Natural Products and Bioprospecting    2023, Vol. 13 Issue (6) : 45-45     DOI: 10.1007/s13659-023-00411-1
REVIEW |
Bioactive molecules from terrestrial and seafood resources in hypertension treatment: focus on molecular mechanisms and targeted therapies
Md. Rezaul Islam1, Puja Sutro Dhar1, Shopnil Akash1, Sabeena Hussain Syed2, Jeetendra Kumar Gupta3, Kumaraswamy Gandla4, Muniya Akter1, Abdur Rauf5, Hassan A. Hemeg6, Yasir Anwar7, Bassam Oudh Aljohny7, Polrat Wilairatana8
1. Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh;
2. School of Pharmacy, Vishwakarma University, Survey No 2, 3, 4, Kondhwa Main Rd, Laxmi Nagar, Betal Nagar, Kondhwa, Pune, Maharashtra, 411048, India;
3. Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India;
4. Department of Pharmaceutical Analysis, Chaitanya (Deemed to Be University), Himayath Nagar, Hyderabad, Telangana, 500075, India;
5. Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan;
6. Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia;
7. Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21441, Kingdom of Saudi Arabia;
8. Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
Download: PDF(5547 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Hypertension (HTN), a complex cardiovascular disease (CVD), significantly impacts global health, prompting a growing interest in complementary and alternative therapeutic approaches. This review article seeks to provide an up-to-date and thorough summary of modern therapeutic techniques for treating HTN, with an emphasis on the molecular mechanisms of action found in substances found in plants, herbs, and seafood. Bioactive molecules have been a significant source of novel therapeutics and are crucial in developing and testing new HTN remedies. Recent advances in science have made it possible to understand the complex molecular mechanisms underlying blood pressure (BP)-regulating effects of these natural substances better. Polyphenols, flavonoids, alkaloids, and peptides are examples of bioactive compounds that have demonstrated promise in influencing several pathways involved in regulating vascular tone, reducing oxidative stress (OS), reducing inflammation, and improving endothelial function. The article explains the vasodilatory, diuretic, and renin–angiotensin–aldosterone system (RAAS) modifying properties of vital plants such as garlic and olive leaf. Phytochemicals from plants are the primary in traditional drug development as models for novel antihypertensive drugs, providing diverse strategies to combat HTN due to their biological actions. The review also discusses the functions of calcium channel blockers originating from natural sources, angiotensin-converting enzyme (ACE) inhibitors, and nitric oxide (NO) donors. Including seafood components in this study demonstrates the increased interest in using bioactive chemicals originating from marine sources to treat HTN. Omega-3 fatty acids, peptides, and minerals obtained from seafood sources have anti-inflammatory, vasodilatory, and antioxidant properties that improve vascular health and control BP. Overall, we discussed the multiple functions of bioactive molecules and seafood components in the treatment of HTN.
Keywords Antihypertensive      Plants      Bioactive molecules      Seafood      Hypertension     
Fund:This research received no external funding.
Corresponding Authors: Abdur Rauf,E-mail:mashaljcs@yahoo.com     E-mail: mashaljcs@yahoo.com
Issue Date: 26 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Md. Rezaul Islam
Puja Sutro Dhar
Shopnil Akash
Sabeena Hussain Syed
Jeetendra Kumar Gupta
Kumaraswamy Gandla
Muniya Akter
Abdur Rauf
Hassan A. Hemeg
Yasir Anwar
Bassam Oudh Aljohny
Polrat Wilairatana
Trendmd:   
Cite this article:   
Md. Rezaul Islam,Puja Sutro Dhar,Shopnil Akash, et al. Bioactive molecules from terrestrial and seafood resources in hypertension treatment: focus on molecular mechanisms and targeted therapies[J]. Natural Products and Bioprospecting, 2023, 13(6): 45-45.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-023-00411-1     OR     http://npb.kib.ac.cn/EN/Y2023/V13/I6/45
[1] Staessen JA, Wang J, Bianchi G, Birkenh?ger WH. Essential hypertension. The Lancet. 2003;361:1629-41.<br />
[2] Wu J, Peng W, Qin R, Zhou H. <i>Crataegus pinnatifida</i>: chemical constituents, pharmacology, and potential applications. Molecules. 2014;19:1685-712.<br />
[3] Carretero OA, Oparil S. Essential hypertension: part I: definition and etiology. Circulation. 2000;101:329-35.<br />
[4] Beevers G, Lip GY, O’Brien E. The pathophysiology of hypertension. BMJ. 2001;322:912-6.<br />
[5] Pierdomenico SD, Di Nicola M, Esposito AL, Di Mascio R, Ballone E, Lapenna D, Cuccurullo F. Prognostic value of different indices of blood pressure variability in hypertensive patients. Am J Hypertens. 2009;22:842-7.<br />
[6] Tabassum N, Ahmad F. Role of natural herbs in the treatment of hypertension. Pharmacogn Rev. 2011;5:30.<br />
[7] Verma T, Sinha M, Bansal N, Raj S, Kamal Y, Nagendra S, Chauhan S. Plants used as antihypertensive. Nat Prod Bioprospect. 2021;11(2):155-84.<br />
[8] Tirapelli CR, Ambrosio SR, de Oliveira AM, Tostes RC. Hypotensive action of naturally occurring diterpenes: a therapeutic promise for the treatment of hypertension. Fitoterapia. 2010;81:690-702.<br />
[9] Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochem Biophys Acta. 2013;1830:3670-95.<br />
[10] Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75:311-35.<br />
[11] Nakamura K, Naramoto K, Koyama M. Blood-pressure-lowering effect of fermented buckwheat sprouts in spontaneously hypertensive rats. J Funct Foods. 2013;5:406-15.<br />
[12] Jing P, Qian B, He Y, Zhao X, Zhang J, Zhao D, Lv Y, Deng Y. Screening milk-derived antihypertensive peptides using quantitative structure activity relationship (QSAR) modelling and in vitro/in vivo studies on their bioactivity. Int Dairy J. 2014;35:95-101.<br />
[13] Bai R, Wei Z, Liu J, Xie W, Yao H, Wu X, Jiang J, Wang Q, Xu J. Synthesis and biological evaluation of 4'-[(benzimidazole-1-yl) methyl] biphenyl-2-sulfonamide derivatives as dual angiotensin II/endothelin A receptor antagonists. Bioorg Med Chem. 2012;20:4661-7.<br />
[14] Messerli FH, Williams B, Ritz E. Essential hypertension. Lancet. 2007;370:591-603.<br />
[15] Kyrou I, Chrousos GP, Tsigos C. Stress, visceral obesity, and metabolic complications. Ann N Y Acad Sci. 2006;1083:77-110.<br />
[16] Wofford MR, Hall JE. Pathophysiology and treatment of obesity hypertension. Curr Pharm Des. 2004;10:3621-37.<br />
[17] Haslam DW. Obesity: gaining recognition in primary care. Trends Urol Gynaecol Sexual Health. 2007;12:12-4.<br />
[18] Lackland DT, Egan BM. Dietary salt restriction and blood pressure in clinical trials. Curr Hypertens Rep. 2007;9:314-9.<br />
[19] Djoussé L, Mukamal KJ. Alcohol consumption and risk of hypertension: does the type of beverage or drinking pattern matter? Rev Esp Cardiol. 2009;62:603-5.<br />
[20] Lee JH, O’Keefe JH, Bell D, Hensrud DD, Holick MF. Vitamin D deficiency: an important, common, and easily treatable cardiovascular risk factor? J Am Coll Cardiol. 2008;52:1949-56.<br />
[21] Stewart A, Wong K, Cachat J, Elegante M, Gilder T, Mohnot S, Wu N, Minasyan A, Tuohimaa P, Kalueff AV. Neurosteroid vitamin D system as a nontraditional drug target in neuropsychopharmacology. Behav Pharmacol. 2010;21:420-6.<br />
[22] Dickson ME, Sigmund CD. Genetic basis of hypertension: revisiting angiotensinogen. Hypertension. 2006;48:14-20.<br />
[23] Luma GB, Spiotta RT. Hypertension in children and adolescents. Am Fam Physician. 2006;73:1558-66.<br />
[24] Segura J, Ruilope LM. Obesity, essential hypertension and renin-angiotensin system. Public Health Nutr. 2007;10:1151-5.<br />
[25] Sorof J, Daniels S. Obesity hypertension in children: a problem of epidemic proportions. Hypertension. 2002;40:441-7.<br />
[26] Hwang IS, Ho H, Hoffman BB, Reaven GM. Fructose-induced insulin resistance and hypertension in rats. Hypertension. 1987;10:512-6.<br />
[27] Gupta-Malhotra M, Banker A, Shete S, Hashmi SS, Tyson JE, Barratt MS, Hecht JT, Milewicz DM, Boerwinkle E. Essential hypertension vs. secondary hypertension among children. Am J Hypertension. 2015;28:73-80.<br />
[28] Onusko EM. Diagnosing secondary hypertension. Am Fam Physician. 2003;67:67-74.<br />
[29] Dodt C, Wellh?ner J, Schütt M, Sayk F. Glucocorticoids and hypertension. Der Internist. 2009;50:36-41.<br />
[30] Chiong JR, Aronow WS, Khan IA, Nair CK, Vijayaraghavan K, Dart RA, Behrenbeck TR, Geraci SA. Secondary hypertension: current diagnosis and treatment. Int J Cardiol. 2008;124:6-21.<br />
[31] Pimenta E, Oparil S. Role of aliskiren in cardio-renal protection and use in hypertensives with multiple risk factors. Vasc Health Risk Manag. 2009;5:453-63.<br />
[32] Takahashi H. Sympathetic hyperactivity in hypertension. Nihon Rinsho. 2008;66:1495-502.<br />
[33] Sagnella G, Swift P. The renal epithelial sodium channel: genetic heterogeneity and implications for the treatment of high blood pressure. Curr Pharm Des. 2006;12:2221-34.<br />
[34] Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol Cell Physiol. 1995;268:C799-822.<br />
[35] Mayet J, Hughes A. Cardiac and vascular pathophysiology in hypertension. Heart. 2003;89:1104-9.<br />
[36] Castro C, Lorenzo AG, González A, Cruzado M. Garlic components inhibit angiotensin II-induced cell-cycle progression and migration: Involvement of cell-cycle inhibitor p27Kip1 and mitogen-activated protein kinase. Mol Nutr Food Res. 2010;54:781-7.<br />
[37] Sendl A, Elbl G, Steinke B, Redl K, Breu W, Wagner H. Comparative pharmacological investigations of <i>Allium ursinum</i> and <i>Allium sativum</i>. Planta Med. 1992;58:1-7.<br />
[38] Banerjee S, Maulik M, Mancahanda S, Dinda A, Gupta S, Maulik S. Dose-dependent induction of endogenous antioxidants in rat heart by chronic administration of garlic. Life Sci. 2002;70:1509-18.<br />
[39] Vazquez-Prieto MA, Rodriguez Lanzi C, Lembo C, Galmarini CR, Miatello RM. Garlic and onion attenuates vascular inflammation and oxidative stress in fructose-fed rats. J Nutr Metab. 2011;2011: 475216.<br />
[40] Morihara N, Hayama M, Fujii H. Aged garlic extract scavenges superoxide radicals. Plant Foods Hum Nutr. 2011;66:17-21.<br />
[41] Padiya R, Chowdhury D, Borkar R, Srinivas R, Pal Bhadra M, Banerjee SK. Garlic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat. PLoS ONE. 2014;9: e94228.<br />
[42] Popovi? M, Kaurinovi? B, Trivi? S, Mimica-Duki? N, Bursa? M. Effect of celery (<i>Apium graveolens</i>) extracts on some biochemical parameters of oxidative stress in mice treated with carbon tetrachloride. Phytother Res. 2006;20:531-7.<br />
[43] Thiyagarajan R, Boobalan R. Antihypertensive, antihyperlipidemic and antioxidant influence of D-carvone in L-NAME induced hypertensive rats. Intern J Pharm Biol Arch. 2014;5:82-8.<br />
[44] Duffy SJ, Keaney JF Jr, Holbrook M, Gokce N, Swerdloff PL, Frei B, Vita JA. Short-and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation. 2001;104:151-6.<br />
[45] Hodgson JM, Puddey IB, Burke V, Watts GF, Beilin LJ. Regular ingestion of black tea improves brachial artery vasodilator function. Clin Sci. 2002;102:195-201.<br />
[46] Nakagawa T, Yokozawa T. Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol. 2002;40:1745-50.<br />
[47] Ludwig A, Lorenz M, Grimbo N, Steinle F, Meiners S, Bartsch C, Stangl K, Baumann G, Stangl V. The tea flavonoid epigallocatechin-3-gallate reduces cytokine-induced VCAM-1 and monocyte adhesion to endothelial cells. Biochem Biophys Res Commun. 2004;316:659-65.<br />
[48] Mineharu Y, Koizumi A, Wada Y, Iso H, Watanabe Y, Date C, Yamamoto A, Kikuchi S, Inaba Y, Toyoshima H. Coffee, green tea, black tea and oolong tea consumption and risk of mortality from cardiovascular disease in Japanese men and women. J Epidemiol Community Health. 2011;65:230-40.<br />
[49] Ribaldo PD, Souza DS, Biswas SK, Block K, Lopes de Faria JM, Lopes de Faria JB. Green tea (<i>Camellia sinensis</i>) attenuates nephropathy by downregulating Nox4 NADPH oxidase in diabetic spontaneously hypertensive rats. J Nutr. 2009;139:96-100.<br />
[50] Stepien M, Kujawska-Luczak M, Szulinska M, Kregielska-Narozna M, Skrypnik D, Suliburska J, Skrypnik K, Regula J, Bogdanski P. Beneficial dose-independent influence of <i>Camellia sinensis</i> supplementation on lipid profile, glycemia, and insulin resistance in an NaCl-induced hypertensive rat model. J Physiol Pharmacol. 2018;69:275-82.<br />
[51] Faria AM, Papadimitriou A, Silva KC, Lopes de Faria JM, Lopes de Faria JB. Uncoupling endothelial nitric oxide synthase is ameliorated by green tea in experimental diabetes by re-establishing tetrahydrobiopterin levels. Diabetes. 2012;61:1838-47.<br />
[52] Newsome BJ, Petriello MC, Han SG, Murphy MO, Eske KE, Sunkara M, Morris AJ, Hennig B. Green tea diet decreases PCB 126-induced oxidative stress in mice by up-regulating antioxidant enzymes. J Nutr Biochem. 2014;25:126-35.<br />
[53] Sulastri T, Sunyoto M, Suwitono MR, Levita J. The effect of red ginger bread consumption on the physiological parameters of healthy subjects. Jo Adv Pharm Educ Res. 2022;12:29.<br />
[54] Wang Y, Huang Y, Lam KS, Li Y, Wong WT, Ye H, Lau C-W, Vanhoutte PM, Xu A. Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovasc Res. 2009;82:484-92.<br />
[55] Zhang P, Song S-J, Liu W-L, Li L-L, Zhao W-L, Zhang Y. Eeffects of Coptis Chinensis on vasoconstrictive activity of isolated thoracic aorta of normoxic and chronic intermittent hypobaric hypoxic rats. Chin J Appl Physiol. 2011;27:420-5.<br />
[56] Gupta P, Bansal MP, Koul A. Spectroscopic characterization of lycopene extract from <i>Lycopersicum esculentum</i> (Tomato) and its evaluation as a chemopreventive agent against experimental hepatocarcinogenesis in mice. Phytother Res. 2013;27:448-56.<br />
[57] Sreelatha S, Padma P, Umadevi M. Protective effects of <i>Coriandrum sativum</i> extracts on carbon tetrachloride-induced hepatotoxicity in rats. Food Chem Toxicol. 2009;47:702-8.<br />
[58] Wu TT, Tsai CW, Yao HT, Lii CK, Chen HW, Wu YL, Chen PY, Liu KL. Suppressive effects of extracts from the aerial part of <i>Coriandrum sativum</i> L. on LPS-induced inflammatory responses in murine RAW 264.7 macrophages. J Sci Food Agric. 2010;90:1846-54.<br />
[59] Ko?y?ld?z Z?, Birman H, Olga? V, Akgün-Dar K, Meliko?lu G, Meri?li A. Crataegus tanacetifolia leaf extract prevents L-NAME-induced hypertension in rats: a morphological study. Phytothe Res. 2006;20:66-70.<br />
[60] Cheng N, Wang Y, Gao H, Yuan J, Feng F, Cao W, Zheng J. Protective effect of extract of <i>Crataegus pinnatifida</i> pollen on DNA damage response to oxidative stress. Food Chem Toxicol. 2013;59:709-14.<br />
[61] Topal G, Ko? E, Karaca ?, Altu? T, Ergin B, Demirci C, Meliko?lu G, Meri?li AH, Kucur M, ?zdemir O. Effects of crataegus microphylla on vascular dysfunction in streptozotocin-induced diabetic rats. Phytother Res. 2013;27:330-7.<br />
[62] Premkumar K, Abraham SK, Santhiya S, Ramesh A. Protective effects of saffron (<i>Crocus sativus</i> Linn.) on genotoxins-induced oxidative stress in Swiss albino mice. Phytother Res. 2003;17:614-7.<br />
[63] Dzeufiet PDD, Mogueo A, Bilanda DC, Aboubakar B-FO, Tédong L, Dimo T, Kamtchouing P. Antihypertensive potential of the aqueous extract which combine leaf of <i>Persea americana</i> Mill. (Lauraceae), stems and leaf of <i>Cymbopogon citratus</i> (DC) Stapf. (Poaceae), fruits of <i>Citrus medical</i> L. (Rutaceae) as well as honey in ethanol and sucrose experimental model. BMC Complement Altern Med. 2014;14:1-12.<br />
[64] El-Beshbishy HA, Hassan MH, Aly HA, Doghish AS, Alghaithy AA. Crocin “saffron” protects against beryllium chloride toxicity in rats through diminution of oxidative stress and enhancing gene of antioxidant enzymes. Ecotoxicol Environ Saf. 2012;83:47-54.<br />
[65] Bharti S, Golechha M, Kumari S, Siddiqui KM, Arya DS. Akt/GSK-3β/eNOS phosphorylation arbitrates safranal-induced myocardial protection against ischemia-reperfusion injury in rats. Eur J Nutr. 2012;51:719-27.<br />
[66] Doh KC, Lim SW, Piao SG, Jin L, Heo SB, Zheng YF, Bae SK, Hwang GH, Min KI, Chung BH. Ginseng treatment attenuates chronic cyclosporine nephropathy via reducing oxidative stress in an experimental mouse model. Am J Nephrol. 2013;37:421-33.<br />
[67] Wang Y, Liu Y, Zhang X-Y, Xu L-H, Ouyang D-Y, Liu K-P, Pan H, He J, He X-H. Ginsenoside Rg1 regulates innate immune responses in macrophages through differentially modulating the NF-κB and PI3K/Akt/mTOR pathways. Int Immunopharmacol. 2014;23:77-84.<br />
[68] Qian Q, Qian S, Fan P, Huo D, Wang S. Effect of <i>Salvia miltiorrhiza</i> hydrophilic extract on antioxidant enzymes in diabetic patients with chronic heart disease: a randomized controlled trial. Phytother Res. 2012;26:60-6.<br />
[69] Hedhli N, Kalinowski A, Russell SK. Cardiovascular effects of neuregulin-1/ErbB signaling: role in vascular signaling and angiogenesis. Curr Pharm Design. 2014;20:4899-905.<br />
[70] Xagorari A, Papapetropoulos A, Mauromatis A, Economou M, Fotsis T, Roussos C. Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. J Pharmacol Exp Ther. 2001;296:181-7.<br />
[71] Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, Damanhouri ZA, Sim?es DM, Malheiros J, Antunes PE, Figueirinha A, Cotrim MD, Fonseca DA. Vascular activity of infusion and fractions of Cymbopogon citratus (DC) Stapf. in human arteries. J Ethnopharmacol. 2020;258:112947.<br />
[72] Bastos JF, Moreira íJ, Ribeiro TP, Medeiros IA, Antoniolli AR, De Sousa DP, Santos MR. Hypotensive and vasorelaxant effects of citronellol, a monoterpene alcohol, in rats. Basic Clin Pharmacol Toxicol. 2010;106:331-7.<br />
[73] Liang Y-C, Yang M-T, Lin C-J, Chang CL-T, Yang W-C. <i>Bidens pilosa</i> and its active compound inhibit adipogenesis and lipid accumulation via down-modulation of the C/EBP and PPARγ pathways. Sci Rep. 2016;6:24285.<br />
[74] Chiang YM, Lo CP, Chen YP, Wang SY, Yang NS, Kuo YH, Shyur LF. Ethyl caffeate suppresses NF-κB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. Br J Pharmacol. 2005;146:352-63.<br />
[75] Jayakumar T, Hsieh C, Lee JJ, Sheu JR. Experimental and clinical pharmacology of <i>Andrographis paniculata</i> and its major bioactive phytoconstituent andrographolide. Evid Based Complement Alrtern Med. 2013;2013:846740.<br />
[76] Zhang C, Tan B. Hypotensive activity of aqueous extract of <i>Andrographis paniculata</i> in rats. Clin Exp Pharmacol Physiol. 1996;23:675-8.<br />
[77] Das S, Periyasamy R, Pandey KN. Activation of IKK/NF-κB provokes renal inflammatory responses in guanylyl cyclase/natriuretic peptide receptor-A gene-knockout mice. Physiol Genomics. 2012;44:430-42.<br />
[78] Shin S-G, Kim JY, Chung HY, Jeong J-C. Zingerone as an antioxidant against peroxynitrite. J Agric Food Chem. 2005;53:7617-22.<br />
[79] Mao Q-Q, Xu X-Y, Cao S-Y, Gan R-Y, Corke H, Beta T, Li H-B. Bioactive compounds and bioactivities of ginger (<i>Zingiber officinale</i> Roscoe). Foods. 2019;8:185.<br />
[80] Ried K, Frank OR, Stocks NP. Aged garlic extract lowers blood pressure in patients with treated but uncontrolled hypertension: a randomised controlled trial. Maturitas. 2010;67:144-50.<br />
[81] Ried K, Frank O, Stocks N. Aged garlic extract reduces blood pressure in hypertensives: a dose-response trial. Eur J Clin Nutr. 2013;67:64-70.<br />
[82] Ashraf R, Khan RA, Ashraf I, Qureshi AA. Effects of <i>Allium sativum</i> (garlic) on systolic and diastolic blood pressure in patients with essential hypertension. Pak J Pharm Sci. 2013;26:859.<br />
[83] Hodgson JM, Puddey IB, Burke V, Beilin LJ, Jordan N. Effects on blood pressure of drinking green and black tea. J Hypertens. 1999;17:457-63.<br />
[84] Bogdanski P, Suliburska J, Szulinska M, Stepien M, Pupek-Musialik D, Jablecka A. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res. 2012;32:421-7.<br />
[85] Hodgson JM, Puddey IB, Woodman RJ, Mulder TP, Fuchs D, Scott K, Croft KD. Effects of black tea on blood pressure: a randomized controlled trial. Arch Intern Med. 2012;172:186-8.<br />
[86] Anselm E, Socorro VFM, Dal-Ros S, Schott C, Bronner C, Schini-Kerth VB. Crataegus special extract WS 1442 causes endothelium-dependent relaxation via a redox-sensitive Src-and Akt-dependent activation of endothelial NO synthase but not via activation of estrogen receptors. J Cardiovasc Pharmacol. 2009;53:253-60.<br />
[87] Imenshahidi M, Hosseinzadeh H, Javadpour Y. Hypotensive effect of aqueous saffron extract (<i>Crocus sativus</i> L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother Res. 2010;24:990-4.<br />
[88] Boskabady M, Shafei M, Shakiba A, Sefidi HS. Effect of aqueous-ethanol extract from <i>Crocus sativus</i> (saffron) on guinea-pig isolated heart. Phytother Res. 2008;22:330-4.<br />
[89] Dehkordi FR, Kamkhah AF. Antihypertensive effect of <i>Nigella sativa</i> seed extract in patients with mild hypertension. Fundam Clin Pharmacol. 2008;22:447-52.<br />
[90] Wang B-Q. <i>Salvia miltiorrhiza</i>: chemical and pharmacological review of a medicinal plant. J Med Plants Res. 2010;4:2813-20.<br />
[91] Woo K, Yip TW, Chook P, Kwong S, Szeto C, Li JK, Yu AW, Cheng WK, Chan TY, Fung K. Cardiovascular protective effects of adjunctive alternative medicine (<i>Salvia miltiorrhiza</i> and <i>Pueraria lobata</i>) in high-risk hypertension. Evid Based Complement Altern Med. 2013;2013:132912.<br />
[92] Jovanovski E, Bateman EA, Bhardwaj J, Fairgrieve C, Mucalo I, Jenkins AL, Vuksan V. Effect of Rg3-enriched Korean red ginseng (<i>Panax ginseng</i>) on arterial stiffness and blood pressure in healthy individuals: a randomized controlled trial. J Am Soc Hypertens. 2014;8:537-41.<br />
[93] Londhe V, Gavasane A, Nipate S, Bandawane D, Chaudhari P. Role of garlic (<i>Allium sativum</i>) in various diseases: an overview. Angiogenesis. 2011;12:129-34.<br />
[94] Ried K, Frank OR, Stocks NP, Fakler P, Sullivan T. Effect of garlic on blood pressure: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2008;8:1-12.<br />
[95] Dhawan V, Jain S. Garlic supplementation prevents oxidative DNA damage in essential hypertension. Mol Cell Biochem. 2005;275:85-94.<br />
[96] Augusti K. Therapeutic values of onion (<i>Allium cepa</i> L.) and garlic (<i>Allium sativum</i> L.). Indian J Exp Biols. 1996;34:634-40.<br />
[97] Kooti W, Ali-Akbari S, Asadi-Samani M, Ghadery H, Ashtary-Larky D. A review on medicinal plant of <i>Apium graveolens</i>. Adv Herb Med. 2015;1:48-59.<br />
[98] Somanadhan B, Varughese G, Palpu P, Sreedharan R, Gudiksen L, Smitt UW, Nyman U. An ethnopharmacological survey for potential angiotensin converting enzyme inhibitors from Indian medicinal plants. J Ethnopharmacol. 1999;65:103-12.<br />
[99] Gharooni M, Sarkarati A. Application of <i>Apium graveolens</i> in treatment of hypertension. Tehran Univ Med J. 2000;58:67-9.<br />
[100] Simpson D. Buchu—South Africa’s amazing herbal remedy. Scott Med J. 1998;43:189-91.<br />
[101] Kavitha C, Rajamani K, Vadivel E. <i>Coleus forskohlii</i>: a comprehensive review on morphology, phytochemistry and pharmacological aspects. J Med Plants Res. 2010;4:278-85.<br />
[102] Dubey M, Srimal R, Nityanand S, Dhawan B. Pharmacological studies on coleonol, a hypotensive diterpene from <i>Coleus forskohlii</i>. J Ethnopharmacol. 1981;3:1-13.<br />
[103] Mashour NH, Lin GI, Frishman WH. Herbal medicine for the treatment of cardiovascular disease: clinical considerations. Arch Intern Med. 1998;158:2225-34.<br />
[104] Bensky D, Barolet R. Chinese herbal medicine: formulas and strategies. Seattle: Eastland Press; 1990.<br />
[105] Brixius K, Willms S, Napp A, Tossios P, Ladage D, Bloch W, Mehlhorn U, Schwinger RH. Crataegus special extract WS<sup>?</sup> 1442 induces an endothelium-dependent, NO-mediated vasorelaxation via eNOS-phosphorylation at serine 1177. Cardiovasc Drugs Ther. 2006;20:177-84.<br />
[106] Schüssler M, H?lzl J, Fricke U. Myocardial effects of flavonoids from Crataegus species. Arzneimittelforschung. 1995;45:842-5.<br />
[107] Fikselová M, ?ilhár S, Mare?ek J, Fran?áková H. Extraction of carrot (<i>Daucus carota</i> L.) carotenes under different conditions. Czech J Food Sci. 2008;26:268-74.<br />
[108] Gilani A, Shaheen F, Saeed S, Bibi S, Sadiq M, Faizi S. Hypotensive action of coumarin glycosides from Daucus carota. Phytomedicine. 2000;7:423-6.<br />
[109] Fu H-W, Zhang L, Yi T, Feng Y-L, Tian J-K. Two new guaiane-type sesquiterpenoids from the fruits of <i>Daucus carota</i> L. Fitoterapia. 2010;81:443-6.<br />
[110] Surbhi S, Verma R, Deepak R, Jain H, Yadav K. A review: Food, chemical composition and utilization of carrot (<i>Daucus carota</i> L.) pomace. Int J Chem Stud. 2018;6:2921-6.<br />
[111] Hansen K, Nyman U, Smitt UW, Adsersen A, Gudiksen L, Rajasekharan S, Pushpangadan P. In vitro screening of traditional medicines for anti-hypertensive effect based on inhibition of the angiotensin converting enzyme (ACE). J Ethnopharmacol. 1995;48:43-51.<br />
[112] Mi J, Duan J, Zhang J, Lu J, Wang H, Wang Z. Evaluation of antiurolithic effect and the possible mechanisms of <i>Desmodium styracifolium</i> and <i>Pyrrosiae petiolosa</i> in rats. Urol Res. 2012;40:151-61.<br />
[113] Pinela J, Barros L, Carvalho AM, Ferreira IC. Nutritional composition and antioxidant activity of four tomato (<i>Lycopersicon esculentum</i> L.) farmer’varieties in Northeastern Portugal homegardens. Food Chem Toxicol. 2012;50:829-34.<br />
[114] Engelhard YN, Gazer B, Paran E. Natural antioxidants from tomato extract reduce blood pressure in patients with grade-1 hypertension: a double-blind, placebo-controlled pilot study. Am Heart J. 2006;151:100.<br />
[115] Paran E, Novack V, Engelhard YN, Hazan-Halevy I. The effects of natural antioxidants from tomato extract in treated but uncontrolled hypertensive patients. Cardiovasc Drugs Ther. 2009;23:145-51.<br />
[116] Pereira BL, Arruda FC, Reis PP, Felix TF, Santos PP, Rafacho BP, Gon?alves AF, Claro RT, Azevedo PS, Polegato BF. Tomato (<i>Lycopersicon esculentum</i>) supplementation induces changes in cardiac miRNA , reduces oxidative stress and left ventricular mass, and improves diastolic function. Nutrients. 2015;7:9640-9.<br />
[117] Iravani S, Zolfaghari B. Pharmaceutical and nutraceutical effects of <i>Pinus pinaster</i> bark extract. Res Pharm Sci. 2011;6:1.<br />
[118] Liu X, Wei J, Tan F, Zhou S, Würthwein G, Rohdewald P. Pycnogenol<sup>?</sup>, French maritime pine bark extract, improves endothelial function of hypertensive patients. Life Sci. 2004;74:855-62.<br />
[119] Hosseini S, Lee J, Sepulveda RT, Rohdewald P, Watson RR. A randomized, double-blind, placebo-controlled, prospective, 16 week crossover study to determine the role of Pycnogenol in modifying blood pressure in mildly hypertensive patients. Nutr Res. 2001;21:1251-60.<br />
[120] Shaygannia E, Bahmani M, Zamanzad B, Rafieian-Kopaei M. A review study on <i>Punica granatum</i> L. J Evid Based Complement Altern Med. 2016;21:221-7.<br />
[121] Chalé FGH, Ruiz JCR, Fernández JJA, Ancona DAB, Campos MRS. ACE inhibitory, hypotensive and antioxidant peptide fractions from <i>Mucuna pruriens</i> proteins. Process Biochem. 2014;49:1691-8.<br />
[122] Aviram M, Dornfeld L. Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure. Atherosclerosis. 2001;158:195-8.<br />
[123] Banihani SA. Radish (<i>Raphanus sativus</i>) and diabetes. Nutrients. 2017;9:1014.<br />
[124] Ghayur MN, Gilani AH. Radish seed extract mediates its cardiovascular inhibitory effects via muscarinic receptor activation. Fundam Clin Pharmacol. 2006;20:57-63.<br />
[125] Gutiérrez RMP, Perez RL. <i>Raphanus sativus</i> (Radish): their chemistry and biology. Sci World J. 2004;4:811.<br />
[126] Ajagbonna O, Adegunloye B, Sofola O. Relaxant effects of isolated rat aorta by <i>Rhaptopetalum coriaceum</i> bark extract. J Herbs Spices Med Plants. 1998;6:37-42.<br />
[127] Ajagbonna O, Oneyeyili P. Effects of ethanol extract of <i>Rhaptopetalum coriaceum</i> Oliv. stem bark on mean arterial pressure and heart rate in rats. Nig J Exp Clin Anal. 2002;2:30-3.<br />
[128] Nakano D, Itoh C, Takaoka M, Kiso Y, Tanaka T, Matsumura Y. Antihypertensive effect of sesamin. IV. Inhibition of vascular superoxide production by sesamin. Biol Pharm Bull. 2002;25:1247-9.<br />
[129] Dias MC, Concei??o IL, Abrantes I, Cunha MJ. <i>Solanum sisymbriifolium</i>-a new approach for the management of plant-parasitic nematodes. Eur J Plant Pathol. 2012;133:171-9.<br />
[130] Ibarrola DA, Ibarrola M, Vera C, Montalbetti Y, Ferro E. Hypotensive effect of crude root extract of <i>Solanum sisymbriifolium</i> (Solanaceae) in normo-and hypertensive rats. J Ethnopharmacol. 1996;54:7-12.<br />
[131] Hellión-lbarrola M, Montalbetti Y, Heinichen O, Alvarenga N, Figueredo A, Ferro E. Isolation of hypotensive compounds from <i>Solanum sisymbriifolium</i> Lam. J Ethnopharmacol. 2000;70:301-7.<br />
[132] Bletsos F, Roupakias D, Tsaktsira M, Scaltsoyjannes A, Thanassoulopoulos C. Interspecific hybrids between three eggplant (<i>Solanum melongena</i> L.) cultivars and two wild species (<i>Solanum torvum</i> Sw. and <i>Solanum sisymbriifolium</i> Lam). Plant Breeding. 1998;117:159-64.<br />
[133] de Souza PA, Moreira LF, Sarmento DH, da Costa FB. Cacao—Theobroma cacao. In Exotic fruits; Elsevier: 2018; pp. 69-76<br />
[134] Taubert D, Berkels R, Roesen R, Klaus W. Chocolate and blood pressure in elderly individuals with isolated systolic hypertension. JAMA. 2003;290:1029-30.<br />
[135] Rusconi M, Conti A. <i>Theobroma cacao</i> L., the food of the gods: a scientific approach beyond myths and claims. Pharmacol Res. 2010;61:5-13.<br />
[136] Ndagijimana A, Wang X, Pan G, Zhang F, Feng H, Olaleye O. A review on indole alkaloids isolated from <i>Uncaria rhynchophylla</i> and their pharmacological studies. Fitoterapia. 2013;86:35-47.<br />
[137] Amaechina FC, Omogbai EK. Hypotensive effect of aqueous extract of the leaves of <i>Phyllanthus amarus</i> Schum and Thonn (Euphorbiaceae). Acta Pol Pharm. 2007;64:547-52.<br />
[138] Horie S, Koyama F, Takayama H, Ishikawa H, Aimi N, Ponglux D, Matsumoto K, Murayama T. Indole alkaloids of a Thai medicinal herb, <i>Mitragyna speciosa</i>, that has opioid agonistic effect in guinea-pig ileum. Planta Med. 2005;71:231-6.<br />
[139] Endo K, Oshima Y, Kikuchi H, Koshihara Y, Hikino H. Hypotensive principles of Uncaria hooks. Planta Med. 1983;49:188-90.<br />
[140] Yang W, Ip S-P, Liu L, Xian Y-F, Lin Z-X. Uncaria rhynchophylla and its major constituents on central nervous system: a review on their pharmacological actions. Curr Vasc Pharmacol. 2020;18:346-57.<br />
[141] Zuber D. Biological flora of central Europe: <i>Viscum album</i> L. Flora-Morphol Distribut Funct Ecol Plants. 2004;199:181-203.<br />
[142] Tenorio F, Del Valle L, González A, Pastelín G. Vasodilator activity of the aqueous extract of <i>Viscum album</i>. Fitoterapia. 2005;76:204-9.<br />
[143] Ben E, Eno A, Ofem O, Aidem U, Itam E. Increased plasma total cholesterol and high density lipoprotein levels produced by the crude extract from the leaves of <i>Viscum album</i> (mistletoe). Nigerian J Physiol Sci. 2006;21:55-60.<br />
[144] Poruthukaren KJ, Palatty PL, Baliga MS, Suresh S. Clinical evaluation of <i>Viscum album</i> mother tincture as an antihypertensive: a pilot study. J Evid Based Complement Altern Med. 2014;19:31-5. <br />
[145] Dhanik J, Arya N, Nand V. A review on <i>Zingiber officinale</i>. J Pharmacogn Phytochem. 2017;6:174-84.<br />
[146] Fugh-Berman A. Herbs and dietary supplements in the prevention and treatment of cardiovascular disease. Prev Cardiol. 2000;3:24-32.<br />
[147] Ghayur MN, Gilani AH. Ginger lowers blood pressure through blockade of voltage-dependent calcium channels. J Cardiovasc Pharmacol. 2005;45:74-80.<br />
[148] Nicoll R, Henein MY. Ginger (<i>Zingiber officinale</i> Roscoe): a hot remedy for cardiovascular disease? Int J Cardiol. 2009;131:408-9.<br />
[149] Mishra SK, Sangwan NS, Sangwan RS. Phcog rev: plant review <i>Andrographis paniculata</i> (Kalmegh): a review. Pharmacogn Rev. 2007;1:283-98.<br />
[150] Kunwar RM, Shrestha KP, Bussmann RW. Traditional herbal medicine in Far-west Nepal: a pharmacological appraisal. J Ethnobiol Ethnomed. 2010;6:1-18.<br />
[151] Karaki H, Nakagawa H, Urakawa N. Comparative effects of verapamil and sodium nitroprusside on contraction and 45Ca uptake in the smooth muscle of rabbit aorta, rat aorta and guinea-pig taenia coli. Br J Pharmacol. 1984;81:393-400.<br />
[152] Awang K, Abdullah NH, Hadi AHA, Su Fong Y. Cardiovascular activity of labdane diterpenes from <i>Andrographis paniculata</i> in isolated rat hearts. J Biomed Biotechnol. 2012;2012:876458.<br />
[153] Thisoda P, Rangkadilok N, Pholphana N, Worasuttayangkurn L, Ruchirawat S, Satayavivad J. Inhibitory effect of <i>Andrographis paniculata</i> extract and its active diterpenoids on platelet aggregation. Eur J Pharmacol. 2006;553:39-45.<br />
[154] Nyeem MAB, Mannan MA, Nuruzzaman M, Kamrujjaman K, Das SK. Indigenous king of bitter (<i>Andrographis paniculata</i>): a review. J Med Plants Stud. 2017;5:318-24.<br />
[155] Al Disi SS, Anwar MA, Eid AH. Anti-hypertensive herbs and their mechanisms of action: part I. Front Pharmacol. 2016;6:323.<br />
[156] Pereira A, Fraga-Corral M, García-Oliveira P, Jimenez-Lopez C, Louren?o-Lopes C, Carpena M, Otero P, Gullón P, Prieto M, Simal-Gandara J. Culinary and nutritional value of edible wild plants from northern Spain rich in phenolic compounds with potential health benefits. Food Funct. 2020;11:8493-515.<br />
[157] Tabassum N, Ahmad F. Department of Pharmaceutical Sciences, University of Kashmire, Hazratbal, Srinager, J&K-190 006, India. Role of natural herbs in the treatment of hypertension. Pharmacogn Rev. 2011;5:30-40.<br />
[158] Lima Silva F, Fischer DCH, Fechine Tavares J, Sobral Silva M, Filgueiras de Athayde-Filho P, Barbosa-Filho JM. Compilation of secondary metabolites from <i>Bidens pilosa</i> L. Molecules. 2011;16:1070-102.<br />
[159] Bartolome A, Villase?or I, Yang WC. <i>Bidens pilosa</i> L. (Asteraceae): botanical properties, traditional uses, phytochemistry and pharmacology. Evid Based Complement Altern Med. 2013;2013:340215.<br />
[160] Kviecinski MR, Felipe KB, Correia JG, Ferreira EA, Rossi MH, de Moura Gatti F, Pedrosa RC. Brazilian <i>Bidens pilosa</i> Linné yields fraction containing quercetin-derived flavonoid with free radical scavenger activity and hepatoprotective effects. Libyan J Med. 2011;6:5651.<br />
[161] Bilanda D, Dzeufiet P, Kouakep L, Aboubakar BF, Tedong L, Kamtchouing P, Dimo T. <i>Bidens Pilosa</i>.<br />
[162] Dimo T, Rakotonirina SV, Tan PV, Azay J, Dongo E, Cros G. Leaf methanol extract of <i>Bidens pilosa</i> prevents and attenuates the hypertension induced by high-fructose diet in Wistar rats. J Ethnopharmacol. 2002;83:183-91.<br />
[163] Dimo T, Nguelefack T, Tan P, Yewah M, Dongo E, Rakotonirina S, Kamanyi A, Bopelet M. Possible mechanisms of action of the neutral extract from <i>Bidens pilosa</i> L. leaves on the cardiovascular system of anaesthetized rats. Phytother Res. 2003;17:1135-9.<br />
[164] Yang H-L, Chen S-C, Chang N-W, Chang J-M, Lee M-L, Tsai P-C, Fu H-H, Kao W-W, Chiang H-C, Wang H-H. Protection from oxidative damage using <i>Bidens pilosa</i> extracts in normal human erythrocytes. Food Chem Toxicol. 2006;44:1513-21.<br />
[165] Parveen G, Ali M. Extraction isolation and phytochemical screening of leaves and stems of <i>Bidens pilosa</i> and evaluation of antifungal potential of extracts. J Pharm Biol Sci. 2019;14:73-85.<br />
[166] Dimo T, Azay J, Tan PV, Pellecuer J, Cros G, Bopelet M, Serrano JJ. Effects of the aqueous and methylene chloride extracts of <i>Bidens pilosa</i> leaf on fructose-hypertensive rats. J Ethnopharmacol. 2001;76:215-21.<br />
[167] Nguelefack T, Dimo T, Mbuyo EN, Tan P, Rakotonirina S, Kamanyi A. Relaxant effects of the neutral extract of the leaves of <i>Bidens pilosa</i> Linn on isolated rat vascular smooth muscle. Phytother Res. 2005;19:207-10.<br />
[168] Namita P, Mukesh R, Vijay KJ. <i>Camellia sinensis</i> (green tea): a review. Glob J Pharmacol. 2012;6:52-9.<br />
[169] Deka A, Vita JA. Tea and cardiovascular disease. Pharmacol Res. 2011;64:136-45.<br />
[170] Oyama J-I, Maeda T, Kouzuma K, Ochiai R, Tokimitsu I, Higuchi Y, Sugano M, Makino N. Green tea catechins improve human forearm endothelial dysfunction and have antiatherosclerotic effects in smokers. Circ J. 2010;74:578-88.<br />
[171] Hong MH, Kim MH, Chang HJ, Kim NH, Shin BA, Ahn BW, Jung YD. (-)-Epigallocatechin-3-gallate inhibits monocyte chemotactic protein-1 in endothelial cells via blocking NF-κB signaling. Life Sci. 2007;80:1957-65.<br />
[172] Peng X, Zhou R, Wang B, Yu X, Yang X, Liu K, Mi M. Effect of green tea consumption on blood pressure: a meta-analysis of 13 randomized controlled trials. Sci Rep. 2014;4:6251.<br />
[173] Zhang L, Ho CT, Zhou J, Santos JS, Armstrong L, Granato D. Chemistry and biological activities of processed <i>Camellia sinensis</i> teas: a comprehensive review. Compr Rev Food Sci Food Saf. 2019;18:1474-95.<br />
[174] San Cheang W, Yuen Ngai C, Yen Tam Y, Yu Tian X, Tak Wong W, Zhang Y, Wai Lau C, Chen ZY, Bian Z-X, Huang Y. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress. Sci Rep. 2015;5:10340.<br />
[175] Bagade A, Tumbigeremutt V, Pallavi G. Cardiovascular effects of berberine: a review of the literature. J Restorat Med. 2017;6:37.<br />
[176] Basati G, Mehrabi Rad F, Momeni Safarabadi A, Shakib P, Sedighi M, Cheraghi M. An overview of the most important medicinal plants that affect hypertension and their antihypertensive mechanism. J Med Plants and By-product. 2021;10:1-8.<br />
[177] Tassell MC, Kingston R, Gilroy D, Lehane M, Furey A. Hawthorn (<i>Crataegus</i> spp.) in the treatment of cardiovascular disease. Pharmacogn Rev. 2010;4:32.<br />
[178] Walker AF, Marakis G, Morris AP, Robinson PA. Promising hypotensive effect of hawthorn extract: a randomized double-blind pilot study of mild, essential hypertension. Phytother Res. 2002;16:48-54.<br />
[179] Bone K, Mills S. Principles and practice of phytotherapy, modern herbal medicine. Elsevier Health Sciences. Churchill Livingstone, Edinburgh. 2013.<br />
[180] Cui X, Liu X, Feng H, Zhao S, Gao H. Grape seed proanthocyanidin extracts enhance endothelial nitric oxide synthase through 5'-AMP activated protein kinase/Surtuin 1-Krüpple like factor 2 pathway and modulate blood pressure in ouabain induced hypertensive rats. Biol Pharm Bull. 2012;35:2192-7.<br />
[181] Negi P, Singh R, Dwivedi S. Evaluation of antihypertensive effect of fruit beverage of <i>Crataegus crenulata</i> Roxb.: a wild shrub of Himalayan hills. Defence Life Sci J. 2018;3:146-50.<br />
[182] Ghaffari S, Roshanravan N. Saffron; an updated review on biological properties with special focus on cardiovascular effects. Biomed Pharmacother. 2019;109:21-7.<br />
[183] Ekpenyong CE, Akpan EE, Daniel NE. Phytochemical constituents, therapeutic applications and toxicological profile of <i>Cymbopogon citratus</i> Stapf (DC) leaf extract. J Pharmacogn Phytochem. 2014;3:133-41.<br />
[184] Devi RC, Sim SM, Ismail R. Effect of <i>Cymbopogon citratus</i> and citral on vascular smooth muscle of the isolated thoracic rat aorta. Evid Based Complement Altern Med. 2012;2012:539475.<br />
[185] Nambiar VS, Matela H. Potential functions of lemon grass (<i>Cymbopogon citratus</i>) in health and disease. Int J Pharm Biol Arch. 2012;3:1035-43.<br />
[186] Carbajal D, Casaco A, Arruzazabala L, Gonzalez R, Tolon Z. Pharmacological study of <i>Cymbopogon citratus</i> leaves. J Ethnopharmacol. 1989;25:103-7.<br />
[187] Ali B, Blunden G. Pharmacological and toxicological properties of <i>Nigella sativa</i>. Phytother Res. 2003;17:299-305.<br />
[188] Amin B, Hosseinzadeh H. Black cumin (<i>Nigella sativa</i>) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Med. 2015;82:8-16.<br />
[189] Khater HF, Ziam H, Abbas A, Abbas RZ, Raza MA, Hussain K, Younis E, Radwan I, Selim A. Avian coccidiosis: recent advances in alternative control strategies and vaccine development. Agrobiol Rec. 2020;1:11-25.<br />
[190] Jaarin K, Foong WD, Yeoh MH, Kamarul ZYN, Qodriyah HMS, Azman A, Zuhair JSF, Juliana AH, Kamisah Y. Mechanisms of the antihypertensive effects of <i>Nigella sativa</i> oil in L-NAME-induced hypertensive rats. Clinics. 2015;70:751-7.<br />
[191] Hussain DA, Hussain MM. Nigella sativa (black seed) is an effective herbal remedy for every disease except death-a Prophetic statement which modern scientists confirm unanimously: a review. Adv Med Plant Res. 2016;4:27-57.<br />
[192] Musharraf HM, Arman MSI. Prophetic medicine is the cheapest, safest and the best remedy in the prevention and treatment of hypertension (high blood pressure)-a mini review. Int J Mol Biol. 2018;3:245-50.<br />
[193] Fallah Huseini H, Amini M, Mohtashami R, Ghamarchehre M, Sadeqhi Z, Kianbakht S, Fallah Huseini A. Blood pressure lowering effect of <i>Nigella sativa</i> L. seed oil in healthy volunteers: a randomized, double-blind, placebo-controlled clinical trial. Phytother Res. 2013;27:1849-53.<br />
[194] Kundu JK, Liu L, Shin J-W, Surh Y-J. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and of COX-2, and induces of cytoprotective enzymes in mouse skin in vivo. Biochem Biophys Res Commun. 2013;438:721-7.<br />
[195] Coon JT, Ernst E. <i>Panax ginseng</i>. Drug Saf. 2002;25:323-44.<br />
[196] Kim J-H. Pharmacological and medical applications of <i>Panax ginseng</i> and ginsenosides: a review for use in cardiovascular diseases. J Ginseng Res. 2018;42:264-9.<br />
[197] Kim JD, C. Cardiovascular diseases and <i>Panax ginseng</i>: a review on molecular mechanisms and medical applications. J Ginseng Res. 2012;36:16-26.<br />
[198] Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean <i>Panax ginseng</i> CA Meyer. Acta Pharmacol Sin. 2008;29:1109-18.<br />
[199] Mucalo I, Jovanovski E, Raheli? D, Bo?ikov V, Romi? ?, Vuksan V. Effect of American ginseng (<i>Panax quinquefolius</i> L.) on arterial stiffness in subjects with type-2 diabetes and concomitant hypertension. J Ethnopharmacol. 2013;150:148-53.<br />
[200] Lee KH, Bae IY, Park SI, Park J-D, Lee HG. Antihypertensive effect of Korean Red Ginseng by enrichment of ginsenoside Rg3 and arginine-fructose. J Ginseng Res. 2016;40:237-44.<br />
[201] Kim E-Y, Jho H-K, Kim D-I, Rhyu MR. <i>Cirsium japonicum</i> elicits endothelium-dependent relaxation via histamine H1-receptor in rat thoracic aorta. J Ethnopharmacol. 2008;116:223-7.<br />
[202] Wang S-P, Zang W-J, Kong S-S, Yu X-J, Sun L, Zhao X-F, Wang S-X, Zheng X-H. Vasorelaxant effect of isopropyl 3-(3, 4-dihydroxyphenyl)-2-hydroxypropanoate, a novel metabolite from <i>Salvia miltiorrhiza</i>, on isolated rat mesenteric artery. Eur J Pharmacol. 2008;579:283-8.<br />
[203] Yang L, Zou X, Liang Q, Chen H, Feng J, Yan L, Wang Z, Zhou D, Li S, Yao S. Sodium tanshinone IIA sulfonate depresses angiotensin II-induced cardiomyocyte hypertrophy through MEK/ERK pathway. Exp Mol Med. 2007;39:65-73.<br />
[204] Kwan YW, To KW, Lau WM, Tsang SH. Comparison of the vascular relaxant effects of ATP-dependent K+ channel openers on aorta and pulmonary artery isolated from spontaneously hypertensive and Wistar-Kyoto rats. Eur J Pharmacol. 1999;365:241-51.<br />
[205] Yang TY, Wei JCC, Lee MY, Chen CB, Ueng KC. A randomized, double-blind, placebo-controlled study to evaluate the efficacy and tolerability of Fufang Danshen (<i>Salvia miltiorrhiza</i>) as add-on antihypertensive therapy in Taiwanese patients with uncontrolled hypertension. Phytother Res. 2012;26:291-8.<br />
[206] Zhang J, An SJ, Fu JQ, Liu P, Shao TM, Li M, Li X, Jiao Z, Chai XQ. Mixed aqueous extract of <i>Salvia miltiorrhiza</i> reduces blood pressure through inhibition of vascular remodelling and oxidative stress in spontaneously hypertensive rats. Cell Physiol Biochem. 2016;40:347-60.<br />
[207] Lin T-H, Hsieh C-L. Pharmacological effects of <i>Salvia miltiorrhiza</i> (Danshen) on cerebral infarction. Chin Med. 2010;5:1-6.<br />
[208] Wang L, Ma R, Liu C, Liu H, Zhu R, Guo S, Tang M, Li Y, Niu J, Fu M. <i>Salvia miltiorrhiza</i>: a potential red light to the development of cardiovascular diseases. Curr Pharm Des. 2017;23:1077-97.<br />
[209] Hou G, Jiang Y, Zheng Y, Zhao M, Chen Y, Ren Y, Wang C, Li W. Mechanism of radix astragali and radix salviae miltiorrhizae ameliorates hypertensive renal damage. BioMed Res Int. 2021;2021:5598351.<br />
[210] Vakil RJ. Rauwolfia serpentina in the treatment of high blood pressure: a review of the literature. Circulation. 1955;12:220-9.<br />
[211] Lobay D. Rauwolfia in the treatment of hypertension. Integr Med. 2015;14:40.<br />
[212] Kiran K, Priya AJ, Devi RG. Medicinal and therapeutic uses of <i>Rauwolfia serpentina</i>-Indian snakeroot. Drug Invention Today 2018, 10.<br />
[213] Soni R, Jaiswal S, Bara JK, Saksena P. The use of <i>Rauwolfia serpentina</i> in hypertensive patients. J Biotechnol Biochem. 2016;2:28-32.<br />
[214] Hedgecock T, Phillips A, Ludrick B, Golden T, Wu N. Molecular mechanisms and applications of a reserpine-induced rodent model. SSR Inst Int J Life Sci. 2019;5:2160.<br />
[215] Schlepper M, Thormann J, Mitrovic V. Cardiovascular effects of forskolin and phosphodiesterase-III inhibitors. Inotropic Stimulation and myocardial energetics. 1989, 197-212.<br />
[216] Den Hertog A, Pielkenrood J, Van Den Akker J. The effect of forskolin on smooth muscle cells of guinea-pig taenia caeci. Eur J Pharmacol. 1984;106:181-4.<br />
[217] Lincoln TM, Fisher-Simpson V. A comparison of the effects of forskolin and nitroprusside on cyclic nucleotides and relaxation in the rat aorta. Eur J Pharmacol. 1984;101:17-27.<br />
[218] Geuns JM. Stevioside. Phytochemistry. 2003;64:913-21.<br />
[219] Chan P, Xu D-Y, Liu J-C, Chen Y-J, Tomlinson B, Huang W-P, Cheng J-T. The effect of stevioside on blood pressure and plasma catecholamines in spontaneously hypertensive rats. Life Sci. 1998;63:1679-84.<br />
[220] Ferri LA, Alves-Do-Prado W, Yamada SS, Gazola S, Batista MR, Bazotte RB. Investigation of the antihypertensive effect of oral crude stevioside in patients with mild essential hypertension. Phytother Res. 2006;20:732-6.<br />
[221] Liu J-C, Kao P-K, Chan P, Hsu Y-H, Hou C-C, Lien G-S, Hsieh M-H, Chen Y-J, Cheng J-T. Mechanism of the antihypertensive effect of stevioside in anesthetized dogs. Pharmacology. 2003;67:14-20.<br />
[222] Lam KY, Ling APK, Koh RY, Wong YP, Say YH. A review on medicinal properties of orientin. Adv Pharmacol Sci. 2016;2016:4104595.<br />
[223] Ren-Ren B, Xiao-Ming W, Jin-Yi X. Current natural products with antihypertensive activity. Chin J Nat Med. 2015;13:721-9.<br />
[224] Fu X-C, Wang M-W, Li S-P, Zhang Y, Wang H-L. Vasodilatation produced by orientin and its mechanism study. Biol Pharm Bull. 2005;28:37-41.<br />
[225] Mali VR, Mohan V, Bodhankar SL. Antihypertensive and cardioprotective effects of the <i>Lagenaria siceraria</i> fruit in N G-nitro-L-arginine methyl ester (L-NAME) induced hypertensive rats. Pharm Biol. 2012;50:1428-35.<br />
[226] Nikonov G, Manaeva ZA, Pek GY. Ostruthol from <i>Xanthogallum purpurascens</i>. Chem Nat Compd. 1966;2:295-6.<br />
[227] Patil AD, Freyer AJ, Breen A, Carte B, Johnson RK. Halistanol disulfate B, a novel sulfated sterol from the sponge <i>Pachastrella</i> sp.: inhibitor of endothelin converting enzyme. J Nat Prods. 1996;59:606-8.<br />
[228] Cao Y, Xie L, Liu K, Liang Y, Dai X, Wang X, Lu J, Zhang X, Li X. The antihypertensive potential of flavonoids from Chinese Herbal Medicine: a review. Pharmacol Res. 2021;174: 105919.<br />
[229] Maaliki D, Shaito AA, Pintus G, El-Yazbi A, Eid AH. Flavonoids in hypertension: a brief review of the underlying mechanisms. Curr Opin Pharmacol. 2019;45:57-65.<br />
[230] Grosso G, Godos J, Currenti W, Micek A, Falzone L, Libra M, Giampieri F, Forbes-Hernández TY, Quiles JL, Battino M. The effect of dietary polyphenols on vascular health and hypertension: current evidence and mechanisms of action. Nutrients. 2022;14:545.<br />
[231] Hügel HM, Jackson N, May B, Zhang AL, Xue CC. Polyphenol protection and treatment of hypertension. Phytomedicine. 2016;23:220-31.<br />
[232] Yang J, Li Y, Zhou H. Protective effect of total alkaloids from Uncariae Ramulus cum uncis combined with Raphani Semen on vascular endothelial cell injury by hypertension. Chin Tradit Patent Med. 2013;35:15-9.<br />
[233] Huachen J, Yunlun L, Yuehua J, Dongmei Q, Tao H, Haiqiang J. The effect and mechanism of component compatibility of rhynchophylla total alkaloids and sinapine cyanide sulfonate on change of vascular endothelial cells. Editor Off Chin J Arterioscler. 2013;21:397-403.<br />
[234] Khan H, Amin S. ACE inhibition of plant alkaloids targeted approach for selective inhibition. Mini-Rev Org Chem. 2017;14:85-9.<br />
[235] Santos PCJL, Krieger JE, Pereira AC. Renin-angiotensin system, hypertension, and chronic kidney disease: pharmacogenetic implications. J Pharmacol Sci. 2012;120:77-88.<br />
[236] Wong ZW, Thanikachalam PV, Ramamurthy S. Molecular understanding of the protective role of natural products on isoproterenol-induced myocardial infarction: a review. Biomed Pharmacother. 2017;94:1145-66.<br />
[237] Yeo HY, Kim OY, Lim HH, Kim JY, Lee JH. Association of serum lycopene and brachial-ankle pulse wave velocity with metabolic syndrome. Metabolism. 2011;60:537-43.<br />
[238] Abdelrahman IA, Ahad A, Raish M, Jardan YAB, Alam MA, Al-Jenoobi FI. Cinnamon modulates the pharmacodynamic & pharmacokinetic of amlodipine in hypertensive rats. Saudi Pharm J. 2023;31: 101737.<br />
[239] Preuss HG, Echard B, Polansky MM, Anderson R. Whole cinnamon and aqueous extracts ameliorate sucrose-induced blood pressure elevations in spontaneously hypertensive rats. J Am Coll Nutr. 2006;25:144-50.<br />
[240] Shouk R, Abdou A, Shetty K, Sarkar D, Eid AH. Mechanisms underlying the antihypertensive effects of garlic bioactives. Nutr Res. 2014;34:106-15.<br />
[241] Al-Qattan KK, Thomson M, Al-Mutawa’a S, Al-Hajeri D, Drobiova H, Ali M. Nitric oxide mediates the blood-pressure lowering effect of garlic in the rat two-kidney, one-clip model of hypertension. J Nutr. 2006;136:774S-776S.<br />
[242] Ginter E, Simko V. Garlic (<i>Allium sativum</i> L.) and cardiovascular diseases. Bratisl Lek Listy. 2010;111:452-6.<br />
[243] Ashraf MZ, Hussain M, Fahim M. Antiatherosclerotic effects of dietary supplementations of garlic and turmeric: restoration of endothelial function in rats. Life Sci. 2005;77:837-57.<br />
[244] Cabo J, Alonso R, Mata P. Omega-3 fatty acids and blood pressure. Br J Nutr. 2012;107:S195-200.<br />
[245] Bercea CI, Cottrell GS, Tamagnini F, McNeish AJ. Omega-3 polyunsaturated fatty acids and hypertension: a review of vasodilatory mechanisms of docosahexaenoic acid and eicosapentaenoic acid. Br J Pharmacol. 2021;178:860-77.<br />
[246] Anjos PJ, Lima AO, Cunha PS, De Sousa DP, Onofre AS, Ribeiro TP, Medeiros IA, Antoniolli ?R, Quintans-Júnior LJ, Santos MR. Cardiovascular effects induced by linalool in normotensive and hypertensive rats. Zeitschrift für Naturforschung C. 2013;68:181-90.<br />
[247] Liang Y, Zhong Y, Li X, Xiao Y, Wu Y, Xie P. Biological evaluation of linalool on the function of blood vessels. Mol Med Rep. 2021;24:1-9.<br />
[248] Pakdeechote P, Prachaney P, Berkban W, Kukongviriyapan U, Kukongviriyapan V, Khrisanapant W, Phirawatthakul Y. Vascular and antioxidant effects of an aqueous mentha cordifolia extract in experimental NG-nitro-L-arginine methyl ester-induced hypertension. Zeitschrift für Naturforschung C. 2014;69:35-45.<br />
[249] Adedapo AD, Ajayi AM, Ekwunife NL, Falayi OO, Oyagbemi A, Omobowale TO, Adedapo AA. Antihypertensive effect of <i>Phragmanthera incana</i> (Schum) Balle on NG-nitro-L-Arginine methyl ester (L-NAME) induced hypertensive rats. J Ethnopharmacol. 2020;257: 112888.<br />
[250] Li Y-X, Wijesekara I, Li Y, Kim S-K. Phlorotannins as bioactive agents from brown algae. Process Biochem. 2011;46:2219-24.<br />
[251] Wijesekara I, Kim S-K. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: prospects in the pharmaceutical industry. Mar Drugs. 2010;8:1080-93.<br />
[252] Wijesekara I, Yoon NY, Kim SK. Phlorotannins from <i>Ecklonia cava</i> (Phaeophyceae): biological activities and potential health benefits. BioFactors. 2010;36:408-14.<br />
[253] Sanjeewa KKA, Kim E-A, Son K-T, Jeon Y-J. Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: a review. J Photochem Photobiol, B. 2016;162:100-5.<br />
[254] Olivares-Molina A, Fernández K. Comparison of different extraction techniques for obtaining extracts from brown seaweeds and their potential effects as angiotensin I-converting enzyme (ACE) inhibitors. J Appl Phycol. 2016;28:1295-302.<br />
[255] Wijesinghe W, Ko S-C, Jeon Y-J. Effect of phlorotannins isolated from <i>Ecklonia cava</i> on angiotensin I-converting enzyme (ACE) inhibitory activity. Nurs Res Pract. 2011;5:93-100.<br />
[256] Jung HA, Hyun SK, Kim HR, Choi JS. Angiotensin-converting enzyme I inhibitory activity of phlorotannins from <i>Ecklonia stolonifera</i>. Fish Sci. 2006;72:1292-9.<br />
[257] Ko S-C, Kang MC, Kang N, Kim H-S, Lee S-H, Ahn G, Jung W-K, Jeon Y-J. Effect of angiotensin I-converting enzyme (ACE) inhibition and nitric oxide (NO) production of 6, 6'-bieckol, a marine algal polyphenol and its anti-hypertensive effect in spontaneously hypertensive rats. Process Biochem. 2017;58:326-32.<br />
[258] Shibata T, Yamaguchi K, Nagayama K, Kawaguchi S, Nakamura T. Inhibitory activity of brown algal phlorotannins against glycosidases from the viscera of the turban shell <i>Turbo cornutus</i>. Eur J Phycol. 2002;37:493-500.<br />
[259] Seca AM, Pinto DC. Overview on the antihypertensive and anti-obesity effects of secondary metabolites from seaweeds. Mar Drugs. 2018;16:237.<br />
[260] Venkatesan J, Keekan KK, Anil S, Bhatnagar I, Kim S-K. Phlorotannins. Encyclopedia of food chemistry; 2019, 515.<br />
[261] Mizrahy S, Peer D. Polysaccharides as building blocks for nanotherapeutics. Chem Soc Rev. 2012;41:2623-40.<br />
[262] Habib GB, Basra SS. Are there any new pharmacologic therapies on the horizon to better treat hypertension? A state-of-the-art paper. J Cardiovasc Pharmacol Ther. 2014;19:516-25.<br />
[263] Planes N, Caballero-George C. Marine and soil derived natural products: a new source of novel cardiovascular protective agents targeting the endothelin system. Planta Med. 2015;81:630-6.<br />
[264] Nasser SA, El-Mas MM. Endothelin ETA receptor antagonism in cardiovascular disease. Eur J Pharmacol. 2014;737:210-3.<br />
[265] Zhu H-B, Geng M-Y, Guan H-S, Zhang J-T. Antihypertensive effects of D-polymannuronic sulfate and its related mechanisms in renovascular hypertensive rats. Acta Pharmacol Sin. 2000;21:727-32.<br />
[266] Sandford PA, Baird J. Industrial utilization of polysaccharides. In: The polysaccharides. Amsterdam: Elsevier; 1983. p. 411-90.<br />
[267] Meisel H, Walsh D, Murray B, FitzGerald R. ACE inhibitory peptides. Nutraceutical proteins and peptides in health and disease 2006, 269-315.<br />
[268] Dicpinigaitis PV. Angiotensin-converting enzyme inhibitor-induced cough: ACCP evidence-based clinical practice guidelines. Chest. 2006;129:169S-173S.<br />
[269] Wu J, Liao W, Udenigwe CC. Revisiting the mechanisms of ACE inhibitory peptides from food proteins. Trends Food Sci Technol. 2017;69:214-9.<br />
[270] ?li?yt? R, Mozuraityt? R, Martínez-Alvarez O, Falch E, Fouchereau-Peron M, Rustad T. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (<i>Gadus morhua</i>) backbones. Process Biochem. 2009;44:668-77.<br />
[271] Zhao Y, Li B, Dong S, Liu Z, Zhao X, Wang J, Zeng M. A novel ACE inhibitory peptide isolated from <i>Acaudina molpadioidea</i> hydrolysate. Peptides. 2009;30:1028-33.<br />
[272] Ahhmed AM, Muguruma M. A review of meat protein hydrolysates and hypertension. Meat Sci. 2010;86:110-8.<br />
[273] Cardoso SM, Pereira OR, Seca AM, Pinto DC, Silva AM. Seaweeds as preventive agents for cardiovascular diseases: from nutrients to functional foods. Mar Drugs. 2015;13:6838-65.<br />
[274] Sato M, Hosokawa T, Yamaguchi T, Nakano T, Muramoto K, Kahara T, Funayama K, Kobayashi A, Nakano T. Angiotensin I-converting enzyme inhibitory peptides derived from wakame (<i>Undaria pinnatifida</i>) and their antihypertensive effect in spontaneously hypertensive rats. J Agric Food Chem. 2002;50:6245-52.<br />
[275] Beaulieu L, Sirois M, Tamigneaux é. Evaluation of the in vitro biological activity of protein hydrolysates of the edible red alga, <i>Palmaria palmata</i> (dulse) harvested from the Gaspe coast and cultivated in tanks. J Appl Phycol. 2016;28:3101-15.<br />
[276] Cian RE, López-Posadas R, Drago SR, De Medina FS, Martínez-Augustin O. A <i>Porphyra columbina</i> hydrolysate upregulates IL-10 production in rat macrophages and lymphocytes through an NF-κB, and p38 and JNK dependent mechanism. Food Chem. 2012;134:1982-90.<br />
[277] Qu W, Ma H, Li W, Pan Z, Owusu J, Venkitasamy C. Performance of coupled enzymatic hydrolysis and membrane separation bioreactor for antihypertensive peptides production from <i>Porphyra yezoensis</i> protein. Process Biochem. 2015;50:245-52.<br />
[278] Jiménez R, Duarte J, Perez-Vizcaino F. Epicatechin: endothelial function and blood pressure. J Agric Food Chem. 2012;60:8823-30.<br />
[279] Perez-Vizcaino F, Duarte J, Jimenez R, Santos-Buelga C, Osuna A. Antihypertensive effects of the flavonoid quercetin. Pharmacol Rep. 2009;61:67-75.<br />
[280] Laurent S. Antihypertensive drugs. Pharmacol Res. 2017;124:116-25.<br />
[281] Rates SMK. Plants as source of drugs. Toxicon. 2001;39:603-13.
[1] Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Warren A. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Leveraging off higher plant phylogenetic insights for antiplasmodial drug discovery[J]. Natural Products and Bioprospecting, 2023, 13(5): 35-35.
[2] Sheena E.B.Tyler, Luke D.K.Tyler. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer’s disease[J]. Natural Products and Bioprospecting, 2022, 12(5): 34-34.
[3] Kyu Hwan Shim, Min Ju Kang, Niti Sharma, Seong Soo A.An. Beauty of the beast: anticholinergic tropane alkaloids in therapeutics[J]. Natural Products and Bioprospecting, 2022, 12(5): 33-33.
[4] Tarawanti Verma, Manish Sinha, Nitin Bansal, Shyam Raj Yadav, Kamal Shah, Nagendra Singh Chauhan. Plants Used as Antihypertensive[J]. Natural Products and Bioprospecting, 2021, 11(2): 155-184.
[5] Md. Josim Uddin, Christian Zidorn. Traditional Herbal Medicines Against CNS Disorders from Bangladesh[J]. Natural Products and Bioprospecting, 2020, 10(6): 377-410.
[6] Ilkay Erdogan Orhan, F. Sezer Senol Deniz. Natural Products as Potential Leads Against Coronaviruses: Could They be Encouraging Structural Models Against SARS-CoV-2?[J]. Natural Products and Bioprospecting, 2020, 10(4): 171-186.
[7] Jian-Gang Zhang, Xiao-Yan Huang, Yun-Bao Ma, Ji-Jun Chen, Chang-An Geng. UFLC-PDA-MS/MS Profiling of Seven Uncaria Species Integrated with Melatonin/5-Hydroxytryptamine Receptors Agonistic Assay[J]. Natural Products and Bioprospecting, 2020, 10(1): 23-36.
[8] Sophia Zougagh, Ayoub Belghiti, Tarik Rochd, Ilham Zerdani, Jamal Mouslim. Medicinal and Aromatic Plants Used in Traditional Treatment of the Oral Pathology: The Ethnobotanical Survey in the Economic Capital Casablanca, Morocco (North Africa)[J]. Natural Products and Bioprospecting, 2019, 9(1): 35-48.
[9] Chang-An Geng, Ji-Jun Chen. The Progress of Anti-HBV Constituents from Medicinal Plants in China[J]. Natural Products and Bioprospecting, 2018, 8(4): 227-244.
[10] Conrad V. Simoben, Fidele Ntie-Kang, Sergi H. Akone, Wolfgang Sippl. Compounds from African Medicinal Plants with Activities Against Selected Parasitic Diseases: Schistosomiasis, Trypanosomiasis and Leishmaniasis[J]. Natural Products and Bioprospecting, 2018, 8(3): 151-169.
[11] Jun-Zeng Ma, Li-Xin Yang, Xiao-Ling Shen, Ji-Huan Qin, Li-Lan Deng, Selena Ahmed, Hong-Xi Xu, Da-Yuan Xue, Jiang-Xia Ye, Gang Xu. Effects of Traditional Chinese Medicinal Plants on Antiinsulin Resistance Bioactivity of DXMS-Induced Insulin Resistant HepG2 Cells[J]. Natural Products and Bioprospecting, 2014, 4(4): 197-206.
[12] Lydia L. Lifongo, Conrad V. Simoben, Fidele Ntie-Kang, Smith B. Babiaka, Philip N. Judson. A Bioactivity Versus Ethnobotanical Survey of Medicinal Plants from Nigeria,West Africa[J]. Natural Products and Bioprospecting, 2014, 4(1): 1-19.
[13] Mohammad Mijanur RAHMAN, Md. Asaduzzaman KHAN. Anti-cancer potential of South Asian plants[J]. Natural Products and Bioprospecting, 2013, 3(3): 74-88.
[14] Katharina DEEG, Tolga EICHHORN, Gladys ALEXIE, Nadine KRETSCHMER, Kai ANDERSCH, Rudolf BAUER, Thomas EFFERTH. Growth inhibition of human acute lymphoblastic CCRF-CEM leukemia cells by medicinal plants of the West-Canadian Gwich' in Native Americans[J]. Natural Products and Bioprospecting, 2012, 2(1): 35-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed