Natural Products and Bioprospecting    2023, Vol. 13 Issue (2) : 8-8     DOI: 10.1007/s13659-023-00372-5
Original Article |
Anti-inflammatory maistemonine-class alkaloids of Stemona japonica
Cheng-Yong Tan1,2, Bao-Bao Shi3, Mei-Fen Bao1, Xiang-Hai Cai1
1. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China;
2. University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China;
3. School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
Download: PDF(2287 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Three hitherto undescribed Stemona alkaloids, named stemajapines A-C (1-3), along with six known alkaloids (4-9), were isolated and identified from the roots of Stemona japonica (Blume) Miq. (Stemonaceae). Their structures were established by the analysis of the mass data, NMR spectra, and computational chemistry. Stemjapines A and B were degraded maistemonines without spiro-lactone ring and skeletal methyl from maistemonine. Concurrence of alkaloids 1 and 2 revealed an undescribed way to form diverse Stemona alkaloids. Bioassay results disclosed the anti-inflammatory natural constituents stemjapines A and C with IC50 values of 19.7 and 13.8 μM, respectively, compared to positive control dexamethasone with 11.7 μM. The findings may point out a new direction of Stemona alkaloids inaddition to its traditional antitussive and insecticide activities.
Keywords Stemona japonica      Stemona alkaloids      Stemajapines A–C      Anti-inflammatory     
Fund:This project was supported in part by the Xingdian Talent Support Plan and the Bualuang ASEAN Chair Professor Research Grant, Thailand.
Corresponding Authors: Xiang-Hai Cai,E-mail:xhcai@mail.kib.ac.cn     E-mail: xhcai@mail.kib.ac.cn
Issue Date: 18 May 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cheng-Yong Tan
Bao-Bao Shi
Mei-Fen Bao
Xiang-Hai Cai
Trendmd:   
Cite this article:   
Cheng-Yong Tan,Bao-Bao Shi,Mei-Fen Bao, et al. Anti-inflammatory maistemonine-class alkaloids of Stemona japonica[J]. Natural Products and Bioprospecting, 2023, 13(2): 8-8.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-023-00372-5     OR     http://npb.kib.ac.cn/EN/Y2023/V13/I2/8
1 Greger H. Structural classification and biological activities of Stemona alkaloids. Phytochem Rev. 2019;182:463-93.
2 Wang FP, Chen QH. Stemona alkaloids:biosynthesis, classification, and biogenetic relationships. Nat Prod Commun. 2014;912:1809-22.
3 Xu Y, Xiong L, Yan Y, Sun D, Duan Y, Li H. Alkaloids from Stemona tuberosa and their anti-inflammatory activity. Front Chem. 2022;10:847595
4 Ye Y, Qin GW, Xu RS. Studies on Stemona. Alkaloids. 6. Alkaloids of Stemona japonica. J Nat Prod. 1994;575:665-9.
5 Yang XZ, Lin LG, Tang CP, Liu YQ, Ye Y. Nonalkaloid constituents from Stemona japonica. Helv Chim Acta. 2007;902:318-25.
6 Yi M, Xia X, Wu H-Y, Tian H-Y, Huang C, But PPH, Shaw P-C, Jiang R-W. Structures and chemotaxonomic significance of Stemona alkaloids from Stemona japonica. Nat Prod Commun. 2015;1012:2097-9.
7 Ye Y, Qin GW, Xu RS. Studies on Stemona alkaloids. 5. Alkaloids of Stemona japonica. Phytochemistry. 1994;374:1205-8.
8 Yang XZ, Zhu JY, Tang CP, Ke CQ, Lin G, Cheng TY, Rudd JA, Ye Y. Alkaloids from roots of Stemona sessilifolia and their antitussive activities. Planta Med. 2009;752:174-7.
9 Wang L, Wu H, Liu C, Jiang T, Yang X, Chen X, WANG TANGL. A review of the botany, traditional uses, phytochemistry and pharmacology of Stemonae Radix. Phytochem Rev. 2022;213:835-62.
10 Shi BB, Kongkiatpaiboon S, Chen G, Schinnerl J, Cai XH. Nematocidal alkaloids from the roots of Stemona mairei (H. Lev.) K. Krause and identification of their pharmacophoric moiety. Bioorg Chem. 2023;130:106239.
11 Jiang JM, Shi ZH, Yang XW, Zhu D, Zhao BJ, Gao Y, Xia D, Yin ZQ, Pan K. Structural revision of the stemona alkaloids tuberostemonine O, dehydrocroomines A and B, and dehydrocroomine. J Nat Prod. 2022;858:2110-5.
12 Lin W, Ye Y, Xu R. Chin Chem Lett. 1991; 2-5:369-70.
13 Guo A, Jin L, Deng Z, Cai S, Guo S. Blew stemona alkaloids from the roots of Stemona sessilifolia. Chem Biodivers. 2008;54:598-605.
14 Lu SY, Peng XR, Dong JR, Yan H, Kong QH, Shi QQ, Li DS, Zhou L, Li ZR, Qiu MH. Aromatic constituents from Ganoderma lucidum and their neuroprotective and anti-inflammatory activities. Fitoterapia. 2019;134:58-64.
15 Liu Y, Shen Y, Teng L, Yang L, Cao K, Fu Q, Zhang J. The traditional uses, phytochemistry, and pharmacology of Stemona species:a review. J Ethnopharmacol. 2021;265:113112.
16 Wu Y, Ou L, Han D, Tong Y, Zhang M, Xu X. Pharmacokinetics, biodistribution and excretion studies of neotuberostemonine, a major bioactive alkaloid of Stemona tuberosa. Fitoterapia. 2016;112:22-9.
17 Liu WY, Wei JX, Zi-Rong ZH, Ren-Wang JI. Isolation, crystal structure and antitussive activity of 9S,9aS-neotuberostemonine. Chin J Struct Chem. 2018;374:571-6.
18 Xiang J, Cheng S, Feng T, Wu Y, Xie W, Zhang M, Xu X. Neotuberostemonine attenuates bleomycin-induced pulmonary fibrosis by suppressing the recruitment and activation of macrophages. Int Immunopharmacol. 2016;36:158-64.
19 Yun J, Lee KY, Park B. Neotuberostemonine inhibits osteoclastogenesis via blockade of NF-kappa B pathway. Biochimie. 2019;157:81-91.
20 Zhou S, Tang CP, Ke CQ, Wolfender JL, Ye Y. Differentiation of plants used in TCM as antitussive agent by UHPLC-HRMS based metabolomics:the case of Stemona species. Planta Med. 2016;82:1-S381.
21 Tang CP, Chen T, Velten R, Jeschke P, Ebbinghaus-Kintscher U, Geibel S, Ye Y. Alkaloids from stems and leaves of Stemona japonica and their insecticidal activities. J Nat Prod. 2008;711:112-6.
22 Tang YT, Wu J, Bao MF, Tan QG, Cai XH. Dimeric Erythrina alkaloids as well as their key units from Erythrina variegata. Phytochemistry. 2022;198:113160.
[1] Sitian Zhang, Shuyuan Mo, Fengli Li, Yaxin Zhang, Jianping Wang, Zhengxi Hu, Yonghui Zhang. Drimane sesquiterpenoids from a wetland soil-derived fungus Aspergillus calidoustus TJ403-EL05[J]. Natural Products and Bioprospecting, 2022, 12(4): 27-27.
[2] Yue-Hu Wang. Traditional Uses and Pharmacologically Active Constituents of Dendrobium Plants for Dermatological Disorders: A Review[J]. Natural Products and Bioprospecting, 2021, 11(5): 465-487.
[3] Marsya Yonna Nurrachma, Deamon Sakaraga, Ahmad Yogi Nugraha, Siti Irma Rahmawati, Asep Bayu, Linda Sukmarini, Akhirta Atikana, Anggia Prasetyoputri, Fauzia Izzati, Mega Ferdina Warsito, Masteria Yunovilsa Putra. Cembranoids of Soft Corals: Recent Updates and Their Biological Activities[J]. Natural Products and Bioprospecting, 2021, 11(3): 243-306.
[4] Ning-Ning Wang, Chun-Yu Liu, Tian Wang, Yue-Lan Li, Ke Xu, Hong-Xiang Lou. Two New Quinazoline Derivatives from the Moss Endophytic Fungus Aspergillus sp. and Their Anti-inflammatory Activity[J]. Natural Products and Bioprospecting, 2021, 11(1): 105-110.
[5] Xiao-Li Cheng, Han-Xiang Li, Juan Chen, Ping Wu, Jing-Hua Xue, Zhong-Yu Zhou, Nia-He Xia, Xiao-Yi Wei. Bioactive Diarylheptanoids from Alpinia coriandriodora[J]. Natural Products and Bioprospecting, 2021, 11(1): 63-72.
[6] Hongjuan Wang, Dezhi Yang, Li Li, Shiying Yang, Guanhua Du, Yang Lu. Anti-inflammatory Effects and Mechanisms of Rhein, an Anthraquinone Compound, and Its Applications in Treating Arthritis: A Review[J]. Natural Products and Bioprospecting, 2020, 10(6): 445-452.
[7] Mohammad Sanad Abu-Darwish, Célia Cabral, Zulfigar Ali, Mei Wang, Shabana I. Khan, Melissa R. Jacob, Surendra K. Jain, Babu L. Tekwani, Fazila Zulfiqar, Ikhlas A. Khan, Hatem Taifour, Lígia Salgueiro, Thomas Efferth. Salvia ceratophylla L. from South of Jordan: new insights on chemical composition and biological activities[J]. Natural Products and Bioprospecting, 2020, 10(5): 307-316.
[8] Rufin Marie Kouipou Toghueo. Anti-leishmanial and Anti-inflammatory Agents from Endophytes: A Review[J]. Natural Products and Bioprospecting, 2019, 9(5): 311-328.
[9] Leonardo Mendes de Souza Mesquita, Caroline Fabri Bittencourt Rodrigues, Cláudia Quintino da Rocha, Mayara Silveira Bianchim, Clenilson Martins Rodrigues, Vanda Maria de Oliveira, Henrique Hessel Gaeta, Mariana Novo Belchor, Marcos Hikari Toyama, Wagner Vilegas. LC-ESI-IT-MS/MS and MALDI-TOF Approach: Identification of Natural Polymers from Rhizophora mangle Barks and Determination of Their Analgesic and Anti-inflammatory Properties[J]. Natural Products and Bioprospecting, 2019, 9(1): 23-34.
[10] Xian-Yuan Lu, Feng-Hua Zhou, Ya-Qian Dong, Lin-Na Gong, Qing-Yun Li, Lan Tang, Zheng Cai, Jing-Yu He, Meng-Hua Liu. Codonopsis tangshen Oliv. Amelioration Effect on Diabetic Kidney Disease Rats Induced by High Fat Diet Feeding Combined with Streptozotocin[J]. Natural Products and Bioprospecting, 2018, 8(6): 441-451.
[11] Yin-E Zhi, Xu-Jie Qin, Hui Liu, Yuan Zeng, Wei Ni, Li He, Zu-Ding Wang, Hai-Yang Liu. Structurally Diverse Polymethylated Phloroglucinol Meroterpenoids from Baeckea frutescens[J]. Natural Products and Bioprospecting, 2018, 8(6): 431-439.
[12] Regina M. S. ARAÚJO, Antônio F. M. VAZ, Jaciana S. AGUIAR, Luana C. B. B. COELHO, Patrícia M. G. PAIVA, Ana M. M. MELO, Teresinha G. SILVA, Maria T. S. CORREIA. Lectin from Crataeva tapia bark exerts antitumor, antiinflammtory and analgesic activities[J]. Natural Products and Bioprospecting, 2011, 1(2): 97-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed