Original Article |
|
|
|
|
|
Anti-inflammatory maistemonine-class alkaloids of Stemona japonica |
Cheng-Yong Tan1,2, Bao-Bao Shi3, Mei-Fen Bao1, Xiang-Hai Cai1 |
1. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; 2. University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China; 3. School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China |
|
|
Abstract Three hitherto undescribed Stemona alkaloids, named stemajapines A-C (1-3), along with six known alkaloids (4-9), were isolated and identified from the roots of Stemona japonica (Blume) Miq. (Stemonaceae). Their structures were established by the analysis of the mass data, NMR spectra, and computational chemistry. Stemjapines A and B were degraded maistemonines without spiro-lactone ring and skeletal methyl from maistemonine. Concurrence of alkaloids 1 and 2 revealed an undescribed way to form diverse Stemona alkaloids. Bioassay results disclosed the anti-inflammatory natural constituents stemjapines A and C with IC50 values of 19.7 and 13.8 μM, respectively, compared to positive control dexamethasone with 11.7 μM. The findings may point out a new direction of Stemona alkaloids inaddition to its traditional antitussive and insecticide activities.
|
Keywords
Stemona japonica
Stemona alkaloids
Stemajapines A–C
Anti-inflammatory
|
Fund:This project was supported in part by the Xingdian Talent Support Plan and the Bualuang ASEAN Chair Professor Research Grant, Thailand. |
Corresponding Authors:
Xiang-Hai Cai,E-mail:xhcai@mail.kib.ac.cn
E-mail: xhcai@mail.kib.ac.cn
|
Issue Date: 18 May 2023
|
|
|
1 Greger H. Structural classification and biological activities of Stemona alkaloids. Phytochem Rev. 2019;182:463-93. 2 Wang FP, Chen QH. Stemona alkaloids:biosynthesis, classification, and biogenetic relationships. Nat Prod Commun. 2014;912:1809-22. 3 Xu Y, Xiong L, Yan Y, Sun D, Duan Y, Li H. Alkaloids from Stemona tuberosa and their anti-inflammatory activity. Front Chem. 2022;10:847595 4 Ye Y, Qin GW, Xu RS. Studies on Stemona. Alkaloids. 6. Alkaloids of Stemona japonica. J Nat Prod. 1994;575:665-9. 5 Yang XZ, Lin LG, Tang CP, Liu YQ, Ye Y. Nonalkaloid constituents from Stemona japonica. Helv Chim Acta. 2007;902:318-25. 6 Yi M, Xia X, Wu H-Y, Tian H-Y, Huang C, But PPH, Shaw P-C, Jiang R-W. Structures and chemotaxonomic significance of Stemona alkaloids from Stemona japonica. Nat Prod Commun. 2015;1012:2097-9. 7 Ye Y, Qin GW, Xu RS. Studies on Stemona alkaloids. 5. Alkaloids of Stemona japonica. Phytochemistry. 1994;374:1205-8. 8 Yang XZ, Zhu JY, Tang CP, Ke CQ, Lin G, Cheng TY, Rudd JA, Ye Y. Alkaloids from roots of Stemona sessilifolia and their antitussive activities. Planta Med. 2009;752:174-7. 9 Wang L, Wu H, Liu C, Jiang T, Yang X, Chen X, WANG TANGL. A review of the botany, traditional uses, phytochemistry and pharmacology of Stemonae Radix. Phytochem Rev. 2022;213:835-62. 10 Shi BB, Kongkiatpaiboon S, Chen G, Schinnerl J, Cai XH. Nematocidal alkaloids from the roots of Stemona mairei (H. Lev.) K. Krause and identification of their pharmacophoric moiety. Bioorg Chem. 2023;130:106239. 11 Jiang JM, Shi ZH, Yang XW, Zhu D, Zhao BJ, Gao Y, Xia D, Yin ZQ, Pan K. Structural revision of the stemona alkaloids tuberostemonine O, dehydrocroomines A and B, and dehydrocroomine. J Nat Prod. 2022;858:2110-5. 12 Lin W, Ye Y, Xu R. Chin Chem Lett. 1991; 2-5:369-70. 13 Guo A, Jin L, Deng Z, Cai S, Guo S. Blew stemona alkaloids from the roots of Stemona sessilifolia. Chem Biodivers. 2008;54:598-605. 14 Lu SY, Peng XR, Dong JR, Yan H, Kong QH, Shi QQ, Li DS, Zhou L, Li ZR, Qiu MH. Aromatic constituents from Ganoderma lucidum and their neuroprotective and anti-inflammatory activities. Fitoterapia. 2019;134:58-64. 15 Liu Y, Shen Y, Teng L, Yang L, Cao K, Fu Q, Zhang J. The traditional uses, phytochemistry, and pharmacology of Stemona species:a review. J Ethnopharmacol. 2021;265:113112. 16 Wu Y, Ou L, Han D, Tong Y, Zhang M, Xu X. Pharmacokinetics, biodistribution and excretion studies of neotuberostemonine, a major bioactive alkaloid of Stemona tuberosa. Fitoterapia. 2016;112:22-9. 17 Liu WY, Wei JX, Zi-Rong ZH, Ren-Wang JI. Isolation, crystal structure and antitussive activity of 9S,9aS-neotuberostemonine. Chin J Struct Chem. 2018;374:571-6. 18 Xiang J, Cheng S, Feng T, Wu Y, Xie W, Zhang M, Xu X. Neotuberostemonine attenuates bleomycin-induced pulmonary fibrosis by suppressing the recruitment and activation of macrophages. Int Immunopharmacol. 2016;36:158-64. 19 Yun J, Lee KY, Park B. Neotuberostemonine inhibits osteoclastogenesis via blockade of NF-kappa B pathway. Biochimie. 2019;157:81-91. 20 Zhou S, Tang CP, Ke CQ, Wolfender JL, Ye Y. Differentiation of plants used in TCM as antitussive agent by UHPLC-HRMS based metabolomics:the case of Stemona species. Planta Med. 2016;82:1-S381. 21 Tang CP, Chen T, Velten R, Jeschke P, Ebbinghaus-Kintscher U, Geibel S, Ye Y. Alkaloids from stems and leaves of Stemona japonica and their insecticidal activities. J Nat Prod. 2008;711:112-6. 22 Tang YT, Wu J, Bao MF, Tan QG, Cai XH. Dimeric Erythrina alkaloids as well as their key units from Erythrina variegata. Phytochemistry. 2022;198:113160. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|