REVIEW |
|
|
|
|
|
Mulberry Diels–Alder-type adducts: isolation, structure, bioactivity, and synthesis |
Si-Yuan Luo, Jun-Yu Zhu, Ming-Feng Zou, Sheng Yin, Gui-Hua Tang |
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, People's Republic of China |
|
|
Abstract Mulberry Diels–Alder-type adducts (MDAAs) are unique phenolic natural products biosynthetically derived from the intermolecular [4 + 2]-cycloaddition of dienophiles (mainly chalcones) and dehydroprenylphenol dienes, which are exclusively distributed in moraceous plants. A total of 166 MDAAs with diverse skeletons have been isolated and identified since 1980. Structurally, the classic MDAAs characterized by the chalcone-skeleton dienophiles can be divided into eight groups (Types A - H), while others with non-chalcone dienophiles or some variations of classic MDAAs are non-classic MDAAs (Type I). These compounds have attracted significant attention of natural products and synthetic chemists due to their complex architectures, remarkable biological activities, and synthetic challenges. The present review provides a comprehensive summary of the structural properties, bioactivities, and syntheses of MDAAs. Cited references were collected between 1980 and 2021 from the SciFinder, Web of Science, and China National Knowledge Internet (CNKI).
|
Keywords
Mulberry Diels–Alder-type adducts
MDAAs
Natural products
Bioactivity
Synthesis
|
Fund:This work was supported by the National Natural Science Foundation of China (Nos.81973203 and 81973195),the Guangdong Basic and Applied Basic Research Foundation,China (No.2020A1515010841),the Open Program of Shenzhen Bay Laboratory (No.SZBL2021080601007),the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)(No.SML2021SP301),and the Key-Area Research and Development Program of Guangdong Province,China (No.2020B1111110003). |
Corresponding Authors:
Gui Hua Tang,E-mail:tanggh5@mail.sysu.edu.cn
E-mail: tanggh5@mail.sysu.edu.cn
|
Issue Date: 12 October 2022
|
|
|
1. Nomura T, Fukai T, Kuwanon G. a new flavone derivative from the root barks of the cultivated mulberry tree (Morus alba L). Chem Pharm Bull. 1980;28:2548–52.
2. Nomura T, Fukai T, Narita T. Hypotensive constituent, kuwanon H, a new flavone derivative from the root bark of the cultivated mulberry tree (Morus alba L). Heterocycles. 1980;14:1943–51.
3. Takasugi M, Ishikawa S-I, Nagao S, Masamune T, Shirata A, Takahashi K. Albanins F and G, natural Diels-Alder adducts from mulberry. Chem Lett. 1980;9:1577–80.
4. Takasugi M, Nagao S, Masamune T, Shirata A, Takahashi K. Chalcomoracin, a natural Diels-Alder adduct from diseased mulberry. Chem Lett. 1980;9:1573–6.
5. Nomura T, Fukai T, Narita T, Terada S, Uzawa J, Iitaka Y, Takasugi M, Ishikawa S-I, Nagao S, Masamune T. Confirmation of the structures of kuwanons G and H (albanins F and G) by partial synthesis. Tetrahedron Lett. 1981;22:2195–8.
6. Nomura T, Hano Y. Isoprenoid-substituted phenolic compounds of moraceous plants. Nat Prod Rep. 1994;11:205–18.
7. Dai SJ, Lu ZM, Chen RY, Yu DQ. Structure and spectral characteristics of Diels-Alder type adducts from Morus. Acta Pharm Sin. 2005;40:876–81.
8. Yang Y, Tan Y-X, Chen R-Y, Kang J. The latest review on the polyphenols and their bioactivities of Chinese Morus plants. J Asian Nat Prod Res. 2014;16:690–702.
9. Wei H, Zhu JJ, Liu XQ, Feng WH, Wang ZM, Yan LH. Review of bioactive compounds from root barks of Morus plants (Sang-Bai-Pi) and their pharmacological effects. Cogent Chem. 2016;2:1212320.
10. Yan J, Ruan J, Huang P, Sun F, Zheng D, Zhang Y, Wang T. The structure- activity relationship review of the main bioactive constituents of Morus genus plants. J Nat Med. 2020;74:331–40.
11. Hirakura K, Hano Y, Fukai T, Nomura T, Uzawa JUN, Fukushima K. Structures of three new natural Diels-Alder type adducts, kuwanons P and X, and mulberrofuran J, from the cultivated mulberry tree (Morus lhou Koidz.). Chem Pharm Bull. 1985;33:1088–96.
12. Hano Y, Suzuki S, Nomura T, Iitaka Y. Absolute configuration of natural Diels-Alder type adducts from the Morus Root Bark. Heterocycles. 1988;27:2315–25.
13. Qin J, Fan M, He J, Wu XD, Peng LY, Su J, Cheng X, Li Y, Kong LM, Li RT, Zhao QS. New cytotoxic and anti-inflammatory compounds isolated from Morus alba L. Nat Prod Res. 2015;29:1711–8.
14. Huang QH, Lei C, Wang PP, Li JY, Li J, Hou AJ. Isoprenylated phenolic compounds with PTP1B inhibition from Morus alba. Fitoterapia. 2017;122:138–43.
15. Xia CL, Tang GH, Guo YQ, Xu YK, Huang ZS, Yin S. Mulberry Diels– Alder-type adducts from Morus alba as multi-targeted agents for Alzheimer’s disease. Phytochemistry. 2019;157:82–91.
16. Zhang QJ, Tang YB, Chen RY, Yu DQ. Three new cytotoxic Diels–Aldertype adducts from Morus australis. Chem Biodivers. 2007;4:1533–40.
17. Dai SJ, Ma ZB, Wu Y, Chen RY, Yu DQ. Guangsangons F-J, anti-oxidant and anti-inflammatory Diels-Alder type adducts, from Morus macroura Miq. Phytochemistry. 2004;65:3135–41.
18. Dai S, Chen R, Yu D. Diels-Alder type adducts of Morus macroura Miq. J China Pharm Univ. 2006;37:119–22.
19. Wang Y, Xu L, Gao W, Niu L, Huang C, Yang P, Hu X. Isoprenylated phenolic compounds from Morus macroura as potent tyrosinase inhibitors. Planta Med. 2018;84:336–43.
20. Kang J, Chen RY, Yu DQ. Diels-Alder type adducts in stem bark of Morus mongolica. Chin Tradit Herb Drugs. 2006;37:976–9.
21. Zheng ZP, Cheng KW, Zhu Q, Wang XC, Lin ZX, Wang M. Tyrosinase inhibitory constituents from the roots of Morus nigra: a structureactivity relationship study. J Agric Food Chem. 2010;58:5368–73.
22. Tan YX, Yan RY, Wang HQ, Chen RY, Yu DQ. Wittiorumins A – F, antioxidant Diels–Alder-type adducts from Morus wittiorum. Planta Med. 2009;75:249–55.
23. Cui XQ, Doctor Dissertation, Chinese Academy of Medical Sciences & Peking Union Medical College, 2008.
24. Cui XQ, Chen H, Chen RY. Study on Diels-Alder type adducts from stem barks of Morus yunanensis. China J Chin Mater Med. 2009;34:286–90.
25. Kang J, Chen RY, Yu DQ. Five new Diels-Alder type adducts from the stem and root bark of Morus mongolica. Planta Med. 2006;72:52–9.
26. Fitriani R, Happyana N, Hakim EH. Potential cytotoxic Diels-Alder type adducts from liquid medium of Morus alba var. shalun root cultures. Nat Prod Res. 2021;35:2274–8.
27. Kyekyeku JO, Kusari S, Adosraku RK, Zuhlke S, Spiteller M. Prenylated 2-arylbenzofuran derivatives with potent antioxidant properties from Chlorophora regia (Moraceae). Fitoterapia. 2016;108:41–7.
28. Ueda S, Nomura T, Fukai T, Matsumoto J, Kuwanon J. a new Diels-Alder adduct and chalcomoracin from callus culture of Morus alba L. Chem Pharm Bull. 1982;30:3042–5.
29. Yang Y, Wang HQ, Chen RY. Flavonoids from the leaves of Morus alba L. Acta Pharm Sin. 2010;45:77–81.
30. Kim YJ, Sohn MJ, Kim WG. Chalcomoracin and moracin C, new inhibitors of Staphylococcus aureus enoyl-acyl carrier protein reductase from Morus alba. Biol Pharm Bull. 2012;35:791–5.
31. Lee YG, Seo KH, Hong EK, Kim DM, Kim YE, Baek NI. Diels-Alder type adducts from the fruits of Morus alba L. J Appl Biol Chem. 2016;59:91–4.
32. Jeon YH, Choi SW. Isolation, identification, and quantification of tyrosinase and α-glucosidase inhibitors from UVC-irradiated mulberry (Morus alba L.) leaves. Prev Nutr Food Sci. 2019;24:84–94.
33. Nomura T, Fukai T, Matsumoto J, Ohmori T. Constituents of the cultivated mulberry tree VIII. Components of root barks of Morus bombycis. Planta Med. 1982;46:28–32.
34. Happyana N, Hakim EH, Syah VM, Kayser O, Juliawaty LD, Mujahidin D, Ermayanti TM, Achmad SA. Diels-Alder type adducts from hairy root cultures of Morus macroura. Nat Prod Sci. 2019;25:233–7.
35. Fozing CD, Ali Z, Ngadjui BT, Choudhary MI, Kapche GD, Abegaz BM, Khan IA. Phosphodiesterase I-inhibiting Diels-Alder adducts from the leaves of Morus mesozygia. Planta Med. 2012;78:154–9.
36. Hu X, Yu MH, Yan GR, Wang HY, Hou AJ, Lei C. Isoprenylated phenolic compounds with tyrosinase inhibition from Morus nigra. J Asian Nat Prod Res. 2018;20:488–93.
37. Mascarello A, Orbem Menegatti AC, Calcaterra A, Martins PGA, Chiaradia-Delatorre LD, D’Acquarica I, Ferrari F, Pau V, Sanna A, De Logu A, Botta M, Botta B, Terenzi H, Mori M. Naturally occurring Diels–Aldertype adducts from Morus nigra as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B. Eur J Med Chem. 2018;144:277–88.
38. Hu X, Ji J, Wang M, Wu JW, Zhao QS, Wang HY, Hou AJ. New isoprenylated flavonoids and adipogenesis-promoting constituents from Morus notabilis. Bioorg Med Chem Lett. 2011;21:4441–6.
39. Wang M, Gao LX, Wang J, Li JY, Yu MH, Li J, Hou AJ. Diels-Alder adducts with PTP1B inhibition from Morus notabilis. Phytochemistry. 2015;109:140–6.
40. Hano Y, Yamanaka J, Momose Y, Nomura T. Sorocenols C-F, four new isoprenylated phenols from the root bark of Sorocea bonplandii Baillon. Heterocycles. 1995;41:2811–21.
41. Ferrari F, Messana I. Prenylated flavanones from Sorocea ilicifolia. Phytochemistry. 1995;38:251–4.
42. Nomura T, Fukai T, Matsumoto J, Fukushima K, Momose Y. Structure of mulberrofuran C, a natural hypotensive Diels-Alder adduct from root barks of the cultivated mulberry tree (Morus bombycis Koidzumi). Heterocycles. 1981;16:759–65.
43. Cui L, Na M, Oh H, Bae EY, Jeong DG, Ryu SE, Kim S, Kim BY, Oh WK, Ahn JS. Protein tyrosine phosphatase 1B inhibitors from Morus root bark. Bioorg Med Chem Lett. 2006;16:1426–9.
44. Jung JW, Ko WM, Park JH, Seo KH, Oh EJ, Lee DY, Lee DS, Kim YC, Lim DW, Han D, Baek NI. Isoprenylated flavonoids from the root bark of Morus alba and their hepatoprotective and neuroprotective activities. Arch Pharm Res. 2015;38:2066–75.
45. Qi SZ, Li N, Tuo ZD, Li JL, Xing SS, Li BB, Zhang L, Lee HS, Chen JG, Cui L. Effects of Morus root bark extract and active constituents on blood lipids in hyperlipidemia rats. J Ethnopharmacol. 2016;180:54–9.
46. Ha MT, Seong SH, Nguyen TD, Cho WK, Ah KJ, Ma JY, Woo MH, Choi JS, Min BS. Chalcone derivatives from the root bark of Morus alba L. act as inhibitors of PTP1B and α-glucosidase. Phytochemistry. 2018;155:114–25.
47. Ueda S, Matsumoto J, Nomura T. Four natural Diels-Alder adducts mulberrofuran E, kuwanon Q, R, and V from callus culture of Morus alba L. Chem Pharm Bull. 1984;32:350–3.
48. Wang YF, Yu MH, Xu LJ, Niu LX, Huang CY, Xu H, Yang PM, Hu X. Diels- Alder type adducts with potent alpha-glucosidase inhibitory activity from Morus macroura. Phytochem Lett. 2018;26:149–53.
49. Tan YX, Liu C, Zhang T, Chen RY, Yu DQ. Bioactive constituents of Morus wittiorum. Phytochem Lett. 2010;3:57–61.
50. Cui XQ, Wang HQ, Liu C, Chen RY. Study of anti-oxidant phenolic compounds from stem barks of Morus yunanensis. China J Chin Mater Med. 2008;33:1569–72.
51. Su C, Duan Y, Tian J, Liu J, Xie K, Chen D, Ye F, Chen R, Dai J. Morusalisins A-F, six new Diels-Alder type adducts, as potential PTP1B inhibitors from cell cultures of Morus alba. Fitoterapia. 2020;146: 104682.
52. Basnet P, Kadota S, Terashima S, Shimizu M, Namba T. Two new 2-arylbenzofuran derivatives from hypoglycemic activity-bearing fractions of Morus insignis. Chem Pharm Bull. 1993;41:1238–43.
53. Hano Y, Nomura T, Ueda S. Two new Diels-Alder type adducts, mulberrofuran T and kuwanol E, from callus tissues of Morus alba L. Heterocycles. 1989;29:2035–41.
54. Hano Y, Kohno H, Itoh M, Nomura T. Structures of three new 2-arylbenzofuran derivatives from the Chinese crude drug “Sang-Bai-Pi” (Morus Root Bark). Chem Pharm Bull. 1985;33:5294–300.
55. Ferrari F, Filho VC, Cabras T, Messana I. Sorocein L and sorocein M: Two Diels-Alder type adducts from Sorocea ilicifolia. J Nat Prod. 2003;66:581–2.
56. Hano Y, Fukai T, Nomura T, Uzawa J, Fukushima K. Structure of mulberrofuran I, a novel 2-arylbenzofuran derivative from the cultivated mulberry tree (Morus bombycis Koidz). Chem Pharm Bull. 1984;32:1260–3.
57. Hano Y, Miyagawa Y, Yano M, Nomura T. Correlation between albanol B and mulberrofuran I, and structure of mulberrofuran S, novel 2-arylbenzofuran derivative. Heterocycles. 1989;28:745–50.
58. Hano Y, Tsubura H, Nomura T. Structure of mulberrofuran Q, a novel 2-arylbenzofuran derivative from the cultivated mulberry tree (Morus alba L.). Heterocycles. 1986;24:1807–13.
59. Kikuchi T, Nihei M, Nagai H, Fukushi H, Tabata K, Suzuki T, Akihisa T. Albanol A from the root bark of Morus alba L. induces apoptotic cell death in HL60 human leukemia cell line. Chem Pharm Bull. 2010;58:568–71.
60. Lee HJ, da Lyu H, Koo U, Lee SJ, Hong SS, Kim K, Kim KH, Lee D, Mar W. Inhibitory effect of 2-arylbenzofurans from the Mori Cortex Radicis (Moraceae) on oxygen glucose deprivation (OGD)-induced cell death of SH-SY5Y cells. Arch Pharm Res. 2011;34:1373–80.
61. Zhao Y, Kongstad KT, Jager AK, Nielsen J, Staerk D. Quadruple highresolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with high-performance liquid chromatography-highresolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude root bark of Morus alba L. J Chromatogr A. 2018;1556:55–63.
62. Zhu M, Wang ZJ, He YJ, Qin Y, Zhou Y, Qi ZH, Zhou ZS, Zhu YY, Jin DN, Chen SS, Luo XD. Bioguided isolation, identification and bioactivity evaluation of anti-MRSA constituents from Morus alba Linn. J Ethnopharmacol. 2021;281: 114542.
63. Rama Rao AV, Deshpande VH, Shastri RK, Tavale SS, Dhaneshwar NN. Structures of albanols A and B, two novel phenols from Morus alba bark. Tetrahedron Lett. 1983;24:3013–6.
64. Fukai T, Hano Y, Hirakura K, Nomura T, Uzawa J, Fukushima K. Structures of mulberrofurans F and G, two natural hypotensive Diels-Alder type adducts from the cultivated mulberry tree (Morus lhou (Ser.) Koidz). Heterocycles. 1984;22:473–7.
65. Fukai T, Hano Y, Hirakura K, Nomura T, Uzawa J, Fukushima K. Structures of two natural hypotensive Diels-Alder type adducts, mulberrofurans F and G, from the cultivated mulberry tree (Morus lhou Koidz). Chem Pharm Bull. 1985;33:3195–204.
66. Geng CA, Ma YB, Zhang XM, Yao SY, Xue DQ, Zhang RP, Chen JJ. Mulberrofuran G and isomulberrofuran G from Morus alba L.: anti-hepatitis B virus activity and mass spectrometric fragmentation. J Agric Food Chem. 2012;60:8197–202.
67. Kuk EB, Jo AR, Oh SI, Sohn HS, Seong SH, Roy A, Choi JS, Jung HA. Anti- Alzheimer’s disease activity of compounds from the root bark of Morus alba L. Arch Pharm Res. 2017;40:338–49.
68. Li M, Wu X, Wang X, Shen T, Ren D. Two novel compounds from the root bark of Morus alba L. Nat Prod Res. 2018;32:36–42.
69. Wang Z, Li X, Chen M, Liu F, Han C, Kong L, Luo J. A strategy for screening of α-glucosidase inhibitors from Morus alba root bark based on the ligand fishing combined with high-performance liquid chromatography mass spectrometer and molecular docking. Talanta. 2018;180:337–45.
70. Zheng ZP, Tan HY, Wang M. Tyrosinase inhibition constituents from the roots of Morus australis. Fitoterapia. 2012;83:1008–13.
71. Dat NT, Jin X, Lee K, Hong YS, Kim YH, Lee JJ. Hypoxia-inducible factor-1 inhibitory benzofurans and chalcone-derived Diels-Alder adducts from Morus species. J Nat Prod. 2009;72:39–43.
72. Hong S, Kwon J, Kim DW, Lee HJ, Lee D, Mar W. Mulberrofuran G protects ischemic injury-induced cell death via inhibition of NOX4- mediated ROS generation and ER stress. Phytother Res. 2017;31:321–9.
73. Shim SY, Sung SH, Lee M. Anti-inflammatory activity of mulberrofuran K isolated from the bark of Morus bombycis. Int Immunopharmacol. 2018;58:117–24.
74. Dai SJ, Wu Y, Wang YH, He WY, Chen RY, Yu DQ. New Diels-Alder type adducts from Morus macroura and their anti-oxidant activities. Chem Pharm Bull. 2004;52:1190–3.
75. Heger V, Benesova B, Viskupicova J, Majekova M, Zoofishan Z, Hunyadi A, Horakova L. Phenolic compounds from Morus nigra regulate viability and apoptosis of pancreatic β-cells possibly via SERCA activity. ACS Med Chem Lett. 2020;11:1006–13.
76. Abdel Bar FM, Abbas GM, Gohar AA, Lahloub MFI. Antiproliferative activity of stilbene derivatives and other constituents from the stem bark of Morus nigra L. Nat Prod Res. 2019;34:3506–13.
77. Fitriani R, Happyana N, Hakim EH. Three new Diels-Alder type adducts from root cultures media of Morus alba var. shalun. Res J Chem Environ. 2019;23:96–102.
78. Kang J, Cui XQ, Wang HQ, Yu DQ, Chen RY. Two new Diels–Alder-type adducts from the stem barks of Morus yunanensis. J Asian Nat Prod Res. 2014;16:617–22.
79. Cui XQ, Wang L, Yan RY, Tan YX, Chen RY, Yu DQ. A new Diels-Alder type adduct and two new flavones from the stem bark of Morus yunanensis Koidz. J Asian Nat Prod Res. 2008;10:315–8.
80. Hano Y, Nomura T. Structure of mulberrofuran P, a novel 2-arylbenzofuran derivative from the cultivated mulberry tree (Morus alba L.). Heterocycles. 1986;24:1381–6.
81. Wu YX, Kim YJ, Kwon TH, Tan CP, Son KH, Kim T. Anti-inflammatory effects of mulberry (Morus alba L.) root bark and its active compounds. Nat Prod Res. 2018;34:1786–90.
82. Culenova M, Sychrova A, Hassan STS, Berchova-Bimova K, Svobodova P, Helclova A, Michnova H, Hosek J, Vasilev H, Suchy P, Kuzminova G, Svajdlenka E, Gajdziok J, Cizek A, Suchy V, Smejkal K. Multiple In vitro biological effects of phenolic compounds from Morus alba root bark. J Ethnopharmacol. 2020;248: 112296.
83. Sun JY, Hano Y, Nomura T. Constituents of the cultivated mulberry tree. Part XL. The structure of sanggenon Q, a new Diels-Alder type adduct from Morus mongolica Schneider. Heterocycles. 1989;29:195–202.
84. Takasugi M, Ishikawa SI, Nagao S, Masamune T. Albafuran C, a natural Diels-Alder adduct of a dehydroprenyl-2-phenylbenzofuran with a chalcone from mulberry. Chem Lett. 1982;11:1223–4.
85. Dai SJ, Mi ZM, Ma ZB, Li S, Chen RY, Yu DQ. Bioactive Diels-Alder type adducts from the stem bark of Morus macroura. Planta Med. 2004;70:758–63.
86. Hano Y, Tsubura H, Nomura T. Structures of kuwanons Y and Z, two new stilbene derivatives from the cultivated mulberry tree (Morus alba L.). Heterocycles. 1986;24:2603–10.
87. Hano Y, Yamanaka J, Nomura T, Momose Y. Constituents of the Moraceae plants. 23. Sorocenols A and B, two new isoprenylated phenols from the root bark of Sorocea bonplandii Baillon. Heterocycles. 1995;41:1035–43.
88. Hano Y, Itoh M, Nomura T. Structures of kuwanols A and B, two novel stilbene derivatives from the cultivated mulberry tree (Morus bombycis Koidz). Heterocycles. 1985;23:819–24.
89. Ferrari F, Delle MF. Sorocein I, a new Diels-Alder type adduct from Sorocea ilicifolia. Fitoterapia. 2001;72:301–3.
90. Messana I, Ferrari F, Delle Monache F, Yunes RA, Calixto JB, Bisognin T. Three new Diels-Alder type adducts from the roots of Sorocea bonplandii Baillon. Heterocycles. 1991;32:1287–96.
91. Zhang QJ, Ni G, Wang YH, Chen RY, Yu DQ. Three new Diels-Alder type adducts from the stem bark of Morus cathayana. J Asian Nat Prod Res. 2009;11:267–73.
92. Hano Y, Takizawa S, Mizuno E, Nomura T. Structure of kuwanon P, a new Diels-Alder type adduct from the root bark of the cultivated mulberry tree (Morus lhou (Ser.) Koidz). Chem Pharm Bull. 1983;31:2936–9.
93. Messana I, Ferrari F, Francisco de Mello J, Mesquita de Araujo MDC. Constituents of Brosimopsis oblongifolia. 4. Structures of two new Diels–Alder type adducts, brosimone B and brosimone D. Heterocycles. 1989;29:683–90.
94. Nomura T, Fukai T, Matsumoto J, Imashimizu A, Terada S, Hama M. Constituents of the cultivated mulberry tree X. Structure of kuwanon I, a new natural Diels-Alder adduct from the root bark of Morus alba. Planta Med. 1982;46:167–74.
95. Tsopmo A, Tene M, Kamnaing P, Ayafor JF, Sterner O. A new Diels- Alder-type adduct flavonoid from Dorstenia barteri. J Nat Prod. 1999;62:1432–4.
96. Messana I, Ferrari F, De Araujo MDCM. Constituents of Brosimopsis oblongifolia. 3 Structure of a new Diels-Alder type adduct, brosimone A. Tetrahedron. 1988;44:6693–8.
97. Duong TH, Nguyen HT, Nguyen CH, Tran NMA, Danova A, Tran TMD, Vu- Huynh KL, Musa V, Jutakanoke R, Nguyen NH, Sichaem J. Identification of highly potent α-glucosidase inhibitors from Artocarpus integer and molecular docking studies. Chem Biodivers. 2021;18: e202100499.
98. Hoang DM, Ngoc TM, Dat NT, Ha DT, Kim YH, Luong HV, Ahn JS, Bae KH. Protein tyrosine phosphatase 1B inhibitors isolated from Morus bombycis. Bioorg Med Chem Lett. 2009;19:6759–61.
99. Messana I, Ferrari F, Delle Monache F, Yunes RA, Gacs-Baitz E. Three new flavanone derivatives from the root bark of Sorocea bonplandii Baillon. Heterocycles. 1994;38:1287–97.
100. Phung TXB, Tran THH, Dan TTH, Chau VM, Hoang TH, Nguyen TD. Chalcone-derived Diels-Alder adducts as NF-κB inhibitors from Morus alba. J Asian Nat Prod Res. 2012;14:596–600.
101. Hano Y, Aida M, Nomura T. Two new natural Diels–Alder-type adducts from the root bark of Artocarpus heterophyllus. J Nat Prod. 1990;53:391–5.
102. Shinomiya K, Aida M, Hano Y, Nomura T. A Diels–Alder-type adduct from Artocarpus heterophyllus. Phytochemistry. 1995;40:1317–9.
103. Kong SY, Park MH, Lee M, Kim JO, Lee HR, Han BW, Svendsen CN, Sung SH, Kim HJ. Kuwanon V inhibits proliferation, promotes cell survival and increases neurogenesis of neural stem cells. PLoS ONE. 2015;10: e0118188.
104. Kang J, Chen R-Y, Yu D-Q. A new Diels-Alder type adduct and a new flavone from the stem and root bark of Morus mongolica. Chin Chem Lett. 2005;16:1474–6.
105. Nomura T, Fukai T, Sato E, Fukushima K. The formation of moracenin D from kuwanon G. Heterocycles. 1981;16:983–6.
106. Park KM, You JS, Lee HY, Baek NI, Hwang JK. Kuwanon G: an antibacterial agent from the root bark of Morus alba against oral pathogens. J Ethnopharmacol. 2003;84:181–5.
107. Yang L, Zhao F, Zhang T, Guo F, Lu H. Isolation of active compounds from Cortex Mori and its mechanism on anti-inflammatory. Chin Arch Tradit Chin Med. 2016;34:3008–12.
108. Wu SC, Han F, Song MR, Chen S, Li Q, Zhang Q, Zhu K, Shen JZ. Natural flavones from Morus alba against methicillin-resistant Staphylococcus aureus via targeting the proton motive force and membrane permeability. J Agric Food Chem. 2019;67:10222–34.
109. Oshima Y, Konno C, Hikino H, Matsushita K. Structure of moracenin B, a hypotensive principle of Morus root barks. Tetrahedron Lett. 1980;21:3381–4.
110. Hano Y, Hirakura K, Nomura T, Terada S, Fukushima K. Components of root bark of Morus lhou 1. Structures of two new natural Diels-Alder adducts, kuwanons N and O. Planta Med. 1984;50:127–30.
111. Zuo GY, Yang CX, Ruan ZJ, Han J, Wang GC. Potent anti-MRSA activity and synergism with aminoglycosides by flavonoid derivatives from the root barks of Morus alba, a traditional Chinese medicine. Med Chem Res. 2019;28:1547–56.
112. Oshima Y, Konno C, Hikino H, Matsushita K. Structure of moracenin A, a hypotensive principle of Morus root barks. Heterocycles. 1980;14:1287–90.
113. Hirakura K, Fukai T, Hano Y, Nomura T, Kuwanon W. a natural Diels- Alder type adduct from the root bark of Morus lhou. Phytochemistry. 1985;24:159–61.
114. Ferrari F, Delle Monache F, Suarez AI, Compagnone RS. Multicaulisin, a new Diels-Alder type adduct from Morus multicaulis. Fitoterapia. 2000;71:213–5.
115. Hano Y, Aida M, Nomura T, Ueda S. A novel way of determining the structure of artonin I, an optically active Diels-Alder type adduct, with the aid of an enzyme system of Morus alba cell cultures. J Chem Soc Chem Commun. 1992;17:1177–8.
116. Farooq S, Wahab AT, Fozing CDA, Rahman AU, Choudhary MI. Artonin I inhibits multidrug resistance in Staphylococcus aureus and potentiates the action of inactive antibiotics in vitro. J Appl Microbiol. 2014;117:996–1011.
117. Gao L, Su C, Du X, Wang R, Chen S, Zhou Y, Liu C, Liu X, Tian R, Zhang L, Xie K, Chen S, Guo Q, Guo L, Hano Y, Shimazaki M, Minami A, Oikawa H, Huang N, Houk KN, Huang L, Dai J, Lei X. FAD-dependent enzyme-catalysed intermolecular [4+2] cycloaddition in natural product biosynthesis. Nat Chem. 2020;12:620–8.
118. Nomura T, Fukai T, Hano Y, Nemoto K, Terada S, Kuramochi T. Constituents of cultivated mulberry tree XII. Isolation of two new natural Diels- Alder adducts from root bark of Morus alba. Planta Med. 1983;47:151–6.
119. Dai SJ, Yu DQ. A new anti-oxidant Diels-Alder type adduct from Morus macroura. Nat Prod Res. 2006;20:676–9.
120. Rollinger JM, Spitaler R, Menz M, Marschall K, Zelger R, Ellmerer EP, Schneider P, Stuppner H. Venturia inaequalis-inhibiting Diels-Alder adducts from Morus root bark. J Agric Food Chem. 2006;54:8432–6.
121. Fukai T, Hano Y, Fujimoto T, Nomura T. Structure of sanggenon G, a new Diels-Alder adduct from the Chinese crude drug “Sang Bai Pi” (Morus Root Barks). Heterocycles. 1983;20:611–5.
122. Shi YQ, Fukai T, Sakagami H, Chang WJ, Yang PQ, Wang FP, Nomura T. Cytotoxic flavonoids with isoprenoid groups from Morus mongolica. J Nat Prod. 2001;64:181–8.
123. Hano Y, Ichikawa K, Okuyama M, Yamanaka J, Miyoshi T, Nomura T, Sanggenons R. S, and T, three new isoprenylated phenols from the Chinese crude drug “Sang-Bai-Pi” (Morus Root Bark). Heterocycles. 1995;40:953–65.
124. Nomura T, Fukai T, Hano Y, Uzawa J. Structure of sanggenon D, a natural hypotensive Diels-Alder adduct from Chinese crude drug “Sang-Bai-Pi” (Morus Root Barks). Heterocycles. 1982;17:381–9.
125. Fukai T, Pei YH, Nomura T, Xu CQ, Wu LJ, Chen YJ. Isoprenylated flavanones from Morus cathayana. Phytochemistry. 1998;47:273–80.
126. Hano Y, Kohno H, Suzuki S, Nomura T. Structures of sanggenons E and P, two new Diels–Alder-type adducts from the Chinese crude drug Sang- Bai-Pi (Morus Root Bark). Heterocycles. 1986;24:2285–91.
127. Rollinger JM, Bodensieck A, Seger C, Ellmerer EP, Bauer R, Langer T, Stuppner H. Discovering COX-inhibiting constituents of Morus root bark: Activity-guided versus computer-aided methods. Planta Med. 2005;71:399–405.
128. Zelová H, Hanáková Z, Čermáková Z, Šmejkal K, Dalĺ Acqua S, Babula P, Cvačka J, Hošek J. Evaluation of anti-inflammatory activity of prenylated substances isolated from Morus alba and Morus nigra. J Nat Prod. 2014;77:1297–303.
129. Nomura T, Fukai T, Hano Y, Uzawa J. Structure of sanggenon C, a natural hypotensive Diels-Alder adduct from Chinese crude drug “Sang Bai-Pi” (Morus Root Barks). Heterocycles. 1981;16:2141–8.
130. Shen RC, Lin M. Diels-Alder type adducts from Morus cathayana. Phytochemistry. 2001;57:1231–5.
131. Hano Y, Nomura T. Structure of sanggenon O, a natural Diels-Alder type adduct from the Chinese crude drug “Sang-Bai-Pi” (Morus Root Bark). Heterocycles. 1985;23:2499–503.
132. Shirota O, Takizawa K, Sekita S, Satake M, Hirayama Y, Hakamata Y, Hayashi T, Yanagawa T. Antiandrogenic natural Diels-Alder-type adducts from Brosimum rubescens. J Nat Prod. 1997;60:997–1002.
133. Shirota O, Sekita S, Hirayama Y, Hakamata Y, Hayashi T, Yanagawa T, Satake M. Two chalcone-prenylcoumarin Diels-Alder adducts from Brosimum rubescens. Phytochemistry. 1998;47:1381–5.
134. Chen HD, Ding YQ, Yang SP, Li XC, Wang XJ, Zhang HY, Ferreira D, Yue JM. Morusalbanol A, a neuro-protective Diels-Alder adduct with an unprecedented architecture from Morus alba. Tetrahedron. 2012;68:6054–8.
135. Nomura T, Fukai T, Hano Y, Ikuta H, Kuwanon M. a new Diels-Alder adduct from the root barks of the cultivated mulberry tree (Morus lhou (Ser.) Koidz.). Heterocycles. 1983;20:585–91.
136. Takasugi M, Nagao S, Masamune T. Structure of dimoracin, a new natural Diels-Alder adduct from diseased mulberry. Chem Lett. 1982;11:1217–20.
137. Su C, Tao X, Yin Z, Zhang X, Tian J, Chen R, Liu J, Li L, Ye F, Zhang PC, Zhang D, Dai J. Morusalones A-D, Diels-Alder adducts with 6/7/6/6/6/6 hexacyclic ring systems as potential PTP1B inhibitors from cell cultures of Morus alba. Org Lett. 2019;21:9463–7.
138. Fukai T, Hano Y, Hirakura K, Nomura T, Uzawa JUN. Structures of a novel 2-arylbenzofuran derivative and two flavone derivatives from the cultivated mulberry tree (Morus lhou Koidz). Chem Pharm Bull. 1985;33:4288–95.
139. Kohno H, Takaba K, Fukai T, Nomura T. Constituents of the cultivated mulberry tree. Part XXXIX. Structure of mulberrofuran R, a novel 2-arylbenzofuran derivative from the cultivated mulberry tree (Morus lhou Koidz). Heterocycles. 1987;26:759–62.
140. Nomura T, Fukai T, Hano Y, Urano S. Constituents of the Chinese crude drug “Sang Bai Pi” (Morus Root Bark). II. Structure of a new flavanone derivative, sanggenon B. Planta Med. 1983;47:95–9.
141. Han H, Chou C-C, Li R, Liu J, Zhang L, Zhu W, Hu J, Yang B, Tian J. Chalcomoracin is a potent anticancer agent acting through triggering oxidative stress via a mitophagy- and paraptosis-dependent mechanism. Sci Rep. 2018;8:9566.
142. Zhang SR, Zhang XC, Liang JF, Fang HM, Huang HX, Zhao YY, Chen XQ, Ma SL. Chalcomoracin inhibits cell proliferation and increases sensitivity to radiotherapy in human non-small cell lung cancer cells via inducing endoplasmic reticulum stress-mediated paraptosis. Acta Pharmacol Sin. 2020;41:825–34.
143. Phan TN, Kim O, Ha MT, Hwangbo C, Min BS, Lee JH. Albanol B from mulberries exerts anti-cancer effect through mitochondria ROS production in lung cancer cells and suppresses in vivo tumor growth. Int J Mol Sci. 2020;21:9502.
144. Shu YH, Yuan HH, Xu MT, Gao CC, Wu ZP, Han HT, Li SX, Tian JK, Shu YH, Zhang JB, Hong YT, Sun X, Yang SF, Gao RL, Li SX, Tian JK. A novel Diels-Alder adduct of mulberry leaves exerts anticancer effect through autophagy-mediated cell death. Acta Pharmacol Sin. 2021;42:780–90.
145. Park JE, Jung JH, Lee HJ, Sim DY, Im E, Park WY, Shim BS, Ko SG, Kim SH. Ribosomal protein L5 mediated inhibition of c-Myc is critically involved in sanggenon G induced apoptosis in non-small lung cancer cells. Phytother Res. 2021;35:1080–8.
146. Wang Y, Wei H, Yang G, Zhang M. Effect of sanggenon D on the growth of tumor cells and transplantation tumors. Nat Prod Res Dev. 2020;32:160–7.
147. Chen LD, Liu ZH, Zhang LF, Yao JN, Wang CF. Sanggenon C induces apoptosis of colon cancer cells via inhibition of NO production, iNOS and ROS activation of the mitochondrial pathway. Oncol Rep. 2017;38:2123–31.
148. Li ZR, Ma T, Guo YJ, Hu B, Niu SH, Suo FZ, Du LN, You YH, Kang WT, Liu S, Mamun M, Song QM, Pang JR, Zheng YC, Liu HM. Sanggenon O induced apoptosis of A549 cells is counterbalanced by protective autophagy. Bioorg Chem. 2019;87:688–98.
149. Wang L, Yang Y, Liu C, Chen RY. Three new compounds from Morus nigra L. J Asian Nat Prod Res. 2010;12:431–7.
150. Kimura Y, Okuda H. Effects of phenolic constituents from the mulberry tree on arachidonate metabolism in rat platelets. J Nat Prod. 1986;49:639–44.
151. Dat NT, Binh PT, le Quynh TP, Huong HT, Minh CV. Sanggenon C and O inhibit NO production, iNOS and NF-κB activation in LPSinduced RAW264.7 cells. Immunopharm Immunot. 2012;34:84–8.
152. Peng J, Gong L, Si K, Bai X, Du G. Fluorescence resonance energy transfer assay for high-throughput screening of ADAMTS1 inhibitors. Molecules. 2011;16:10709–21.
153. Jung HW, Kang SY, Kang JS, Kim AR, Woo ER, Park YK. Effect of kuwanon G isolated from the root bark of Morus alba on ovalbumin-induced allergic response in a mouse model of asthma. Phytother Res. 2014;28:1713–9.
154. Jin SE, Ha H, Shin HK, Seo CS. Anti-allergic and anti-inflammatory effects of kuwanon G and morusin on MC/9 mast cells and HaCaT keratinocytes. Molecules. 2019;24:265.
155. Fukai T, Kaitou K, Terada S. Antimicrobial activity of 2-arylbenzofurans from Morus species against methicillin-resistant Staphylococcus aureus. Fitoterapia. 2005;76:708–11.
156. Fukai T, Oku Y, Hano Y, Terada S. Antimicrobial activities of hydrophobic 2-arylbenzofurans and an isoflavone against vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. Planta Med. 2004;70:685–7.
157. Sohn HY, Son KH, Kwon CS, Kwon GS, Kang SS. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine. 2004;11:666–72.
158. Aelenei P, Rimbu CM, Horhogea CE, Lobiuc A, Neagu AN, Dunca SI, Motrescu I, Dimitriu G, Aprotosoaie AC, Miron A. Prenylated phenolics as promising candidates for combination antibacterial therapy: morusin and kuwanon G. Saudi Pharm J. 2020;28:1172–81.
159. Barker WT, Jania LA, Melander RJ, Koller BH, Melander C. Eukaryotic phosphatase inhibitors enhance colistin efficacy in gram-negative bacteria. Chem Biol Drug Des. 2020;96:1180–6.
160. Grienke U, Richter M, Walther E, Hoffmann A, Kirchmair J, Makarov V, Nietzsche S, Schmidtke M, Rollinger JM. Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae. Sci Rep. 2016;6:27156.
161. Pang D, Wang W, Li E, Shen W, Mu L, Liao S, Liu F. Sanggenon D from root bark of mulberry inhibits the growth of Staphylococcus aureus by moderating the fatty acid biosynthesis system. Ind Crop Prod. 2019. https://doi.org/10.1016/j.indcrop.2019.111719.
162. Mascarello A, Mori M, Chiaradia-Delatorre LD, Menegatti AC, Delle Monache F, Ferrari F, Yunes RA, Nunes RJ, Terenzi H, Botta B, Botta M. Discovery of Mycobacterium tuberculosis protein tyrosine phosphatase B (PtpB) inhibitors from natural products. PLoS ONE. 2013;8: e77081.
163. Li X, Ren Z, Wu Z, Fu Z, Xie H, Deng L, Jiang X, Chen D. Steric effect of antioxidant Diels–Alder-type adducts: a comparison of sanggenon C with sanggenon D. Molecules. 2018;23:2610.
164. Paudel P, Park SE, Seong SH, Jung HA, Choi JS. Novel Diels-Alder type adducts from Morus alba root bark targeting human monoamine oxidase and dopaminergic receptors for the management of neurodegenerative diseases. Int J Mol Sci. 2019;20:6232.
165. Ham A, Lee HJ, Hong SS, Lee D, Mar W. Moracenin D from Mori Cortex radicis protects SH-SY5Y cells against dopamine-induced cell death by regulating nurr1 and α-synuclein . Phytother Res. 2012;26:620–4.
166. Zhao Y, Xu J. Sanggenon C ameliorates cerebral ischemia-reperfusion injury by inhibiting inflammation and oxidative stress through regulating RhoA-ROCK signaling. Inflammation. 2020;43:1476–87.
167. Johnson TO, Ermolieff J, Jirousek MR. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat Rev Drug Discov. 2002;1:696–709.
168. Paudel P, Yu T, Seong SH, Kuk EB, Jung HA, Choi JS. Protein tyrosine phosphatase 1B inhibition and glucose uptake potentials of mulberrofuran G, albanol B, and kuwanon G from root bark of Morus alba L. in insulin-resistant HepG2 cells: an in vitro and in silico study. Int J Mol Sci. 2018;19:1542.
169. van de Laar FA, Lucassen PL, Akkermans RP, van de Lisdonk EH, Rutten GE, van Weel C. α-Glucosidase inhibitors for patients with type 2 diabetes: Results from a cochrane systematic review and meta-analysis. Diabetes Care. 2005;28:154–63.
170. Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia- Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2019;34:279–309.
171. Lee NK, Son KH, Chang HW, Kang SS, Park H, Heo MY, Kim HP. Prenylated flavonoids as tyrosinase inhibitors. Arch Pharm Res. 2004;27:1132–5.
172. Hu S, Zheng Z, Chen F, Wang M. The depigmenting effect of natural resorcinol type polyphenols kuwanon O and sanggenon T from the roots of Morus australis. J Ethnopharmacol. 2017;195:196–203.
173. Koirala P, Seong SH, Zhou Y, Shrestha S, Jung HA, Choi JS. Structureactivity relationship of the tyrosinase inhibitors kuwanon G, mulberrofuran G, and albanol B from Morus species: a kinetics and molecular docking study. Molecules. 2018;23:1413.
174. Ma F, Shen W, Zhang X, Li M, Wang Y, Zou Y, Li Y, Wang H. Anti-HSV activity of kuwanon X from mulberry leaves with genes inhibitory and HSV-1 induced NF-κB deactivated properties. Biol Pharma Bull. 2016;39:1667–74.
175. Thabti I, Albert Q, Philippot S, Dupire F, Westerhuis B, Fontanay S, Risler A, Kassab T, Elfalleh W, Aferchichi A, Varbanov M. Advances on antiviral activity of Morus spp. plant extracts: Human coronavirus and virus-related respiratory tract infections in the spotlight. Molecules. 2020;25:1876.
176. Esposito F, Tintori C, Martini R, Christ F, Debyser Z, Ferrarese R, Cabiddu G, Corona A, Ceresola ER, Calcaterra A, Iovine V, Botta B, Clementi M, Canducci F, Botta M, Tramontano E. Kuwanon-L as a new allosteric HIV-1 integrase inhibitor: molecular modeling and biological evaluation. ChemBioChem. 2015;16:2507–12.
177. Martini R, Esposito F, Corona A, Ferrarese R, Ceresola ER, Visconti L, Tintori C, Barbieri A, Calcaterra A, Iovine V, Canducci F, Tramontano E, Botta M. Natural product kuwanon-L inhibits HIV-1 replication through multiple target binding. ChemBioChem. 2017;18:374–7.
178. Nikaido T, Ohmoto T, Nomura T, Fukai T, Sankawa U. Inhibition of adenosine 3’,5’-cyclic monophosphate phosphodiesterase by phenolic constituents of mulberry tree. Chem Pharm Bull. 1984;32:4929–34.
179. Liu XX, Zhang XW, Wang K, Wang XY, Ma WL, Cao W, Mo D, Sun Y, Li XQ. Kuwanon G attenuates atherosclerosis by upregulation of LXRα-ABCA1/ ABCG1 and inhibition of NFκB activity in macrophages. Toxicol Appl Pharmacol. 2018;341:56–63.
180. Gu Y, Gao L, Chen Y, Xu Z, Yu K, Zhang D, Zhang G, Zhang X. Sanggenon C protects against cardiomyocyte hypoxia injury by increasing autophagy. Mol Med Rep. 2017;16:8130–6.
181. Xiao L, Gu Y, Gao L, Shangguan J, Chen Y, Zhang Y, Li L. Sanggenon C protects against pressure overloadinduced cardiac hypertrophy via the calcineurin/NFAT2 pathway. Mol Med Reps. 2017;16:5338–46.
182. Liu YJ, Li SY, Hou J, Liu YF, Wang DD, Jiang YS, Ge GB, Liang XM, Yang L. Identification and characterization of naturally occurring inhibitors against human carboxylesterase 2 in White Mulberry root-bark. Fitoterapia. 2016;115:57–63.
183. Hou XD, Ge GB, Weng ZM, Dai ZR, Leng YH, Ding LL, Jin LL, Yu Y, Cao YF, Hou J. Natural constituents from Cortex Mori Radicis as new pancreatic lipase inhibitors. Bioorg Chem. 2018;80:577–84.
184. Wei B, Yang W, Yan ZX, Zhang QW, Yan R. Prenylflavonoids sanggenon C and kuwanon G from mulberry (Morus alba L.) as potent broadspectrum bacterial β-glucuronidase inhibitors: biological evaluation and molecular docking studies. J Funct Foods. 2018;48:210–9.
185. Bai Y, Chen L, Cao YF, Hou XD, Jia SN, Zhou Q, He YQ, Hou J. Beta- Glucuronidase inhibition by constituents of mulberry bark. Planta Med. 2021;87:631–41.
186. Kim H, Baburin I, Zaugg J, Ebrahimi S, Hering S, Hamburger M. HPLCbased activity profiling–discovery of sanggenons as GABAA receptor modulators in the traditional Chinese drug Sang bai pi (Morus alba root bark). Planta Med. 2012;78:440–7.
187. Gunawan C, Rizzacasa MA. Mulberry Diels-Alder adducts: synthesis of chalcomoracin and mulberrofuran C methyl ethers. Org Lett. 2010;12:1388–91.
188. Boonsri S, Gunawan C, Krenske EH, Rizzacasa MA. Synthetic studies towards the mulberry Diels-Alder adducts: H-bond accelerated cycloadditions of chalcones. Org Biomol Chem. 2012;10:6010–21.
189. Gao L, Han J, Lei X. Enantioselective total syntheses of kuwanon X, kuwanon Y, and kuwanol A. Org Lett. 2016;18:360–3.
190. Iovine V, Benni I, Sabia R, D’Acquarica I, Fabrizi G, Botta B, Calcaterra A. Total synthesis of (±)-kuwanol E. J Nat Prod. 2016;79:2495–503.
191. Chee CF, Lee YK, Buckle MJC, Rahman NA. Synthesis of (±)-kuwanon V and (±)-dorsterone methyl ethers via Diels-Alder reaction. Tetrahedron Lett. 2011;52:1797–9.
192. Qi C, Cong H, Cahill KJ, Muller P, Johnson RP, Porco JA Jr. Biomimetic dehydrogenative Diels-Alder cycloadditions: total syntheses of brosimones A and B. Angew Chem Int Ed Engl. 2013;52:8345–8.
193. Han J, Li X, Guan Y, Zhao W, Wulff WD, Lei X. Enantioselective biomimetic total syntheses of kuwanons I and J and brosimones A and B. Angew Chem Int Ed Engl. 2014;53:9257–61.
194. Luo SY, Tang ZY, Li Q, Weng J, Yin S, Tang GH. Total synthesis of mulberry Diels–Alder-type adducts kuwanons G and H. J Org Chem. 2021;86:4786–93.
195. Qi C, Xiong Y, Eschenbrenner-Lux V, Cong H, Porco JA. Asymmetric syntheses of the flavonoid Diels-Alder natural products sanggenons C and O. J Am Chem Soc. 2016;138:798–801.
196. Tangdenpaisal K, Songthammawat P, Akkarasereenon K, Chuayboonsong K, Ruchirawat S, Ploypradith P. Total synthesis of palodesangren B trimethyl ether and D dimethyl ether via a late-stage formation of 2H-pyran-2-one of the tetrahydrobenzo[c]pyranochromenone core. J Org Chem. 2019;84:13410–29.
197. Cong H, Porco JA. Total synthesis of (±)-sorocenol B employing nanoparticle catalysis. Org Lett. 2012;14:2516–9.
198. Tee JT, Keane T, Meijer AJHM, Khaledi H, Abd Rahman N, Chee CF. A strategy toward the biomimetic synthesis of (+/-)-morusalbanol A pentamethyl ether. Synthesis. 2016;48:2263–70.
199. Tee JT, Chee CF, Buckle MJC, Lee VS, Chong WL, Khaledi H, Rahman NA. Model studies on construction of the oxabicyclic [3.3.1] core of the mulberry Diels-Alder adducts morusalbanol A and 441772–64–1. Tetrahedron Lett. 2015;56:5082–5.
200. Liu X, Yang J, Gao L, Zhang L, Lei X. Chemoenzymatic total syntheses of artonin I with an intermolecular Diels-Alderase. Biotechnol J. 2020;15:2000119. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|