Natural Products and Bioprospecting    2022, Vol. 12 Issue (2) : 12-12     DOI: 10.1007/s13659-022-00333-4
REVIEW |
Assessment on facile Diels–Alder approach of α-pyrone and terpenoquinone for the expedient synthesis of various natural scaffolds
Aluru Rammohan1,2, Albert F. Khasanov1,3, Dmitry S. Kopchuk1,3, Duvvuru Gunasekar2, Grigory V. Zyryanov1,3, Oleg N. Chupakhin1,3
1 Ural Federal University, 19 Mira St., Ekaterinburg 620002, Russian Federation;
2 Natural Products Division, Department of Chemistry, Sri Venkateswara University, Tirupati 517502, India;
3 Ural Division of the Russian Academy of Sciences, I. Ya. Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy St., Ekaterinburg 620219, Russian Federation
Download: PDF(3210 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The development of highly facile synthetic procedures for the expedient synthesis of complex natural molecules is always in demand. As this aspect, the Diels–Alder reaction (DAR) has a versatile approach to the synthesis of complex natural compounds and highly regio-/stereoselcetive heterocyclic scaffolds. Additionally, α-pyrone and terpenoquinone are two versatile key intermediates that are prevalent in various bioactive natural compounds for instance, (±)-crinine, (±)-joubertinamine, (±)-pancratistatin, (-)-cyclozonarone, and 8-ephipuupehedione, etc. Hence, the current review summarizes the Diels–Alder reaction application of α-pyrone and terpenoquinone to the constructive synthesis of various natural products over the past two decades (2001–2021). Equally, it serves as a stencil for the invention and development of new synthetic strategies for high-complex molecular structured natural and heterocyclic molecules.
Keywords α-Pyrone      Diels–Alder reaction (DAR)      Marine natural compounds      Terpenoquinone      Total synthesis     
Fund:This work was fnancially supported by the Grants Council of the President of the Russian Federation (# HШ-2700.2020.3) and Russian Scientifc Foundation (Grant # 21-13-00304).
Corresponding Authors: Aluru Rammohan, E-mail:rammohan4ever@gmail.com;Grigory V. Zyryanov, E-mail:gvzyryanov@gmail.com     E-mail: rammohan4ever@gmail.com;gvzyryanov@gmail.com
Issue Date: 26 April 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Aluru Rammohan
Albert F. Khasanov
Dmitry S. Kopchuk
Duvvuru Gunasekar
Grigory V. Zyryanov
Oleg N. Chupakhin
Trendmd:   
Cite this article:   
Aluru Rammohan,Albert F. Khasanov,Dmitry S. Kopchuk, et al. Assessment on facile Diels–Alder approach of α-pyrone and terpenoquinone for the expedient synthesis of various natural scaffolds[J]. Natural Products and Bioprospecting, 2022, 12(2): 12-12.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-022-00333-4     OR     http://npb.kib.ac.cn/EN/Y2022/V12/I2/12
1.Hu Y, Chen J, Hu G, Yu J, Zhu X, Lin Y, Chen S, Yuan J.Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012.Mar Drugs.2015;13(2015):202-21.https://doi.org/10.3390/md13010202.
2.Ghareeb MA, Tammam MA, El-Demerdash A, Atanasov AG.Insights about clinically approved and preclinically investigated marine natural products.Curr Res Biotech.2020;2:88-102.https://doi.org/10.1016/j.crbiot.2020.09.001.
3.Lee JS.Recent advances in the synthesis of 2-pyrones.Mar Drugs.2015;13:1581-620.https://doi.org/10.3390/md13031581.
4.Marcos IS, Conde A, Moro RF, Basabe P, Diez D, Urones JG.Synthesis of quinone/hydroquinone-sesquiterpenes.Tetrahedron.2010;66:8280-90.https://doi.org/10.1016/j.tet.2010.08.038.
5.Motti CA, Bourguet-Kondracki ML, Longeon A, Doyle JR, Llewellyn LE, Tapiolas DM, Yin P.Comparison of the biological properties of several marine sponge-derived sesquiterpenoid quinones.Molecules.2007;12:1376-88.https://doi.org/10.3390/12071376.
6.Božić T, Novaković I, Gašić MJ, Juranić Z, Stanojković T, Tufegdžić S, Kljajić Z, Sladić D.Synthesis and biological activity of derivatives of the marine quinone avarone.Eur J Med Chem.2010;45:923-9.https://doi.org/10.1016/j.ejmech.2009.11.033.
7.Bouchez LC, Rusch M, Larraufie MH.Diels-Alder cycloaddition in medicinal chemistry.Curr Org Chem.2016;20:2358-78.https://doi.org/10.2174/1385272820666160216000558.
8.Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G.The Diels-Alder reaction in total synthesis.Angew Chem Int Ed.2002;41:1668-98.https://doi.org/10.1002/1521-3773(20020517)41.
9.Krinochkin AP, Reddy GM, Kopchuk DS, Slepukhin PA, Shtaitz YK, Khalymbadzha IA, Kovalev IS, Kim GA, Ganebnykh IN, Zyryanov GV, Chupakhin ON.2-Aminooxazoles as novel dienophiles in the inverse demand Diels-Alder reaction with 1,2,4-triazines.Mendeleev Commun.2021;31:542-4.https://doi.org/10.1016/j.mencom.2021.07.035.
10.Chalapala S, Bandi R, Chinnachennaiahgari VB, Perali RS.A convenient synthesis of carbohydrate derived furo/pyrano[2,3-b] pyrans from 2-hydroxymethyl glycals.Tetrahedron.2017;73:3923-31.https://doi.org/10.1016/j.tet.2017.05.069.
11.Kopchuk DS, Nikonov IL, Khasanov AF, Giri K, Santra S, Kovalev IS, Nosova EV, Gundala S, Venkatapuram P, Zyryanov GV, Majee A.Studies on the interactions of 5-R-3-(2-pyridyl)-1, 2, 4-triazines with arynes:inverse demand aza-Diels-Alder reaction versus aryne-mediated domino process.Org Biomol Chem.2018;16:5119-35.https://doi.org/10.1039/C8OB00847G.
12.Kopchuk DS, Chepchugov NV, Kovalev IS, Santra S, Rahman M, Giri K, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON.Solvent-free synthesis of 5-(aryl/alkyl) amino-1, 2, 4-triazines and α-arylamino-2, 2'-bipyridines with greener prospects.RSC Adv.2017;7:9610-9.https://doi.org/10.1039/C6RA26305D.
13.Krinochkin AP, Kopchuk DS, Kovalev IS, Santra S, Zyryanov GV, Majee A, Rusinov VL, Chupakhin ON.Direct introduction of a methyl group at the C5-position of 1, 2, 4-triazines:convenient synthesis of 6-functionalized 5-aryl-2, 2'-bipyridines.ChemistrySelect.2020;5:2753-5.https://doi.org/10.1002/slct.202000044.
14.Krinochkin AP, Guda MR, Rammohan A, Kopchuk DS, Zyryanov GV, Rusinov VL, Chupakhin ON.Convenient synthetic approach to 5-(het) arylhydrazine substituted 1,2,4-triazines.Chimica Techno Acta.2020;7:204-8.https://doi.org/10.15826/chimtech.2020.7.4.12.
15.Savchuk MI, Krinochkin AP, Rammohan A, Khasanov AF, Kopchuk DS, Egorov IN, Santra S, Zyryanov GV, Rusinov VL, Chupakhin ON.An expedient synthesis of 5-alkynyl-6-aryl-2, 2'-bipyridines.Mendeleev Commun.2020;30:610-1.https://doi.org/10.1016/j.mencom.2020.09.019.
16.Rammohan A, Zyryanov GV.Minireview:remdesivir, a prominent nucleotide/nucleoside antiviral drug.Polycycl Aromat Compd.2021.https://doi.org/10.1080/10406638.2021.1947331.
17.Rammohan A, Bhaskar BV, Venkateswarlu N, Rao VL, Gunasekar D, Zyryanov GV.Isolation of flavonoids from the flowers of Rhynchosia beddomei Baker as prominent antimicrobial agents and molecular docking.Microb Pathog.2019;136:103667.https://doi.org/10.1016/j.micpath.2019.103667.
18.Reddy JS, Manimala P, Gangababu M, Rammohan A, Yadav JS.Total synthesis of (3R, 4 S)-4-hydroxylasiodiplodin via ring closing metathesis protocol.ChemistrySelect.2019;4:5345-7.https://doi.org/10.1002/slct.201900189.
19.Bhuvaneswar C, Rammohan A, Bhaskar BV, Babu PR, Naveen G, Gunasekar D, Madhuri S, Reddanna P, Rajendra W.Sophora interrupta Bedd.rootderived flavonoids as prominent antiviral agents against Newcastle disease virus.RSC Adv.2020;10:33534-43.https://doi.org/10.1039/D0RA01820A.
20.Sridhar PR, Venkatesh BC, Kalesha S, Sudharani C.The first total synthesis of gobichelin B:a mixed-ligand siderophore of Streptomyces sp.NRRL F-4415.Org Biomol Chem.2018;16:3732-40.https://doi.org/10.1039/C8OB00263K.
21.McGlacken GP, Fairlamb IJ.2-Pyrone natural products and mimetics:isolation, characterisation and biological activity.Nat Prod Rep.2005;22:369-85.https://doi.org/10.1039/B416651P.
22.Baran PS, Burns NZ.Total synthesis of (±)-haouamine A.J Am Chem Soc.2006;128:3908-9.https://doi.org/10.1021/ja0602997.
23.Shin IJ, Choi ES, Cho CG.Total synthesis of (±)-trans-dihydronarciclasine through a highly endo-selective Diels-Alder cycloaddition of 3, 5-dibromo-2-pyrone.Angew Chem.2007;119:2353-5.https://doi.org/10.1002/ange.200604612.
24.Cho YS, Cho CG.Improved total synthesis of (±)-trans-dihydronarciclasine, devised for large-scale-preparation.Tetrahedron.2008;64:2172-7.https://doi.org/10.1016/j.tet.2007.12.031.
25.Tam NT, Cho CG.Total synthesis of (±)-crinine via the regioselective Stille coupling and Diels-Alder reaction of 3, 5-dibromo-2-pyrone.Org Lett.2008;10:601-3.https://doi.org/10.1021/ol702907u.
26.Tam NT, Cho CG.Total synthesis of (±)-joubertinamine from 3-(3, 4-dimethoxyphenyl)-5-bromo-2-pyrone.Org Lett.2007;9:3391-2.https://doi.org/10.1021/ol071381p.
27.Smith MT, Crouch NR, Gericke N, Hirst M.Psychoactive constituents of the genus Sceletium NE Br.and other Mesembryanthemaceae:a review.J Ethnopharmacol.1996;50:119-30.https://doi.org/10.1016/0378-8741(95)01342-3.
28.Ka S, Koirala M, Mérindol N, Desgagné-Penix I.Biosynthesis and biological activities of newly discovered Amaryllidaceae alkaloids.Molecules.2020;25:4901.https://doi.org/10.3390/molecules25214901.
29.Chang JH, Kang HU, Jung IH, Cho CG.Total synthesis of (±)-galanthamine via a C3-selective Stille coupling and IMDA cycloaddition cascade of 3, 5-dibromo-2-pyrone.Org Lett.2010;12:2016-8.https://doi.org/10.1021/ol100617u.
30.Tam NT, Chang J, Jung EJ, Cho CG.Total syntheses of (±)-Crinine, (±)-Crinamine, and (±)-6a-epi-Crinamine via the regioselective synthesis and Diels-Alder reaction of 3-aryl-5-bromo-2-pyrone.J Org Chem.2008;73:6258-64.https://doi.org/10.1021/jo8008353.
31.Lamoral-Theys D, Andolfi A, Van Goietsenoven G, Cimmino A, Le Calvé B, Wauthoz N, Mégalizzi V, Gras T, Bruyère C, Dubois J, Mathieu V.Lycorine, the main phenanthridine Amaryllidaceae alkaloid, exhibits significant antitumor activity in cancer cells that display resistance to proapoptotic stimuli:an investigation of structure-activity relationship and mechanistic insight.J Med Chem.2009;52:6244-56.https://doi.org/10.1021/jm901031h.
32.Jung YG, Lee SC, Cho HK, Darvatkar NB, Song JY, Cho CG.Total syntheses of (±)-α-lycorane and (±)-1-deoxylycorine.Org Lett.2013;15:132-5.https://doi.org/10.1021/ol303157b.
33.Shin HS, Jung YG, Cho HK, Park YG, Cho CG.Total synthesis of (±)-lycorine from the endo-cycloadduct of 3, 5-dibromo-2-pyrone and (E)-β-borylstyrene.Org Lett.2014;16:5718-20.https://doi.org/10.1021/ol502792p.
34.Sato Y, Kuramochi K, Suzuki T, Nakazaki A, Kobayashi S.The second generation synthesis of (+)-pseudodeflectusin.Tetrahedron Lett.2011;52:626-9.https://doi.org/10.1016/j.tetlet.2010.11.153.
35.Gan P, Smith MW, Braffman NR, Snyder AS.Pyrone Diels-Alder Routes to Indolines and Hydroindolines:syntheses of gracilamine, mesembrine, and δ7-mesembrenone.Angew Chem.2016;128:3689-94.https://doi.org/10.1002/anie.20151 0520.
36.Jin Z.Amaryllidaceae and Sceletium alkaloids.Nat Prod Rep.2013;30:849-68.https://doi.org/10.1039/C6NP00068A.
37.Jung YG, Kang HU, Cho HK, Cho CG.β-Silyl styrene as a dienophile in the cycloaddition with 3, 5-dibromo-2-pyrone for the total synthesis of (±)-pancratistatin.Org Lett.2011;13:5890-2.https://doi.org/10.1021/ol202 525a.
38.Cho HK, Lim HY, Cho CG.(E)-β-Borylstyrene in the Diels-Alder reaction with 3, 5-dibromo-2-pyrone for the syntheses of (±)-1-epi-pancratistatin and (±)-pancratistatin.Org Lett.2013;15:5806-9.https://doi.org/10.1021/ol4028623.
39.Zhao P, Beaudry CM.Total synthesis of (±)-Cavicularin:control of pyrone Diels-Alder regiochemistry using isomeric vinyl sulfones.Org Lett.2013;15:402-5.https://doi.org/10.1021/ol303 390a.
40.Zhao P, Beaudry CM.Enantioselective and regioselective pyrone Diels-Alder reactions of vinyl sulfones:total synthesis of (+)-cavicularin.Angew Chem.2014;53:10500-3.https://doi.org/10.1002/anie.201406621.
41.Nelson HM, Gordon JR, Virgil SC, Stoltz BM.Total syntheses of (-)-transtaganolide A, (+)-transtaganolide B,(+)-transtaganolide C, and (-)-transtaganolide D and biosynthetic implications.Angew Chem.2013;52:6699-703.https://doi.org/10.1002/anie.201301212.
42.Larsson R, Scheeren HW, Aben RW, Johansson M, Sterner O.Biomimetic synthesis toward the transtaganolides/basiliolides.Eur J Org Chem.2013;2013:6955-60.https://doi.org/10.1002/ejoc.201301092.
43.Gordon JR, Nelson HM, Virgil SC, Stoltz BM.The total syntheses of basiliolide C, epi-basiliolide C, and protecting-group-free total syntheses of transtaganolides C and D.J Org Chem.2014;79:9740-7.https://doi.org/10.1021/jo501924u.
44.Ando T, Tsurumi Y, Ohata I, Uchida I, Yoshida K, Okuhara M.Vinigrol, a novel antihypertensive and platelet aggregation inhibitory agent produced by A fungus, Virgaria Nigra I.Taxonomy, fermentation, isolation, physico-chemical and biological properties.J Antibiot.1988;41:25-30.https://doi.org/10.7164/antibiotics.41.25.
45.Yu X, Xiao L, Wang Z, Luo T.Scalable total synthesis of (-)-vinigrol.J Am Chem Soc.2019;141:3440-3.https://doi.org/10.1021/jacs.9b00621.
46.Defrancq E, Gordon J, Brodard A, Tabacchi R.The synthesis of a novel epoxycyclohexane from the fungus Eutypa lata (Pers:F.) TUL.Helv Chim Acta.1992;75:276-81.https://doi.org/10.1002/hlca.19920750123.
47.Shimizu H, Okamura H, Iwagawa T, Nakatani M.Asymmetric synthesis of (-)-and (+)-eutipoxide B using a base-catalyzed Diels-Alder reaction.Tetrahedron.2001;57:1903-8.https://doi.org/10.1016/S0040-4020(01)00032-1.
48.Tam NT, Jung EJ, Cho CG.Intramolecular imino Diels-Alder approach to the synthesis of the aspidosperma alkaloid from 3, 5-dibromo-2-pyrone.Org Lett.2010;12:2012-4.https://doi.org/10.1021/ol100489z.
49.Liu L, Liu S, Chen X, Guo L, Che Y.Pestalofones A-E, bioactive cyclohexanone derivatives from the plant endophytic fungus Pestalotiopsis fici.Bioorg Med Chem.2009;17:606-13.https://doi.org/10.1016/j.bmc.2008.11.066.
50.Liu L, Niu S, Lu X, Chen X, Zhang H, Guo L, Che Y.Unique metabolites of Pestalotiopsis fici suggest a biosynthetic hypothesis involving a Diels-Alder reaction and then mechanistic diversification.Chem Commun.2010;46:460-2.https://doi.org/10.1002/chem.201003129.
51.Suzuki T, Watanabe S, Kobayashi S, Tanino K.Enantioselective total synthesis of (+)-iso-A82775C, a proposed biosynthetic precursor of chloropupukeananin.Org Lett.2017;19:922-5.https://doi.org/10.1021/acs.orglett.7b00085.
52.Dachavaram SS, Kalyankar KB, Das S.First stereoselective total synthesis of Neocosmosin A:a facile approach.Tetrahedron Lett.2014;55:5629-31.https://doi.org/10.1080/00397911.2021.1952435.
53.Lee JH, Cho CG.Total synthesis of (-)-Neocosmosin A via intramolecular Diels-Alder reaction of 2-Pyrone.Org Lett.2016;18:5126-9.https://doi.org/10.1021/acs.orglett.6b02575.
54.Fraga BM.Natural sesquiterpenoids.Nat Prod Rep.2012;29:1334-66.https://doi.org/10.1039/C2NP20074K.
55.Marcos IS, Conde A, Moro RF, Basabe P, Diez D, Urones JG.Quinone/hydroquinone sesquiterpenes.Mini Rev Org Chem.2010;7:230-54.https://doi.org/10.1002/CHIN.201101251.
56.Gordaliza M.Cytotoxic terpene quinones from marine sponges.Mar Drugs.2010;8:2849-70.https://doi.org/10.3390/md8122849.
57.Castro ME, González-Iriarte M, Barrero AF, Salvador-Tormo N, Muñoz-Chápuli R, Medina MA, Quesada RA.Study of puupehenone and related compounds as inhibitors of angiogenesis.Int J Cancer.2004;110:31-8.https://doi.org/10.1002/ijc.20068.
58.Desoubzdanne D, Marcourt L, Raux R, Chevalley S, Dorin D, Doerig C, Valentin A, Ausseil F, Debitus C.Alisiaquinones and alisiaquinol, dual inhibitors of Plasmodium falciparum enzyme targets from a New Caledonian deep water sponge.J Nat Prod.2008;71:1189-92.https://doi.org/10.1021/np8000909.
59.Ciavatta ML, Gresa MPL, Gavagnin M, Romero V, Melck D, Manzo E, Guo YW, van Soest R, Cimino G.Studies on puupehenone-metabolites of a Dysidea sp.:structure and biological activity.Tetrahedron.2007;63:1380-4.https://doi.org/10.1016/j.tet.2006.11.088.
60.Kurata K, Taniguchi K, Suzuki M.Cyclozonarone, a sesquiterpenesubstituted benzoquinone derivative from the brown alga Dictyopteris undulata.Phytochemistry.1996;41:749-52.https://doi.org/10.1016/0031-9422(95)00651-6.
61.Cortés M, Valderrama JA, Cuellar M, Armstrong V, Preite M.Synthesis of (+)-cyclozonarone and the absolute configuration of naturally occurring (-)-cyclozonarone.J Nat Prod.2001;64:348-9.https://doi.org/10.1021/np0004146.
62.Schröder J, Matthes B, Seifert K.Total synthesis of the marine sesquiterpene quinone (-)-cyclozonarone.Tetrahedron Lett.2001;42:8151-2.https://doi.org/10.1016/S0040-4039(01)01748-8.
63.MigueldelCorral JM, Gordaliza M, Castro MA, Mahiques MM, Chamorro P, Molinari A, García-Grávalos MD, Broughton HB, San Feliciano A.New selective cytotoxic diterpenylquinones and diterpenylhydroquinones.J Med Chem.2001;44:1257-67.https://doi.org/10.1021/jm001048q.
64.Martínez-Poveda B, Quesada AR, Medina MA.The anti-angiogenic 8-epipuupehedione behaves as a potential anti-leukaemic compound against HL-60 cells.J Cell Mol Med.2008;12:701-6.https://doi.org/10.1111/j.1582-4934.2007.00134.x.
65.Alvarez-Manzaneda EJ, Chahboun R, Cabrera E, Alvarez E, Haidour A, Ramos JM, Alvarez-Manzaneda R, Hmamouchi M, Bouanou H.Diels-Alder cycloaddition approach to puupehenone-related metabolites:synthesis of the potent angiogenesis inhibitor 8-epipuupehedione.J Org Chem.2007;72:3332-9.https://doi.org/10.1021/jo0626663.
66.Roll DM, Scheuer PJ, Matsumoto GK, Clardy J.Halenaquinone, a pentacyclic polyketide from a marine sponge.J Am Chem Soc.1983;105:6177-8.https://doi.org/10.1021/ja00357a049.
67.Kienzler MA, Suseno S, Trauner D.Quinones as Diels-Alder Dienes:concise synthesis of (-)-halenaquinone.J Am Chem Soc.2008;130:8604-5.https://doi.org/10.1021/ja8035042.
68.Dounay AB, Overman LE.The asymmetric intramolecular Heck reaction in natural product total synthesis.Chem Rev.2003;103:2945-64.https://doi.org/10.1021/cr020039h.
[1] Ding Lin, Senze Jiang, Ailian Zhang, Tong Wu, Yongchang Qian, Qingsong Shao. Structural derivatization strategies of natural phenols by semi-synthesis and total-synthesis[J]. Natural Products and Bioprospecting, 2022, 12(2): 8-8.
[2] Yi Chen, Song-Wei Li, Fang-Zhou Yin, Min Yang, Xia-Juan Huan, Ze-Hong Miao, Xiao-Ming Wang, Yue-Wei Guo. Lagerindicine, a New Pyrrole Alkaloid Isolated from the Flowers of Lagerstroemia indica Linnaeus[J]. Natural Products and Bioprospecting, 2021, 11(1): 73-79.
[3] Rui-Min Yang, Xiu-Lei Zhang, Li Wang, Jian-Ping Huang, Jing Yang, Yi-Jun Yan, Jian-Ying Luo, Xiang-Ting Wang, Sheng-Xiong Huang. α-Pyrone Derivatives from a Streptomyces Strain Resensitize Tamoxifen Resistance in Breast Cancer Cells[J]. Natural Products and Bioprospecting, 2017, 7(4): 329-334.
[4] Wen-Dan Xu, Liang-Qun Li, Ming-Ming Li, Hui-Chun Geng, Hong-Bo Qin. Catalytic Asymmetric Formal Total Synthesis of (2)-Triptophenolide and (+)-Triptolide[J]. Natural Products and Bioprospecting, 2016, 6(3): 183-186.
[5] Xianfu Shen, Yongyun Zhou, Yongkai Xi, Jingfeng Zhao, Hongbin Zhang. Total Synthesis of Dimeric HPI Alkaloids[J]. Natural Products and Bioprospecting, 2016, 6(2): 117-139.
[6] Qi-Long Zhou, Hui-Jing Wang, Pei Tang, Hao Song, Yong Qin. Total Synthesis of Lignan Lactone(-)-Hinokinin[J]. Natural Products and Bioprospecting, 2015, 5(5): 255-261.
[7] Yang YANG. Total synthesis and determination of the absolute configuration of a natural analgesic: crotonine[J]. Natural Products and Bioprospecting, 2013, 3(6): 288-294.
[8] Chun-Miao LI, Hui-Chun GENG, Ming-Ming LI, Gang XU, Tie-Jun LING, Hong-Bo QIN. Total synthesis of 1-oxomiltirone via Suzuki coupling[J]. Natural Products and Bioprospecting, 2013, 3(3): 117-120.
[9] Tao XU, Shi-Zhi JIANG, Huai-Rong LUO, Yu-Rong YANG. One-step synthesis of Lycopodium alkaloid(-)-huperzine W via Suzuki-Miyaura coupling[J]. Natural Products and Bioprospecting, 2012, 2(6): 255-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed