acid on ultraviolet-B-induced cytokine/ chemokine gene expression in skin keratinocyte (HaCaT) cells. Biomed Res Int. 2014;2014: 346793.
99. Avila Acevedoa JG, Castañedaa CMC, Beniteza FJC. Photoprotective activity of Buddleja scordioides. Fitoterapia. 2005;76:301.
100. Ahmad VU, Ullah F, Hussain J, et al. Tyrosinase inhibitors from Rhododendron collettianum and their structure-activity relationship (SAR) studies. Chem Pharm Bull. 2004;52:1458.
101. Karthikeyan R, Kanimozhi G, Prasad NR, et al. 7-Hydroxycoumarin prevents UVB-induced activation of NFjB and subsequent overexpression of matrix metalloproteinases and inflammatory markers in human dermal fibroblast cells. J Photochem Photobiol B Biol. 2016;161:170.
102. Pratchyapurit WO. Combined use of two formulations containing diacetyl boldine, TGF-β1 biomimetic oligopeptide-68 with other hypopigmenting/exfoliating agents and sunscreen provides effective and convenient treatment for facial melasma. Either is equal to or is better than 4% hydroquinone on normal skin. J Cosmet Dermatol. 2016;5:131.
103. Bazela K, Solyga-Zurek A, Debowska R, et al. l-Ergothioneine protects skin cells against UV-induced damage: a preliminary study. Cosmetics. 2014;1:51.
104. Obayashi K, Kurihara K, Okano Y, Masaki H, Yarosh DB. l-Ergothioneine scavenges superoxide and singlet oxygen and suppresses TNF-α and MMP-1expression in UV-irradiated human dermal fibroblasts. J Cosmet Sci. 2015;56:17.
105. Taofiq O, González-Paramás AM, Martins A, Barreiro MF, Ferreira ICFR. Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics: a review. Ind Crops Prod. 2016;90:38.
106. Villarama CD, Maibach HI. Glutathione as a depigmenting agent: an overview. Int J Cosmet Sci. 2005;27:147.
107. Davids LM, van Wyk J, Khumalo NP. Intravenous glutathione for skin lightening: inadequate safety data. S Afr Med J. 2016;106:782.
108. Sonthalia S, Daulatabad D, Sarkar R. Glutathione as a skin whitening agent: facts, myths, evidence and controversies. Indian J Dermatol Venereol Leprol. 2016;82:262.
109. Jerajani HR, Mizoguchi H, Li J, Whittenbarger DJ, Marmor MJ. The effects of a daily facial lotion containing vitamins B3 and E and provitamin B5 on the facial skin of Indian women: a randomized, double-blind trial. Indian J Dermatol Venereol Leprol. 2010;76:20.
110. Boo YC. Mechanistic basis and clinical evidence for the applications of nicotinamide (niacinamide) to control skin aging and pigmentation. Antioxidants. 2021;10:1315.
111. Torres A, Enk CD, Hochberg M, Srebnik M. Porphyra-334, a potential natural source for UVA protective sunscreens. Photochem Photobiol Sci. 2006;5:432.
112. Fuentes-Tritan S, Parra-Saldivar R, Iqbal HMN, Carrillo-Nieves D. Bioinspired biomolecules: mycosporine-like amino acids and scytonemin from Lyngbya sp. with UV-protection potentialities. J Photochem Photobiol B. 2019;201:111684.
113. da laCoba F, Aguilera J, Korbee N, et al. UVA and UVB photoprotective capabilities of topical formulations containing mycosporine-like amino acids (MAAs) through different biological effective protection factors (BEPFs). Mar Drugs. 2019;17:55.
114. Jin KS, Lee JY, Hyun SK, Kim BW, Kwon HJ. Juniperus chinensis and the functional compounds, cedrol and widdrol, ameliorate α-melanocyte stimulating hormone-induced melanin formation in B16F10 cells. Food Sci Biotechnol. 2015;24:611.
115. Kanlayavattanakul M, Lourith N. Plants and natural products for the treatment of skin hyperpigmentation—a review. Planta Med. 2018;84:988.
116. Lee HY, Jang EJ, Bae SY, et al. Anti-melanogenic activity of gagunin D, a highly oxygenated diterpenoid from the marine sponge Phorbas sp., via modulating tyrosinase expression and degradation. Mar Drugs. 2016;14:212.
117. Ullah F, Hussain H, Hussain J, et al. Tyrosinase inhibitory pentacyclic triterpenes and analgesic and spasmolytic activities of methanol extracts of Rhododendron collettianum. Phytother Res. 2007;21:1076.
118. Lee DY, Lee J, Jeong YT, Byun GH, Kim JH. Melanogenesis inhibition activity of floralginsenoside A from Panax ginseng berry. J Ginseng Res. 2017;41:602.
119. Lee CS, Nam G, Bae IH, Park J. Whitening efficacy of ginsenoside F1 through inhibition of melanin transfer in cocultured human melanocytes– keratinocytes and three-dimensional human skin equivalent. J Ginseng Res. 2019;43:300.
120. Maeda K, Naitou T, Umishio K, Fukuhara T, Motoyama A. A novelmelanin inhibitor: hydroperoxy traxastane-type triterpene from flowers of Arnica montana. Biol Pharm Bull. 2007;30:873.
121. Ando H, Ryu A, Hashimoto A, Oka M, Ichihashi M. Linoleic acid and α-linolenic acid lightens ultraviolet-induced hyperpigmentation of the skin. Arch Dermatol Res. 1998;290:375.
122. Ando H, Funasaka Y, Oka M, et al. Possible involvement of proteolytic degradation of tyrosinase in the regulatory effect of fatty acids on melanogenesis. J Lipid Res. 1999;40:1312.
123. Ando H, Watabe H, Valencia JC, et al. Fatty acids regulate pigmentation via proteasomal degradation of tyrosinase. J Biol Chem. 2004;279:15427.
124. Chen HW, Chou YS, Young TH, Cheng NC. Inhibition of melanin synthesis and melanosome transfer by chitosan biomaterials. J Biomed Mater Res Part B Appl Biomater. 2020;108:1239.
125. Kim K, Huh YJ, Lim KM. Anti-pigmentary natural compounds and their mode of action. Int J Mol Sci. 2021;22:6206.
126. Yu P, Sun H. Purification of a fucoidan from kelp polysaccharide and its inhibitory kinetics for Tyrosinase. Carbohydr Polym. 2014;99:278.
127. Wang ZJ, Xu W, Liang JW, Wang C-S, Kang Y. Effect of fucoidan on B16 murine melanoma cell melanin formation and apoptosis. Afr J Tradit Complement Altern Med. 2017;14:149.
128. Hu SH, Huang JH, Pei SY, et al. Ganoderma lucidum polysaccharide inhibits UVB-induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways. J Cell Physiol. 2019;234:7330.
129. Yang SH, Liu HI, Tsai SJ. Edible Tremella Polysaccharide for Skin Care. U.S. Patent US20060222608, 5 October 2006.
130. Zhang K, Meng XY, Sun Y, Guo PY. Preparation of Tremella, Speranskiae tuberculatae and Eriocaulon buergerianum extracts and their performance in cosmetics. Deterg Cosmet. 2013;36:28.
131. Wu YZ, Choi MH, Li J, Yang H, Shin HJ. Mushroom cosmetics: the present and future. Cosmetics. 2016;3:22.
132. Chiang JH, Tsai FJ, Lin TH, et al. Tremella fuciformis inhibits melanogenesis in B16F10 cells and promotes migration of human fibroblasts and keratinocytes. In Vivo. 2022;36:713.
133. Liu ZJ, Wang YL, Li QL, Yang L. Improved anti-melanogenesis and antioxidant effects of polysaccharide from Cuscuta chinensis Lam seeds after enzymatic hydrolysis. Braz J Med Biol Res. 2018;51: e7256.
134. Rout S, Banerjee R. Free radical scavenging, anti-glycation and tyrosinase inhibition properties of a polysaccharide fraction isolated from the rind from Punica granatum. Biores Technol. 2007;98:3159.
135. Tominaga K, Hongo N, Karato M, Yamashita E. Cosmetic benefits of astaxanthin on human subjects. Acta Biochim Pol. 2012;59:43.
136. Thomas NV, Kim SK. Beneficial effects of marine algal compounds in cosmeceuticals. Mar Drugs. 2013;11:146.
137. Juturu V, Bowman JP, Deshpande J. Overall skin tone and skinlightening- improving effects with oral supplementation of lutein and zeaxanthin isomers: a double-blind placebo controlled clinical trial. Clin Cosmet Investig Dermatol. 2016;9:325.
138. Maharshak N, Shapiro J, Trau H. Carotenoderma—a review of the current literature. Int J Dermatol. 2003;42:178.
139. Kimbrough-Green CK, Griffiths CE, Finkel LJ, et al. Topical retinoic acid (tretinoin) for melasma in black patients. A vehicle-controlled clinical trial. Arch Dermatol. 1994;130:727.
140. Kligman AM, Grove GL, Hirose R, Leyden JJ. Topical tretinoin for photoaged skin. J Am Acad Dermatol. 1986;15:836.
141. Zasada M, Budzisz E. Retinoids: active molecules influencing skin structure formation in cosmetic and dermatological treatments. Postepy Dermatol Alergol. 2019;36:392.
142. Qiu J, Chen M, Huang X, et al. The skin-depigmenting potential of Paeonia lactiflora root extract and paeoniflorin: in vitro evaluation using reconstructed pigmented human epidermis. Int J Cosmet Sci. 2016;38:444.
143. Daphne Lin MS, Wang SH, Song TY, Hsieh CW, Tsai MS. Safety and efficacy of tyrosinase inhibition of Paeonia suffruticosa Andrews extracts on human melanoma cells. J Cosmet Dermatol. 2019;18:1921.
144. Konno K, Ono H, Nakamura M, et al. Mulberry latex rich in antidiabetic sugar-mimic alkaloids forces dieting on caterpillars. Proc Natl Acad Sci USA. 2006;103:1337.
145. Nattapong S, Omboon L. A new source of whitening agent from a Thai Mulberry plant and its betulinic acid quantitation. Nat Prod Res. 2008;22:727.
146. Kim YM, Yun J, Lee CK, et al. Oxyresveratrol and hydroxystilbene compounds, inhibitory effect on tyrosinase and mechanism of action. J Biol Chem. 2002;277:16340.
147. Lee SH, Choi SY, Kim H, et al. Mulberroside F isolated from the leaves of Morus alba inhibits melanin biosynthesis. Biol Pharm Bull. 2002;25:1045.
148. Kim JH, Yun EJ, Yu S, et al. Different levels of skin whitening activity among 3,6-Anhydro-l-galactose, agarooligosaccharides, and neoagarooligosaccharides. Mar Drugs. 2017;15:321.
149. Yoshimori A, Oyama T, Takahashi S, et al. Structure-activity relationships of the thujaplicins for inhibition of human tyrosinase. Bioorg Med Chem. 2014;22:6193.
150. Lv J, Fu Y, Cao Y, et al. Isoliquiritigenin inhibits melanogenesis, melanocyte dendricity and melanosome transport by regulating ERK-mediated MITF degradation. Exp Derm. 2020;29:149.
151. Wang HM, Chen CY, Wen ZH. Identifying melanogenesis inhibitors from Cinnamomum subavenium with in vitro and in vivo screening systems by targeting the human tyrosinase. Exp Dermatol. 2011;20:242.
152. Liang CH, Chou TH, Ding HY. Inhibition of melanogensis by a novel origanoside from Origanum vulgare. J Dermat Sci. 2010;57:170.
153. Lee DY, Jeong SC, Jeong YT, et al. Antimelanogenic effects of picrionoside A isolated from the leaves of Korean Ginseng. Biol Pharm Bull. 2015;38:1663.
154. Homma T, Kageyama S, Nishikawa A, Nagata K. Anti-melanogenic activity of salacinol by inhibition of tyrosinase oligosaccharide processing. J Biochem. 2020;167:503.
155. Jeong YT, Jeong SC, Hwang JS, Kim JH. Modulation effects of sweroside isolated from the Lonicera japonica on melanin synthesis. Chem Biol Interact. 2015;238:33.
156. Wang ST, Chang WC, Hsu C, Su NW. Antimelanogenic effect of urolithin A and urolithin B, the colonic metabolites of ellagic acid, in B16 melanoma cells. J Agric Food Chem. 2017;65:6870.
157. Badreshia-Bansal S, Draelos ZD. Insight into skin lightening cosmeceuticals for women of color. J Drugs Dermatol. 2007;6:32.
158. Shanbhag S, Nayak A, Narayan R, Nayak UY. Anti-aging and sunscreens: paradiam shift in cosmetics. Adv Pharm Bull. 2019;9:348.
159. Makrantonaki E, Zouboulis CC. Molecular mechanisms of skin aging: state of the art. Ann N Y Acad Sci. 2007;1119:40.
160. Kong BY, Sheu SL, Kundu RV. Assessment of consumer knowledge of new sunscreen labels. JAMA Dermatol. 2015;151:1028.
161. Mccullough JL, Kelly KM. Prevention and treatment of skin aging. Ann N Y Acad Sci. 2006;1067:323.
162. Masaki H. Role of antioxidants in the skin: anti-aging effects. J Dermatol Sci. 2010;58:85.
163. Si H, Liu D. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J Nutr Biochem. 2014;25:581.
164. Mussard E, Jousselin S, Cesaro A, et al. Andrographis paniculata and its bioactive diterpenoids protect dermal fibroblasts against inflammation and oxidative stress. Antioxidants. 2020;9:432.
165. Zhan JYX, Wang XF, Liu YH, et al. Andrographolide sodium bisulfate prevents UV-induced skin photoaging through inhibiting oxidative stress and inflammation. Mediators Inflamm. 2016;2016:3271451.
166. Huh WB, Kim JE, Kang YG, et al. Brown pine leaf extract and its active component trans-communic acid inhibit UVB-induced MMP-1 expression by targeting PI3K. PLoS ONE. 2015;10: e0128365.
167. Kerube M. Study on mechanisms of anti-inflammatory action of glycyrrhetinic acid. J Keio Med Soc. 1970;47:331.
168. Yu JY, Ha JY, Kim KM, et al. Anti-inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. Molecules. 2015;20:13041.
169. Lee SH, Bae IH, Choi H, et al. Ameliorating effect of dipotassium glycyrrhizinate on an IL-4- and IL13-inducedatopic dermatitis-like skin-equivalent model. Arch Dermatol Res. 2019;311:131.
170. Maruki Uchida H, Kurita I, Sugiyama K, et al. The protective effects of piceatannol from passion fruit (Passflora edulis) seeds in UVB-irradiated keratinocytes. Biol Pharm Bull. 2013;36:845.
171. Cavinato M, Waltenberger B, Baraldo G, et al. Plant extracts and natural compounds used against UVB-induced photoaging. Biogerontology. 2017;18:499.
172. Sobiepanek A, Milner-Krawczyk M, Bobecka-Wesołowska K, Kobiela T. The effect of delphinidin on the mechanical properties of keratinocytes exposed to UVB radiation. J Photochem Photobiol B Biol. 2016;164:264.
173. Shin S, Kum H, Ryu D, et al. Protective effects of a new phloretin derivative against UVB-induced damage in skin cell model and human volunteers. Int J Mol Sci. 2014;15:18919.
174. Park JE, Lee KE, Jung E, et al. Sclareol isolated from Salvia officinalis improves facial wrinkles via an antiphotoaging mechanism. J Cosmet Dermatol. 2016;5:475.
175. Bae JT, Sim GS, Lee DH, et al. Production of exopolysaccharide from mycelial culture of Grifola frondosa and its inhibitory effect on matrix metalloproteinase-1 expression in UV-irradiated human dermal fibroblasts. FEMS Microbiol Lett. 2005;251:347.
176. Fang CL, Paul CR, Day CH, et al. Poria cocos (Fuling) targets TGFβ/Smad7 associated collagen accumulation and enhances Nrf2-antioxidant mechanism to exert anti-skin aging effects in human dermal fibroblasts. Environ Toxicol. 2021;36:729.
177. Kumari M, Survase SA, Singhal RS. Production of schizophyllan using Schizophyllum commune NRCM. Bioresour Technol. 2008;99:1036.
178. Scapagnini G, Davinelli S, Di Renzo L, et al. Cocoa bioactive compounds: significance and potential for the maintenance of skin health. Nutrients. 2014;6:3202.
179. Ferreira MS, Magalhães MC, Oliveira R, et al. Trends in the use of botanicals in anti-aging cosmetics. Molecules. 2021;26:3584.
180. Akhtar N, Zaman SU, Khan BA, et al. Calendula extract: effects on mechanical parameters of human skin. Acta Pol Pharm. 2011;68:693.
181. Mistry N. Guidelines for formulating anti-pollution products. Cosmetics. 2017;4:57.
182. Juhasz MLW, Levin MK, Markus ES. The use of natural ingredients in innovative Korean cosmeceuticals. J Cosmet Dermatol. 2018;17:305.
183. Bonté F. Skin moisturization mechanisms: new data. Ann Pharm Fr. 2011;69:135.
184. Harding CR, Watkinson A, Rawlings AV, et al. Dry skin, moisturization and corneodesmolysis. Int J Cosmet Sci. 2000;22:21.
185. Verdier-Sévrain S, Bonté F. Skin hydration: a review on its molecular mechanisms. J Cosmet Dermatol. 2007;6:75.
186. Silva L, Rodrigues V, Schulman MA, et al. Hydrating effects of moisturizer active compounds incorporated into hydrogels: in vivo assessment and comparison between devices. J Cosmet Dermatol. 2009;8:32.
187. Sinico C, Fadda AM. Vesicular carriers for dermal drug delivery. Expert Opin Drug Deliv. 2009;6:813.
188. Patravale VB, Mandawgade SD. Novel cosmetic delivery systems: an application update. Int J Cosmet Sci. 2008;30:19.
189. Elias PM, Grayson S, Lampe MA, et al. The intercorneocyte space. In: Marks R, Plewig G, editors., et al., Stratum corneum. Berlin: Springer- Verlag; 1983. p. 56–67.
190. Knor T, Meholjić-Fetahović A, Mehmedagić A. Stratum corneum hydration and skin surface pH in patients with atopic dermatitis. Acta Dermatovenerol Croat. 2011;19:242.
191. Fluhr JW, Elias PM. Stratum corneum pH: formation and function of the ‘Acid Mantle.’ Exog Dermatol. 2002;1:163.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed