, Volume 13 Issue 6 Previous Issue   Next Issue
    For Selected: View Abstracts Toggle Thumbnails
    ORIGINAL ARTICLE
    The role of sound stimulation in production of plant secondary metabolites   Collect
    Li Wu, Ning Yang, Meng Guo, Didi Zhang, Reza A. Ghiladi, Hasan Bayram, Jun Wang
    Natural Products and Bioprospecting. 2023, 13 (6): 40-40.   DOI: 10.1007/s13659-023-00409-9
    Abstract ( 1342 )   HTML ()     PDF (1665KB) ( 1445 )  
    Sound vibration is one of natural stimuli trigging physiological changes in plants. Recent studies showed that sound waves stimulated production of a variety of plant secondary metabolites, including flavonoids, in order to enhance seed germination, flowering, growth or defense. In this review, we examine the potential role of sound stimulation on the biosynthesis of secondary metabolites and the followed cascade of physiological changes in plants, from the perspective of transcriptional regulation and epigenetic regulation for the first time. A systematic summary showed that a wide range of factors may regulate the production of secondary metabolites, including plant species, growth stage, sound types, sound frequency, sound intensity level and exposure time, etc. Biochemical and physiological changes due to sound stimulation were thoroughly summarized as well, for secondary metabolites can also act as a free radical scavenger, or a hormone signaling molecule. We also discussed the limits of previous studies, and the future application of sound waves in biosynthesis of plant secondary metabolites.
    References | Related Articles | Metrics
    SHORT COMMUNICATION
    Cytotoxic phenazine and antiallergic phenoxazine alkaloids from an arctic Nocardiopsis dassonvillei SCSIO 502F   Collect
    Yue Song, Qi-Yang Li, Meng-Jing Cong, Xiao-Yan Pang, Bo Chen, Yong-Hong Liu, Li Liao, Jun-Feng Wang
    Natural Products and Bioprospecting. 2023, 13 (6): 41-41.   DOI: 10.1007/s13659-023-00408-w
    Abstract ( 1266 )   HTML ()     PDF (1415KB) ( 1667 )  
    Microbes well-adapted to the Arctic Ocean are promising for producing novel compounds, due to their fancy strategies for adaptation and being under-investigated. Two new phenazine alkaloids (1 and 2) and one new phenoxazine (3) were isolated from Nocardiopsis dassonvillei 502F, a strain originally isolated from Arctic deep-sea sediments. AntiSMASH analysis of the genome of Nocardiopsis dassonvillei 502F revealed the presence of 16 putative biosynthetic gene clusters (BGCs), including a phenazine BGC. Most of the isolated compounds were evaluated for their antibacterial, antiallergic, and cytotoxic activities. Among them, compounds 4 and 5 exhibited potent in vitro cytotoxic activities against osteosarcoma cell line 143B with IC50 values 0.16 and 20.0 μM, respectively. Besides, the results of antiallergic activities of compounds 6-8 exhibited inhibitory activities with IC50 values of 10.88±3.05, 38.88±3.29, and 2.44±0.17 μg/mL, respectively (IC50 91.6 μM for the positive control loratadine).
    References | Related Articles | Metrics
    REVIEW
    Biological activities of gastropods secretions: snail and slug slime   Collect
    Muhammad Rashad, Simone Sampò, Amelia Cataldi, Susi Zara
    Natural Products and Bioprospecting. 2023, 13 (6): 42-42.   DOI: 10.1007/s13659-023-00404-0
    Abstract ( 1290 )   HTML ()     PDF (1404KB) ( 1507 )  
    Gastropods, a mollusk class including slugs and snails, represent an extraordinarily diverse and ecologically significant group of organisms featuring the largest class of invertebrates. They can be classified as aquatic and terrestrial animals having coiled shells, although some species have reduced or absent shells. Their unique body structure includes a muscular foot for locomotion, a visceral mass containing essential organs, and a distinct head region with sensory organs such as tentacles and eyes. They are used to secrete a complex mixture of glycoproteins, enzymes, peptides, mucus and other bioactive compounds, namely slime, which represents a tool to allow locomotion, protection, and interaction within different habitats. The biological activities of the slime have attracted considerable interest due to their diverse and potentially valuable properties ranging from defense mechanisms to potential therapeutic applications in wound healing, antimicrobial therapy, management of inflammation, and neurological disorders. This review aims at exploring the beneficial effects of snail and slug slime focusing, in particular, on the improvement of the biological processes underlying them. Continued exploration of the intricate components of these slimy secretions promises to discover new bioactive molecules with diverse applications in various scientific and industrial fields.
    References | Related Articles | Metrics
    ORIGINAL ARTICLES
    The antifungal properties of terpenoids from the endophytic fungus Bipolaris eleusines   Collect
    Yin-Zhong Fan, Chun Tian, Shun-Yao Tong, Qing Liu, Fan Xu, Bao-Bao Shi, Hong-Lian Ai, Ji-Kai Liu
    Natural Products and Bioprospecting. 2023, 13 (6): 43-43.   DOI: 10.1007/s13659-023-00407-x
    Abstract ( 1374 )   HTML ()     PDF (1366KB) ( 1358 )  
    A series of terpenoids (1–17), comprising six new compounds designated bipolariterpenes A-F (1–6) and eleven recognized compounds (7–17), were isolated from the wheat culture of the potato endophytic fungus Bipolaris eleusines. Their structures and stereochemistry were clarified by HRESIMS, NMR, DP4+probability analyses, and computations for electronic circular dichroism (ECD). All compounds are made up of six meroterpenoids, four sesterterpenes and seven sesquiterpenes. Among them, four sesterterpenes (4, 5, 10, 11) were investigated for their antifungal, antibacterial and cytotoxic properties, and six meroterpenoids (1–3, 7–9) were evaluated for their antifungal properties. The compounds 7, 9, and 10 had substantial antifungal activity against Epidermophyton floccosum at a concentration of 100 μM. No antibacterial and cytotoxic activities were observed.
    References | Related Articles | Metrics
    Untargeted metabolomics analysis of four date palm (Phoenix dactylifera L.) cultivars using MS and NMR   Collect
    Shuruq Alsuhaymi, Upendra Singh, Inas Al-Younis, Najeh M. Kharbatia, Ali Haneef, Kousik Chandra, Manel Dhahri, Mohammed A. Assiri, Abdul-Hamid Emwas, Mariusz Jaremko
    Natural Products and Bioprospecting. 2023, 13 (6): 44-44.   DOI: 10.1007/s13659-023-00406-y
    Abstract ( 1324 )   HTML ()     PDF (4597KB) ( 1558 )  
    Since ancient times, the inhabitants of dry areas have depended on the date palm (Phoenix dactylifera L.) as a staple food and means of economic security. For example, dates have been a staple diet for the inhabitants of the Arabian Peninsula and Sahara Desert in North Africa for millennia and the local culture is rich in knowledge and experience with the benefits of dates, suggesting that dates contain many substances essential for the human body. Madinah dates are considered one of the most important types of dates in the Arabian Peninsula, with Ajwa being one of the most famous types and grown only in Madinah, Saudi Arabia. Date seeds are traditionally used for animal feed, seed oil production, cosmetics, and as a coffee substitute. Phytochemical compounds that have been detected in date fruits and date seeds include phenolic acids, carotenoids, and flavonoids. Phenolic acids are the most prevalent bioactive constituents that contribute to the antioxidant activity of date fruits. The bioactive properties of these phytochemicals are believed to promote human health by reducing the risk of diseases such as chronic inflammation. Ajwa dates especially are thought to have superior bioactivity properties. To investigate these claims, in this study, we compare the metabolic profiles of Ajwa with different types of dates collected from Saudi Arabia and Tunisia. We show by UHPLC-MS that date seeds contain several classes of flavonoids, phenolic acids, and amino acid derivatives, including citric acid, malic acid, lactic acid, and hydroxyadipic acid. Additionally, GC–MS profiling showed that date seeds are richer in metabolite classes, such as hydrocinnamic acids (caffeic, ferulic and sinapic acids), than flesh samples. Deglet N fruit extract (minimum inhibitory concentration: 27 MIC/μM) and Sukkari fruit extract (IC50: 479±0.58μg /mL) have higher levels of antibacterial and antioxidative activity than Ajwa fruits. However, the seed analysis showed that seed extracts have better bioactivity effects than fruit extracts. Specifically, Ajwa extract showed the best MIC and strongest ABTS radical-scavenging activity among examined seed extracts (minimum inhibitory concentration: 20 μM; IC50: 54±3.61μg /mL). Our assays are a starting point for more advanced in vitro antibacterial models and investigation into the specific molecules that are responsible for the antioxidative and anti-bacterial activities of dates.
    References | Related Articles | Metrics
    REVIEW
    Bioactive molecules from terrestrial and seafood resources in hypertension treatment: focus on molecular mechanisms and targeted therapies   Collect
    Md. Rezaul Islam, Puja Sutro Dhar, Shopnil Akash, Sabeena Hussain Syed, Jeetendra Kumar Gupta, Kumaraswamy Gandla, Muniya Akter, Abdur Rauf, Hassan A. Hemeg, Yasir Anwar, Bassam Oudh Aljohny, Polrat Wilairatana
    Natural Products and Bioprospecting. 2023, 13 (6): 45-45.   DOI: 10.1007/s13659-023-00411-1
    Abstract ( 1310 )   HTML ()     PDF (5547KB) ( 1409 )  
    Hypertension (HTN), a complex cardiovascular disease (CVD), significantly impacts global health, prompting a growing interest in complementary and alternative therapeutic approaches. This review article seeks to provide an up-to-date and thorough summary of modern therapeutic techniques for treating HTN, with an emphasis on the molecular mechanisms of action found in substances found in plants, herbs, and seafood. Bioactive molecules have been a significant source of novel therapeutics and are crucial in developing and testing new HTN remedies. Recent advances in science have made it possible to understand the complex molecular mechanisms underlying blood pressure (BP)-regulating effects of these natural substances better. Polyphenols, flavonoids, alkaloids, and peptides are examples of bioactive compounds that have demonstrated promise in influencing several pathways involved in regulating vascular tone, reducing oxidative stress (OS), reducing inflammation, and improving endothelial function. The article explains the vasodilatory, diuretic, and renin–angiotensin–aldosterone system (RAAS) modifying properties of vital plants such as garlic and olive leaf. Phytochemicals from plants are the primary in traditional drug development as models for novel antihypertensive drugs, providing diverse strategies to combat HTN due to their biological actions. The review also discusses the functions of calcium channel blockers originating from natural sources, angiotensin-converting enzyme (ACE) inhibitors, and nitric oxide (NO) donors. Including seafood components in this study demonstrates the increased interest in using bioactive chemicals originating from marine sources to treat HTN. Omega-3 fatty acids, peptides, and minerals obtained from seafood sources have anti-inflammatory, vasodilatory, and antioxidant properties that improve vascular health and control BP. Overall, we discussed the multiple functions of bioactive molecules and seafood components in the treatment of HTN.
    References | Related Articles | Metrics
    ORIGINAL ARTICLE
    Three previously undescribed metabolites from Cordyceps cicadae JXCH-1, an entomopathogenic fungus   Collect
    Jing Fan, Pai Liu, Kuan Zhao, He-Ping Chen
    Natural Products and Bioprospecting. 2023, 13 (6): 46-46.   DOI: 10.1007/s13659-023-00410-2
    Abstract ( 1384 )   HTML ()     PDF (1425KB) ( 1610 )  
    Three previously undescribed compounds, cordycicadione (1), cordycicadin F (2), and 7-hydroxybassiatin (3), were isolated from the cultures of Cordyceps cicadae JXCH1, an entomopathogenic fungus. Their structures and relative configurations were elucidated primarily by NMR spectroscopic analysis. The absolute configurations of 1 and 2 were determined by ECD calculations. Single-crystal X-ray diffraction method was adopted to determine the absolute configuration of 3. Compound 2 is a polycyclic polyketide with an unusual enol ether moiety and a spiro ring. The compounds obtained in this study were subjected to screening their inhibition against the proliferation of the human lung cancer cell line A549 and the production of nitric oxide in murine macrophages RAW264.7.
    References | Related Articles | Metrics
    REVIEW
    Occurrence of D-amino acids in natural products   Collect
    Daniel W. Armstrong, Alain Berthod
    Natural Products and Bioprospecting. 2023, 13 (6): 47-47.   DOI: 10.1007/s13659-023-00412-0
    Abstract ( 1321 )   HTML ()     PDF (2094KB) ( 1514 )  
    Since the identified standard genetic code contains 61 triplet codons of three bases for the 20 L-proteinogenic amino acids (AAs), no D-AA should be found in natural products. This is not what is observed in the living world. D-AAs are found in numerous natural compounds produced by bacteria, algae, fungi, or marine animals, and even vertebrates. A review of the literature indicated the existence of at least 132 peptide natural compounds in which D-AAs are an essential part of their structure. All compounds are listed, numbered and described herein. The two biosynthetic routes leading to the presence of D-AA in natural products are: non-ribosomal peptide synthesis (NRPS), and ribosomally synthesized and post-translationally modified peptide (RiPP) synthesis which are described. The methods used to identify the AA chirality within naturally occurring peptides are briefly discussed. The biological activity of an all-L synthetic peptide is most often completely different from that of the D-containing natural compounds. Analyzing the selected natural compounds showed that D-Ala, D-Val, D-Leu and D-Ser are the most commonly encountered D-AAs closely followed by the non-proteinogenic D-allo-Thr. D-Lys and D-Met were the least prevalent D-AAs in naturally occurring compounds.
    References | Related Articles | Metrics
    ORIGINAL ARTICLES
    l-Palmitoylcarnitine potentiates plasmin and tPA to inhibit thrombosis   Collect
    Juan Yang, Lina Cha, Yepeng Wang, Quan Zhang, Xiaopeng Tang, Jianlin Shao, Zilei Duan
    Natural Products and Bioprospecting. 2023, 13 (6): 48-48.   DOI: 10.1007/s13659-023-00413-z
    Abstract ( 1342 )   HTML ()     PDF (6858KB) ( 1485 )  
    l-Palmitoylcarnitine (L-PC) is an important endogenous fatty acid metabolite. Its classical biological functions are involved in the regulations of membrane molecular dynamics and the β-oxidation of fatty acids. Decreased plasma long-chain acylcarnitines showed the association of venous thrombosis, implying anticoagulant activity of the metabolites and inspiring us to investigate if and how L-PC, a long-chain acylcarnitine, takes part in coagulation. Here we show that L-PC exerted anti-coagulant effects by potentiating the enzymatic activities of plasmin and tissue plasminogen activator (tPA). L-PC directly interacts with plasmin and tPA with an equilibrium dissociation constant (KD) of 6.47×10–9 and 4.46×10–9 M, respectively, showing high affinities. In mouse model, L-PC administration significantly inhibited FeCl3-induced arterial thrombosis. It also mitigated intracerebral thrombosis and inflammation in a transient middle cerebral artery occlusion (tMCAO) mouse model. L-PC induced little bleeding complications. The results show that L-PC has anti-thrombotic function by potentiating plasmin and tPA.
    References | Related Articles | Metrics
    Ginsenoside compound-K attenuates OVX-induced osteoporosis via the suppression of RANKL-induced osteoclastogenesis and oxidative stress   Collect
    Lingli Ding, Zhao Gao, Siluo Wu, Chen Chen, Yamei Liu, Min Wang, Yage Zhang, Ling Li, Hong Zou, Guoping Zhao, Shengnan Qin, Liangliang Xu
    Natural Products and Bioprospecting. 2023, 13 (6): 49-49.   DOI: 10.1007/s13659-023-00405-z
    Abstract ( 1272 )   HTML ()     PDF (9637KB) ( 1583 )  
    Osteoporosis (OP), a systemic and chronic bone disease, is distinguished by low bone mass and destruction of bone microarchitecture. Ginsenoside Compound-K (CK), one of the metabolites of ginsenoside Rb1, has anti-aging, anti-inflammatory, anti-cancer, and hypolipidemic activities. We have demonstrated CK could promote osteogenesis and fracture healing in our previous study. However, the contribution of CK to osteoporosis has not been examined. In the present study, we investigated the effect of CK on osteoclastogenesis and ovariectomy (OVX)-induced osteoporosis. The results showed that CK inhibited receptor activator for nuclear factor-κB ligand (RANKL)-mediated osteoclast differentiation and reactive oxygen species (ROS) activity by inhibiting the phosphorylation of NF-κB p65 and oxidative stress in RAW264.7 cells. In addition, we also demonstrated that CK could inhibit bone resorption using bone marrow-derived macrophages. Furthermore, we demonstrated that CK attenuated bone loss by suppressing the activity of osteoclast and alleviating oxidative stress in vivo. Taken together, these results showed CK could inhibit osteoclastogenesis and prevent OVX-induced bone loss by inhibiting NF-κB signaling pathway.
    References | Related Articles | Metrics
    REVIEWS
    The alkynyl-containing compounds from mushrooms and their biological activities   Collect
    Ji-shuang Qi, Yingce Duan, Zhao-chen Li, Jin-ming Gao, Jianzhao Qi, Chengwei Liu
    Natural Products and Bioprospecting. 2023, 13 (6): 50-50.   DOI: 10.1007/s13659-023-00416-w
    Abstract ( 1338 )   HTML ()     PDF (3959KB) ( 1573 )  
    Mushrooms have been utilized by humans for thousands of years due to their medicinal and nutritional properties. They are a crucial natural source of bioactive secondary metabolites, and recent advancements have led to the isolation of several alkynyl-containing compounds with potential medicinal uses. Despite their relatively low abundance, naturally occurring alkynyl compounds have attracted considerable attention due to their high reactivity. Bioactivity studies have shown that alkynyl compounds exhibit significant biological and pharmacological activities, including antitumor, antibacterial, antifungal, insecticidal, phototoxic, HIV-inhibitory, and immunosuppressive properties. This review systematically compiles 213 alkynyl-containing bioactive compounds isolated from mushrooms since 1947 and summarizes their diverse biological activities, focusing mainly on cytotoxicity and anticancer effects. This review serves as a detailed and comprehensive reference for the chemical structures and bioactivity of alkynyl-containing secondary metabolites from mushrooms. Moreover, it provides theoretical support for the development of chemical constituents containing alkynyl compounds in mushrooms based on academic research and theory.
    References | Related Articles | Metrics
    A recent update on development, synthesis methods, properties and application of natural products derived carbon dots   Collect
    Soumitra Sahana, Anupam Gautam, Rajveer Singh, Shivani Chandel
    Natural Products and Bioprospecting. 2023, 13 (6): 51-51.   DOI: 10.1007/s13659-023-00415-x
    Abstract ( 1283 )   HTML ()     PDF (1495KB) ( 1375 )  
    Natural resources are practically infinitely abundant in nature, which stimulates scientists to create new materials with inventive uses and minimal environmental impact. Due to the various benefits of natural carbon dots (NCDs) from them has received a lot of attention recently. Natural products-derived carbon dots have recently emerged as a highly promising class of nanomaterials, showcasing exceptional properties and eco-friendly nature, which make them appealing for diverse applications in various fields such as biomedical, environmental sensing and monitoring, energy storage and conversion, optoelectronics and photonics, agriculture, quantum computing, nanomedicine and cancer therapy. Characterization techniques such as Photoinduced electron transfer, Aggregation-Induced-Emission (AIE), Absorbance, Fluorescence in UV–Vis and NIR Regions play crucial roles in understanding the structural and optical properties of Carbon dots (CDs). The exceptional photoluminescence properties exhibited by CDs derived from natural products have paved the way for applications in tissue engineering, cancer treatment, bioimaging, sensing, drug delivery, photocatalysis, and promising remarkable advancements in these fields. In this review, we summarized the various synthesis methods, physical and optical properties, applications, challenges, future prospects of natural products-derived carbon dots etc. In this expanding sector, the difficulties and prospects for NCD-based materials research will also be explored.
    References | Related Articles | Metrics
    Quinones from Cordia species from 1972 to 2023: isolation, structural diversity and pharmacological activities   Collect
    Rostanie Dongmo Zeukang, Jarmo-Charles Kalinski, Babalwa Tembeni, Eleonora D. Goosen, Jacqueline Tembu, Turibio Tabopda Kuiate, Dominique Serge Ngono Bikobo, Maurice Tagatsing Fotsing, Alex de Théodore Atchadé, Xavier Siwe-Noundou
    Natural Products and Bioprospecting. 2023, 13 (6): 52-52.   DOI: 10.1007/s13659-023-00414-y
    Abstract ( 1310 )   HTML ()     PDF (2540KB) ( 1482 )  
    Plants of the genus Cordia (Boraginaceae family) are widely distributed in the tropical regions of America, Africa, and Asia. They are extensively used in folk medicine due to their rich medicinal properties. This review presents a comprehensive analysis of the isolation, structure, biogenesis, and biological properties of quinones from Cordia species reported from 1972 to 2023. Meroterpenoids were identified as the major quinones in most Cordia species and are reported as a chemotaxonomic markers of the Cordia. In addition to this property, quinones are reported to display a wider and broader spectrum of activities, are efficient scaffold in biological activity, compared to other classes of compounds reported in Cordia, hence our focus on the study of quinones reported from Cordia species. About 70 types of quinones have been isolated, while others have been identified by phytochemical screening or gas chromatography. Although the biosynthesis of quinones from Cordia species is not yet fully understood, previous reports suggest that they may be derived from geranyl pyrophosphate and an aromatic precursor unit, followed by oxidative cyclization of the allylic methyl group. Studies have demonstrated that quinones from this genus exhibit antifungal, larvicidal, antileishmanial, anti-inflammatory, antibiofilm, antimycobacterial, antioxidant, antimalarial, neuroinhibitory, and hemolytic activities. In addition, they have been shown to exhibit remarkable cytotoxic effects against several cancer cell lines which is likely related to their ability to inhibit electron transport as well as oxidative phosphorylation, and generate reactive oxygen species (ROS). Their biological activities indicate potential utility in the development of new drugs, especially as active components in drug-carrier systems, against a broad spectrum of pathogens and ailments.
    References | Related Articles | Metrics
    A comprehensive review on the chemical constituents, sesquiterpenoid biosynthesis and biological activities of Sarcandra glabra   Collect
    Jin-Ning Chu, Premanand Krishnan, Kuan-Hon Lim
    Natural Products and Bioprospecting. 2023, 13 (6): 53-53.   DOI: 10.1007/s13659-023-00418-8
    Abstract ( 1352 )   HTML ()     PDF (6515KB) ( 1362 )  
    Sarcandra glabra (Thunb.) Nakai is a perennial evergreen herb categorised within the Sarcandra Gardner genus under the Chloranthaceae family. Indigenous to tropical and subtropical regions of East Asia and India, this species is extensively distributed across China, particularly in the southern regions (Sichuan, Yunnan, and Jiangxi). In addition to its high ornamental value, S. glabra has a rich history of use in traditional Chinese medicine, evident through its empirical prescriptions for various ailments like pneumonia, dysentery, fractures, bruises, numbness, amenorrhea, rheumatism, and other diseases. Besides, modern pharmacological studies have revealed various biological activities, such as antitumour, anti-bacterial, anti-viral anti-inflammatory and immunomodulatory effects. The diverse chemical constituents of S. glabra have fascinated natural product researchers since the 1900s. To date, over 400 compounds including terpenoids, coumarins, lignans, flavonoids, sterols, anthraquinones, organic acids, and organic esters have been isolated and characterised, some featuring unprecedented structures. This review comprehensively examines the current understanding of S. glabra’s phytochemistry and pharmacology, with emphasis on the chemistry and biosynthesis of its unique chemotaxonomic marker, the lindenane-type sesquiterpenoids.
    References | Related Articles | Metrics
    ORIGINAL ARTICLES
    Natural product rhynchophylline prevents stress-induced hair graying by preserving melanocyte stem cells via the β2 adrenergic pathway suppression   Collect
    Xinxin Li, Runlu Shi, Lingchen Yan, Weiwei Chu, Ruishuang Sun, Binkai Zheng, Shuai Wang, Hui Tan, Xusheng Wang, Ying Gao
    Natural Products and Bioprospecting. 2023, 13 (6): 54-54.   DOI: 10.1007/s13659-023-00421-z
    Abstract ( 1319 )   HTML ()     PDF (12896KB) ( 1571 )  
    Norepinephrine (NA), a stress hormone, can accelerate hair graying by binding to β2 adrenergic receptors (β2AR) on melanocyte stem cells (McSCs). From this, NA-β2AR axis could be a potential target for preventing the stress effect. However, identifying selective blockers for β2AR has been a key challenge. Therefore, in this study, advanced computer-aided drug design (CADD) techniques were harnessed to screen natural molecules, leading to the discovery of rhynchophylline as a promising compound. Rhynchophylline exhibited strong and stable binding within the active site of β2AR, as verified by molecular docking and dynamic simulation assays. When administered to cells, rhynchophylline effectively inhibited NA-β2AR signaling. This intervention resulted in a significant reduction of hair graying in a stress-induced mouse model, from 28.5% to 8.2%. To gain a deeper understanding of the underlying mechanisms, transcriptome sequencing was employed, which revealed that NA might disrupt melanogenesis by affecting intracellular calcium balance and promoting cell apoptosis. Importantly, rhynchophylline acted as a potent inhibitor of these downstream pathways. In conclusion, the study demonstrated that rhynchophylline has the potential to mitigate the negative impact of NA on melanogenesis by targeting β2AR, thus offering a promising solution for preventing stress-induced hair graying.
    References | Related Articles | Metrics
    Kaemtakols A–D, highly oxidized pimarane diterpenoids with potent anti-inflammatory activity from Kaempferia takensis   Collect
    Orawan Jongsomjainuk, Jutatip Boonsombat, Sanit Thongnest, Hunsa Prawat, Paratchata Batsomboon, Sitthivut Charoensutthivarakul, Saroj Ruchisansakun, Kittipong Chainok, Jitnapa Sirirak, Chulabhorn Mahidol, Somsak Ruchirawat
    Natural Products and Bioprospecting. 2023, 13 (6): 55-55.   DOI: 10.1007/s13659-023-00420-0
    Abstract ( 1231 )   HTML ()     PDF (2009KB) ( 1346 )  
    Four highly oxidized pimarane diterpenoids were isolated from Kaempferia takensis rhizomes. Kaemtakols A–C possess a tetracyclic ring with either a fused tetrahydropyran or tetrahydrofuran motif. Kaemtakol D has an unusual rearranged A/B ring spiro-bridged pimarane framework with a C-10 spirocyclic junction and an adjacent 1-methyltricyclo[3.2.1.02,7]octene ring. Structural characterization was achieved using spectroscopic analysis, DP4+ and ECD calculations, as well as X-ray crystallography, and their putative biosynthetic pathways have been proposed. Kaemtakol B showed significant potency in inhibiting nitric oxide production with an IC50 value of 0.69 μM. Molecular docking provided some perspectives on the action of kaemtakol B on iNOS protein.
    References | Related Articles | Metrics
Current Issue
2023, Volume 13 Issue 6