Natural Products and Bioprospecting    2023, Vol. 13 Issue (6) : 50-50     DOI: 10.1007/s13659-023-00416-w
REVIEWS |
The alkynyl-containing compounds from mushrooms and their biological activities
Ji-shuang Qi1, Yingce Duan1, Zhao-chen Li2, Jin-ming Gao2, Jianzhao Qi1,2, Chengwei Liu1
1. Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, China;
2. Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
Download: PDF(3959 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Mushrooms have been utilized by humans for thousands of years due to their medicinal and nutritional properties. They are a crucial natural source of bioactive secondary metabolites, and recent advancements have led to the isolation of several alkynyl-containing compounds with potential medicinal uses. Despite their relatively low abundance, naturally occurring alkynyl compounds have attracted considerable attention due to their high reactivity. Bioactivity studies have shown that alkynyl compounds exhibit significant biological and pharmacological activities, including antitumor, antibacterial, antifungal, insecticidal, phototoxic, HIV-inhibitory, and immunosuppressive properties. This review systematically compiles 213 alkynyl-containing bioactive compounds isolated from mushrooms since 1947 and summarizes their diverse biological activities, focusing mainly on cytotoxicity and anticancer effects. This review serves as a detailed and comprehensive reference for the chemical structures and bioactivity of alkynyl-containing secondary metabolites from mushrooms. Moreover, it provides theoretical support for the development of chemical constituents containing alkynyl compounds in mushrooms based on academic research and theory.
Keywords Mushroom      Alkynyl compounds      Bioactivity      Chemical structures     
Fund:This work was supported by the National Natural Science Foundation of China (No. 32370069 and U22A20369), the Fundamental Research Funds for the Central Universities (2572023AW40), the Natural Science Foundation of Heilongjiang Province of China (No. LH2023C035), and the Key R&D Projects in Shaanxi Province of China (No.2023-YBSF-164).
Corresponding Authors: Jianzhao Qi,E-mail:qjz@nwafu.edu.cn;Chengwei Liu,E-mail:liuchw@nefu.edu.cn     E-mail: qjz@nwafu.edu.cn;liuchw@nefu.edu.cn
Issue Date: 26 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ji-shuang Qi
Yingce Duan
Zhao-chen Li
Jin-ming Gao
Jianzhao Qi
Chengwei Liu
Trendmd:   
Cite this article:   
Ji-shuang Qi,Yingce Duan,Zhao-chen Li, et al. The alkynyl-containing compounds from mushrooms and their biological activities[J]. Natural Products and Bioprospecting, 2023, 13(6): 50-50.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-023-00416-w     OR     http://npb.kib.ac.cn/EN/Y2023/V13/I6/50
[1] Wu SM. Progress in natural volatile flavor compounds from edible mushrooms. Food Sci Biotechnol. 2009;28:1-7.
[2] Wu J, Kawagishi H. Plant growth regulators from mushrooms. J Antibiot. 2020;73:657-65.
[3] Ferreira ICFR, Vaz JA, Vasconcelos MH, Martins A. Compounds from wild mushrooms with antitumor potential. Anticancer Agents Med Chem. 2010;10:424-36.
[4] Seo DJ, Choi C. Antiviral bioactive compounds of mushrooms and their antiviral mechanisms: a review. Viruses. 2021;13:350.
[5] Zhou GF, Yang Y, Xu R, Zhao X. Research progress in terpenoids derived from mushrooms. J Int Pharm Res. 2020;47:928-45.
[6] Singh R, Tiwari P, Sharma B, Guerrero-Perilla C, Coy-Barrera E, et al. Chapter 23—Analysis of polyacetylenes. In: Silva S, et al., editors. Recent advances in natural products analysis, A. Amsterdam: Elsevier; 2020. p. 707-22.
[7] Talele TT. Acetylene group, friend or foe in medicinal chemistry. J Med Chem. 2020;63:5625-63.
[8] Kilimnik A, Kuklev DV, Dembitsky VM. Antitumor acetylenic lipids. Mathews J Pharm Sci. 2016;1:1-13.
[9] Anke T, Giannetti BM, Steglich W. Antibiotics from basidiomycetes. XV
[1] 1-Hydroxy-2-nonyn-4-one, an antifungal and cytotoxic metabolite from Ischnoderma benzoinum (Wahl.) Karst. Zeitschrift für Naturforschung C. 1981;37:1-4.
[10] Arnone A, Nasini G, Pava OVD. Structure and absolute configuration of new acetylenic compounds isolated from cultures of Clitocybe catinus. Phytochemistry. 2000;53:1087-90.
[11] Baldwin JE, Adlington RM, Chondrogianni J, Edenborough MS, Keeping JW, Ziegler CB. Structure and synthesis of new cyclopentenyl isonitriles from Trichoderma hamatum (Bon.) Bain. Aggr. HLX 1379. J Chem Soc Chem Commun. 1985;12:816-7.
[12] Aqueveque PM, Becerra J, Palfner G, Silva M, Alarcón JG, Anke T, et al. Antimicrobial activity of metabolites from mycelial cultures of Chilean Basidiomycetes. J Chil Chem Soc. 2006;51:1057-60.
[13] Hearn MTW, Jones ERH, Pellatt MG, Thaller V, Turner JL. Natural acetylenes. Part XLII. Novel C7, C8, C9, and C10 polyacetylenes from fungal cultures. J Chem Soc Perkin Trans. 1973;1(5):2785-8.
[14] Taha AA. Acetylenes and dichloroanisoles from Psathyrella scobinacea. Phytochemistry. 2000;55:921-6.
[15] Farrell IW, Thaller V, Turner JL. Natural acetylenes. Part 52. Polyacetylenic acids and aromatic aldehydes from cultures of the fungus Camarophyllus virgineus (Wulfen ex fr.) Kummer. J Chem Soc Perkin Trans. 1977;1:1886-8.
[16] Cambie RC, Gardner JN, Jones ERH, Lowe G, Read G. 380. Chemistry of the higher fungi. Part XIV. Polyacetylenic metabolites of Poria sinuosa Fr. J Chem Soc. 1963. https://doi.org/10.1039/jr9630002056.
[17] Arai K, Miyajima H, Mushiroda T, Yamamoto Y. Metabolites of Penicillium italicum WEHMER: isolation and structures of new metabolites including naturally occurring 4-ylidene-acyltetronic acids, italicinic acid and italicic acid. Chem Pharm Bull. 1989;37:3229-35.
[18] Li GH, Shen YM, Zhang KQ. Nematicidal activity and chemical component of Poria cocos. J Microbiol. 2005;43:17-20.
[19] Sakuno EF. Bioactive small secondary metabolites from the mushrooms Lentinula edodes and Flammulina velutipes. J Antibiot. 2020;73:687-96.
[20] Bew RE, Chapman JR, Jones ERH, Lowe BE, Lowe G. Natural acetylenes. Part XVIII. Some allenic polyacetylenes from basidiomycetes. J Chem Soc C. 1966. https://doi.org/10.1039/j39660000129.
[21] Tokimoto K, Fujita T, Takeda Y, Takaishi Y. Increased or induced formation of antifungal substances in cultures of Lentinus edodes by the attack of Trichoderma spp. Proc Jpn Acad, Ser B. 1987;63:277-80.
[22] Tokimoto K, Komatsu M. Selection and breeding of shiitake strains resistant to Trichoderma spp. Can J Bot. 1995;73:962-6.
[23] Komemushi S, Yamamoto Y, Fujita T. Purification and identification of antimicrobial substances produced by Lentinus edodes. Soc Antibact Antifung Agents Japan. 1996;24:21-5.
[24] Hu DB, Li WX, Zhao ZZ, Feng T, Yin RH, Li ZH, et al. Highly unsaturated pyranone derivatives from the basidiomycete Junghuhnianitida. Tetrahedron Lett. 2014;55:6530-3.
[25] Ahmed M, Barley GC, Hearn MTW, Jones ERH, Thaller V, Yates JA. Natural acetylenes. Part XLIII. Polyacetylenes from cultures of the fungus Fistulina pallida (berk. and rev.). J Chem Soc Perkin Trans. 1974;1:1981-7.
[26] Clericuzio M, Hussain FHS, Amin HIM, Salis A, Damonte G, Pavela R, et al. New acetylenic metabolites from the toxic mushroom Tricholoma pardinum. Nat Prod Res. 2021;35:5081-8.
[27] Takahashi A, Endo T, Nozoe S. Repandiol, a new cytotoxic diepoxide from the mushrooms Hydnum repandum and H. repandum var. album. Chem Pharm Bull. 1992;40:3181-4.
[28] Miller MW. The Pfizer handbook of microbial metabolites. AIBS bull. 1962;84:1516.
[29] Anke T, Kupka J, Schramm G, Steglich W. Antibiotics from basidiomycetes. X. Scorodonin, a new antibacterial and antifungal metabolite from Marasmius scorodonius (Fr.) Fr. J Antibiot. 1980;33:463-7.
[30] Zheng YZ, Han JJ, Mi PC, Chen BS, Bao L, Xi YL, et al. Chemical constituents from fruiting bodies of Lyophyllum decastes. Mycosystema. 2020;39:1774-82.
[31] Zhang L, Li ZH, Dong ZJ, Li Y, Liu JK. A Viscidane diterpene and polyacetylenes from cultures of Hypsizygus marmoreus. Nat Prod Bioprospect. 2015;5:99-103.
[32] Ahmed M, Keeping JW, Macrides TA, Thaller V. Natural acetylenes. Part 54. Polyacetylenes from fungal cultures of some tricholomataceae and corticiaceae species. J Chem Soc Perkin Trans. 1978;1:1487-9.
[33] Shiono Y, Haga M, Koyama H, Murayama T, Koseki T. Antifungal activity of a polyacetylene against the fungal pathogen of japanese oak from the liquid culture of the edible mushroom, Hypsizygus marmoreus. Zeitschrift für Naturforschung B. 2013;68:293-5.
[34] Takano S, Sugihara T, Ogasawara K. The first enantiocontrolled synthesis of (3S,8S)-(-)-4,6-decadiyne-1,3,8-triol isolated from a toxic mushroom gymnopilus spectabilis. Tetrahedron Lett. 1991;32:2797-8.
[35] Yoshikawa K, Bando S, Arihara S, Matsumura E, Katayama S. A benzofuran glycoside and an acetylenic acid from the fungus Laetiporus sulphureus varminiatus. Chem Pharm Bull. 2001;49:327-9.
[36] Li HJ, Chen T, Xie YL, Chen WD, Zhu XF, Lan WJ. Isolation and structural elucidation of chondrosterins F-H from the marine fungus Chondrostereum sp. Mar Drugs. 2013;11:551-8.
[37] Anchel M. Metabolic products of Clitocybe diatreta. I. Diatretyne amide and diatretyne nitrile. Arch Biochem Biophys. 1958;78:100-10.
[38] Hatanaka SI, Niimura Y, Takishima K. Non protein amino acids of unsaturated norleucine type in Amanita pseudoporphyria. Nippon Kingakukai Kaiho. 1985;26:61-8.
[39] Hatanaka SI. Amino acids from mushrooms. Fortschr Chem org Naturst. 1992;59:1-140.
[40] Yamaura Y, Fukuhara M, Takabatake E, Ito N, Hashimoto T. Hepatotoxic action of a poisonous mushroom, Amanita abrupta in mice and its toxic component. Toxicology. 1986;38:161-73.
[41] Potgieter HC, Vermeulen N, Potgieter D, Strauss HF. A toxic amino acid, 2(S)3(R)-2-amino-3-hydroxypent-4-ynoic acid from the fungus Sclerotium rolfsii. Phytochemistry. 1977;16:1757-9.
[42] Hatanaka SI, Niimura Y, Taniguchi K. l-2-Aminohex-4-ynoic acid: a new amino acid from Tricholomopsis rutilans. Phytochemistry. 1972;11:3327-9.
[43] Hatanaka SI, Niimura Y, Taniguchi K. Biochemische Studien über Stickstoffverbindungen in Pilzen, V1. Eine weitere neue Aminosäure vom Acetylen-Typ aus Tricholomopsis rutilans (Fr.) Sing. Z Naturforsch C. 1973;28:480.
[44] Niimura Y, Hatanaka SI. Two γ-Glutamylpeptides of acetylenic amino acids in Tricholomopsis rutilans. Phytochemistry. 1977;16:1435-6.
[45] Aoyagi Y, Sugahara T. 2(S)-Aminohex-5-ynoic acid, an antimetabolite from Cortinarius claricolor var. tenuipes. Phytochemistry. 1985;24:1835-6.
[46] Rosa LH, Fagundes EMS, Machado KMG, Alves TMA, Filho OAM, Romanha AJ, et al. Cytotoxic, immunosuppressive and trypanocidal activities of agrocybin, a polyacetylene produced by Agrocybe perfecta (Basidiomycota). World J Microbiol Biotechnol. 2006;22:539-45.
[47] Blacklock BJ, Scheffler BE, Shepard MR, Jayasuriya N, Minto RE. Functional diversity in fungal fatty acid synthesis: the first acetylenase from the Pacific golden chanterelle, Cantharellus formosus. J Biol Chem. 2010;285:28442-9.
[48] Zheng YB, Xu XP, Wu YB. Inhibitory activities against rice pathogens of 8-hydroxy-2,4,6-octatriynamide from Agrocybe sp. World J Microbiol Biotechnol. 2016;32:35.
[49] Fushimi K, Anzai K, Tokuyama S, Kiriiwa Y, Matsumoto N, Sekiya A, et al. Agrocybynes A-E from the culture broth of Agrocybe praecox. Tetrahedron. 2012;68:1262-5.
[50] Bäuerle J, Anke T, Jente R, Bosold F. Antibiotics from basidiomycetes XVI. Antimicrobial and cytotoxic polyines from Mycena viridimarginata karst. Arch Microbiol. 1982;132:194-6.
[51] Zhou ZY, Shi GQ, Fontaine R, Wei K, Feng T, Wang F, et al. Evidence for the natural toxins from the mushroom Trogia venenata as a cause of sudden unexpected death in Yunnan Province, China. Angew Chem Int Ed. 2012;51:2368-70.
[52] Ahmed M, Broad GJ, Jones ERH, Taha AA, Thaller V. Natural acetylenes Part 58. polyacetylenic iso prenyl ethers from cultures of the fungus Fayodia bisphaerigera isolation and synthesis. J Chem Res. 1982. https://doi.org/10.1002/chin.198244163.
[53] Anchel M, Cohen MP. Studies with biformin. I. Its characterization as a polyacetylenic 9-carbon glycol. J Biol Chem. 1954;208:319-26.
[54] Dickey FH. The preparation of specific adsorbents. Proc Natl Acad Sci USA. 1949;35:227-9.
[55] Hwang BH. Antibiotics from mushrooms. J For Environ Sci. 2006;22:83-9744.
[56] Bu’Lock JD, Jones ERH, Leeming PR. Chemistry of the higher fungi. Part V. The structures of nemotinic acid and nemotin. J Chem Soc. 1955. https://doi.org/10.1039/jr9550004270.
[57] Kavanagh F, Hervey A, Robbins WJ. Antibiotic substances from basidiomycetes. Proc Natl Acad Sci USA. 1950;36:102-6.
[58] Lee J, Shi YM, Grün P, Gube M, Feldbrügge M, Bode H, et al. Identification of feldin, an antifungal polyyne from the beefsteak fungus Fistulina hepatica. Biomolecules. 2020;10:1-15.
[59] Ondeyka JG, Zink DL, Young K, Painter R, Kodali S, Galgoci A, et al. Discovery of bacterial fatty acid synthase inhibitors from a Phoma species as antimicrobial agents using a new antisense-based strategy. J Nat Prod. 2006;69:377-80.
[60] Mittermeier VK, Dunkel A, Hofmann T. Discovery of taste modulating octadecadien-12-ynoic acids in golden chanterelles (Cantharellus cibarius). Food Chem. 2018;269:53-62.
[61] Arshad M, Frankenberger WT. Biosynthesis of ethylene by Acremonium falciforme. Soil Biol Biochem. 1989;21:633-8.
[62] Meng-Yuan J, Fei W, Jun DZ, Yi Z, Jie ZH, Kai LJ. A new hydroxyl acetylenic fatty acid from the basidiomycete Craterellus aureus (Cantharellaceae). Acta Bot Fenn. 2008;30:614-6.
[63] Huang Y, Zhang SB, Chen HP, Zhao ZZ, Zhou ZY, Li ZH, et al. New acetylenic acids and derivatives from the edible mushroom Craterellus lutescens (Cantharellaceae). J Agric Food Chem. 2017;65:3835-41.
[64] Huang Y, Zhang SB, Chen HP, Zhao ZZ, Li ZH, Feng T, et al. New acetylenic acids and derivatives from the Basidiomycete Craterellus lutescens (Cantharellaceae). Fitoterapia. 2016;115:177-81.
[65] Hong SS, Lee JH, Jeong W, Kim N, Jin HZ, Hwang BY, et al. Acetylenic acid analogues from the edible mushroom Chanterelle (Cantharellus cibarius) and their effects on the gene expression of peroxisome proliferator-activated receptor-gamma target genes. Bioorganic Med Chem Lett. 2012;22:2347-9.
[66] Mittermeier VK, Pauly K, Dunkel A, Hofmann T. Ion-mobility-based liquid chromatography-mass spectrometry quantitation of taste-enhancing octadecadien-12-ynoic acids in mushrooms. J Agric Food Chem. 2020;68:5741-51.
[67] Nozoe S. Preparation of repandiol derivatives as anti-tumor agents. Japan. 1993.
[68] Dilyana H, Rusinova-Videva S, Spiro K. Biologically active substances and extracts of fungal origin. Pharmacogn Rev. 2021;15:12-9.
[69] Robbins WJ, Kavanagh F, Hervey A. Antibiotics from basidiomycetes: II. Polyporus biformis. Proc Natl Acad Sci USA. 1947;33:176-82.
[70] Sorg A, Siegel K, Brückner R. Stereoselective syntheses of dihydroxerulin and xerulinic acid, anti-hypocholesterolemic dyes from the fungus Xerula melanotricha. Chem Eur J. 2005;11:1610-24.
[71] Levy LM, Cabrera GM, Wright JE, Seldes AM. 5H-furan-2-ones from fungal cultures of Aporpium caryae. Phytochemistry. 2003;62:239-43.
[72] Jiang MY, Li Y, Wang F, Liu JK. Isoprenylated cyclohexanoids from the basidiomycete Hexagonia speciosa. Phytochemistry. 2011;72:923-8.
[73] Garlaschelli L, Magistrali E, Vidari G, Zuffardi O. Tricholomenyns A and B, novel antimitotic acetylenic cyclohexenone derivatives from the fruiting bodies of Tricholoma acerbum. Tetrahedron Lett. 1995;36:5633-6.
[74] Garlaschelli L, Vidari G, Vita-Finzi P, Tricholomenyns C. D, and E, novel dimeric dienyne geranyl cyclohexenones from the fruiting bodies of Tricholoma acerbum. Tetrahedron Lett. 1996;37:6223-6.
[75] Dubin GM, Fkyerat A, Tabacchi R. Acetylenic aromatic compounds from Stereum hirsutum. Phytochemistry. 2000;53:571-4.
[76] Liu F, Li Q, Wei M, Kang X, Zhu H, Sun W, et al. Sterehirsutynes A-C: three new acetylenic aromatic metabolites from Stereum hirsutum. Nat Prod Res. 2022;37:1-8.
[77] Nair M, Anchel M. Frustulosin, an antibiotic metabolite of stereum frustulosum. Phytochemistry. 1975;16:2641-2.
[78] Tsuge N, Mori T, Hamano T, Tanaka H, Shin-ya K, Seto H. Cinnatriacetins A and B, new antibacterial triacetylene derivatives from the fruiting bodies of Fistulina hepatica. J Antibiot. 1999;52:578-81.
[79] Hautzel R, Anke H, Sheldrick WS. Mycenon, a new metabolite from a Mycena species TA 87202 (basidiomycetes) as an inhibitor of isocitrate lyase. J Antibiot. 1990;43:1240-4.
[80] Isaka M, Chinthanom P, Sappan M, Supothina S, Boonpratuang T. Phenylglycol metabolites from cultures of the basidiomycete Mycena pruinosoviscida BCC 22723. Helv Chim Acta. 2014;97:909-14.
[81] Thongbai B, Surup F, Mohr K, Kuhnert E, Hyde KD, Stadler M. Gymnopalynes A and B, chloropropynyl-isocoumarin antibiotics from cultures of the basidiomycete Gymnopus sp. J Nat Prod. 2013;76:2141-4.
[82] Jiang MY, Zhang L, Liu R, Dong ZJ, Liu JK. Speciosins A-K, oxygenated cyclohexanoids from the basidiomycete Hexagonia speciosa. J Nat Prod. 2009;72:1405-9.
[83] Chen JJ, Lin WJ, Liao CH, Shieh PC. Anti-inflammatory benzenoids from Antrodia camphorata. J Nat Prod. 2007;70:989-92.
[84] Liao YR, Kuo PC, Huang SC, Liang JW, Wu TS. An efficient total synthesis of Benzocamphorin H and its anti-inflammatory activity. Tetrahedron Lett. 2012;53:6202-4.
[85] Liao YR, Kuo PC, Liang JW, Shen YC, Wu TS. An efficient total synthesis of a potent anti-inflammatory agent, benzocamphorin F, and its anti-inflammatory activity. Int J Mol Sci. 2012;13:10432-40.
[86] Wu TY, Du YC, Hsu YM, Lu CY, Singab ANB, El Shazly M, et al. New approach to the characterization and quantification of Antrodia cinnamomea benzenoid components utilizing HPLC-PDA, qNMR and HPLC-tandem MS: comparing the wild fruiting bodies and its artificial cultivated commercial products. Food Res Int. 2013;51:23-31.
[87] Hsieh YH, Chu FH, Wang YS, Chien SC, Chang ST, Shaw JF, et al. Antrocamphin A, an anti-inflammatory principal from the fruiting body of Taiwanofungus camphoratus, and Its mechanisms. J Agr Food Chem. 2010;58:3153-8.
[88] Shi LS, Chao CH, Shen DY, Chan HH, Chen CH, Liao YR, et al. Biologically active constituents from the fruiting body of Taiwanofungus camphoratus. Bioorg Med Chem. 2011;19:677-83.
[89] Parish CA, Huber J, Baxter J, González A, Collado J, Platas G, et al. A new ene-triyne antibiotic from the fungus Baeospora myosura. J Nat Prod. 2004;67:1900-2.
[90] Gerber NN, Shaw SA, Lechevalier HA. Structures and antimicrobial activity of peniophorin A and B, two polyacetylenic antibiotics from Peniophora affinis Burt. Antimicrob Agents Chemother. 1980;17:636-41.
[91] Sontag B, Rüth M, Spiteller P, Arnold N, Steglich W, Reichert M, et al. Chromogenic meroterpenoids from the mushrooms Russula ochroleuca and R. viscida. Eur J Org Chem. 2006;2006:1023-33.
[92] Magnus V, Laćan G, Iskrić S, Lewer P, Aplin RT, Thaller V. Conversion of indole-3-ethanol to fatty acid esters in Craterellus cornucopioides. Phytochemistry. 1989;28:2949-54.
[93] Birkinshaw JH, Chaplen P. Biochemistry of the wood-rotting fungi. 8. Volatile metabolic products of Daedalea juniperina Murr. Biochem J. 1955;60:255-61.
[94] Gehrt A, Erkel G, Anke T, Sterner O. Nitidon, a new bioactive metabolite from the basidiomycete Junghuhnia nitida (Pers.: Fr.) Ryv. Zeitschrift für Naturforschung C. 1998;53:89-92.
[95] Isaka M, Yangchum A, Choeyklin R, Anaphon S. Acetylenic sesquiterpenoids from cultures of the basidiomycete Stereum cf. hirsutum BCC 26597. Nat Prod Res. 2021;35:3185-91.
[96] Amegadzie AK, Ayer WA, Sigler L. Unusual polyketides from the wood-decay fungus Sistotrema raduloides. Can J Chem. 1995;73:2119-25.
[97] Duan Y, Han H, Qi J, Gao JM, Xu Z, Wang P, et al. Genome sequencing of Inonotus obliquus reveals insights into candidate genes involved in secondary metabolite biosynthesis. BMC Genom. 2022;23:1-17.
[98] Zhang RQ, Feng XL, Wang ZX, Xie TC, Duan YC, Liu CW, et al. Genomic and metabolomic analyses of the medicinal fungus Inonotus hispidus for its metabolite’s biosynthesis and medicinal application. J Fungi. 2022;8:1245.
[99] Zhao CH, Feng XL, Wang ZX, Qi JZ. The first whole genome sequencing of Agaricus bitorquis and its metabolite profiling. J Fungi. 2023;9:485.
[100] Dong WG, Wang ZX, Feng XL, Zhang RQ, Shen DY, Du ST, et al. Chromosome-level genome sequences, comparative genomic analyses, and secondary-metabolite biosynthesis evaluation of the medicinal edible mushroom Laetiporus sulphureus. Microbiol Spectr. 2022;10:1-19.
[101] Lu MYJ, Fan WL, Wang WF, Chen T, Tang YC, Chu FH, et al. Genomic and transcriptomic analyses of the medicinal fungus Antrodia cinnamomea for its metabolite biosynthesis and sexual development. Proc Natl Acad Sci. 2014;111:4743-52.
[102] Chen L, Gong Y, Cai Y, Liu W, Zhou Y, Xiao Y, et al. Genome sequence of the edible cultivated mushroom Lentinula edodes (Shiitake) reveals insights into lignocellulose degradation. PLoS ONE. 2016;11:1-20.
[103] Min B, Kim S, Oh YL, Kong WS, Park H, Cho H, et al. Genomic discovery of the hypsin gene and biosynthetic pathways for terpenoids in Hypsizygus marmoreus. BMC Genom. 2018;19:789.
[104] Ruiz-Dueñas FJ, Barrasa JM, Sánchez-García M, Camarero S, Miyauchi S, Serrano A, et al. Genomic analysis enlightens agaricales lifestyle evolution and increasing peroxidase diversity. Mol Biol Evol. 2021;38:1428-46.
[105] Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, et al. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012;336:1715-9.
[106] Wu B, Xu Z, Knudson A, Carlson A, Chen N, Kovaka S, et al. Genomics and development of Lentinus tigrinus: a white-rot wood-decaying mushroom with dimorphic fruiting bodies. Genome Biol Evol. 2018;10:3250-61.
[107] Balasundaram SV, Hess J, Durling MB, Moody SC, Thorbek L, Progida C, et al. The fungus that came in from the cold: dry rot’s pre-adapted ability to invade buildings. ISME J. 2018;12:791-801.
[108] Nagy LG, Riley R, Tritt A, Adam C, Daum C, Floudas D, et al. Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities. Mol Biol Evol. 2016;33:959-70.
[109] Granchi Z, Peng M, Chi AWT, de Vries RP, Hildén K, Mäkelä MR. Genome sequence of the basidiomycete white-rot fungus Trametes pubescens FBCC735. Genome Announc. 2017;5:1-2.
[110] Floudas D, Held BW, Riley R, Nagy LG, Koehler G, Ransdell AS, et al. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii Fungal. Genet Biol. 2015;76:78-92.
[111] Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sánchez-García M, et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun. 2020;11:5125.
[1] Si-Yuan Luo, Jun-Yu Zhu, Ming-Feng Zou, Sheng Yin, Gui-Hua Tang. Mulberry Diels–Alder-type adducts: isolation, structure, bioactivity, and synthesis[J]. Natural Products and Bioprospecting, 2022, 12(5): 31-31.
[2] Yulian Lv, Tian Tian, Yong-Jiang Wang, Jian-Ping Huang, Sheng-Xiong Huang. Advances in chemistry and bioactivity of the genus Erythroxylum[J]. Natural Products and Bioprospecting, 2022, 12(3): 15-15.
[3] Na Zhang, Fan Xia, Song-Yu Li, Yin Nian, Li-Xin Wei, Gang Xu. Diterpenoid Alkaloids from the Aerial Parts of Aconitum flavum Hand. -Mazz[J]. Natural Products and Bioprospecting, 2021, 11(4): 421-429.
[4] Qi Zhao, Jia-Le Zhang, Fei Li. Application of Metabolomics in the Study of Natural Products[J]. Natural Products and Bioprospecting, 2018, 8(4): 321-334.
[5] Jin-Tang Cheng, Shi-Tao Chen, Cong Guo, Meng-Jiao Jiao, Wen-Jin Cui, Shu-Hui Wang, Zhe Deng, Chang Chen, Sha Chen, Jun Zhang, An Liu. Triterpenoid Saponins from the Seeds of Aesculus chinensis and Their Cytotoxicities[J]. Natural Products and Bioprospecting, 2018, 8(1): 47-56.
[6] Kai Liu, Ya-Bin Yang, Jin-Lian Chen, Cui-Ping Miao, Qiang Wang, Hao Zhou, You-Wei Chen, Yi-Qing Li, Zhong-Tao Ding, Li-Xing Zhao. Koninginins N-Q, Polyketides from the Endophytic Fungus Trichoderma koningiopsis Harbored in Panax notoginseng[J]. Natural Products and Bioprospecting, 2016, 6(1): 49-55.
[7] Jun-Zeng Ma, Li-Xin Yang, Xiao-Ling Shen, Ji-Huan Qin, Li-Lan Deng, Selena Ahmed, Hong-Xi Xu, Da-Yuan Xue, Jiang-Xia Ye, Gang Xu. Effects of Traditional Chinese Medicinal Plants on Antiinsulin Resistance Bioactivity of DXMS-Induced Insulin Resistant HepG2 Cells[J]. Natural Products and Bioprospecting, 2014, 4(4): 197-206.
[8] Liang-Yan Liu, Zheng-Hui Li, Gang-Qiang Wang, Kun Wei, Ze-Jun Dong, Tao Feng, Gen-Tao Li, Yan Li, Ji-Kai Liu. Nine New Farnesylphenols from the Basidiomycete Albatrellus Caeruleoporus[J]. Natural Products and Bioprospecting, 2014, 4(2): 119-128.
[9] Lydia L. Lifongo, Conrad V. Simoben, Fidele Ntie-Kang, Smith B. Babiaka, Philip N. Judson. A Bioactivity Versus Ethnobotanical Survey of Medicinal Plants from Nigeria,West Africa[J]. Natural Products and Bioprospecting, 2014, 4(1): 1-19.
[10] Ashraf SAIF, Kristian WENDE, Ulrike LINDEQUIST. In vitro bone inducing effects of Lentinula edodes (shiitake) water extract on human osteoblastic cell cultures[J]. Natural Products and Bioprospecting, 2013, 3(6): 282-287.
[11] Yan-Ming WANG, Min XU, Dong WANG, Hong-Tao ZHU, Chong-Ren YANG, Ying-Jun ZHANG. Review on “Long-Dan”, one of the traditional Chinese medicinal herbs recorded in Chinese Pharmacopoeia[J]. Natural Products and Bioprospecting, 2012, 2(1): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed