Natural Products and Bioprospecting    2019, Vol. 9 Issue (1) : 23-34     DOI: 10.1007/s13659-018-0192-8
ORIGINAL ARTICLES |
LC-ESI-IT-MS/MS and MALDI-TOF Approach: Identification of Natural Polymers from Rhizophora mangle Barks and Determination of Their Analgesic and Anti-inflammatory Properties
Leonardo Mendes de Souza Mesquita1, Caroline Fabri Bittencourt Rodrigues1, Cláudia Quintino da Rocha1,2, Mayara Silveira Bianchim1, Clenilson Martins Rodrigues3, Vanda Maria de Oliveira3, Henrique Hessel Gaeta1, Mariana Novo Belchor1, Marcos Hikari Toyama1, Wagner Vilegas1
1 Laboratory of Bioprospection of Natural Products(LBPN), UNESP-Saõ Paulo State University/Coastal Campus of Saõ Vicente, Pça Infante Dom Henrique S/N, Saõ Vicente, Saõ Paulo CEP:11330-900, Brazil;
2 Laboratório de Estudos Avançados em Fitomedicamentos(LEAF), UFMA-Federal University of Maranhaõ, Av. dos Portugueses, 1966-Bacanga, Saõ Luís, Maranhaõ CEP:65080-805, Brazil;
3 Embrapa Agroenergy, Brazilian Agricultural Research Corporation, W3 Norte, PqEB, Brasília, DF 70770-901, Brazil
Download: PDF(4992 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  We recognize the chemical composition of the acetonic extract of Rhizophora mangle barks (AERM) using mass spectrometry analysis[liquid chromatography (LC)-ESI-IT-MS/MS and matrix-assisted laser desorption/ionization-time of flight-MS (MALDI-TOF)]. Analgesic activity was evaluated by formalin and tail-flick experimental assays. Anti-inflammatory activity was performed by paw edema test induced by carrageenan and 48/80 compounds. The first series of experiments involved[LC]-FIA-IT-MS/MS with 11 separated catechins derivatives until degree of polymerization 3 (DP3). The spectra obtained by MALDI-TOF analysis of the AERM presented two homologous series:one based on polymers of m/z 288 Da increments (up to DP12) and another series based on polymers of m/z[288 + 162] Da increments (up to DP11). In addition to these series of flavan-3-ol, each DP had a subset of masses with a variation of-16 Da (homologous series of afzelechins-m/z 873-3465 Da) and + 16 Da (homologous series of gallocatechins-m/z 905-3497 Da). A similar pattern with homologous series of gallocatechins and afzelechins could also be observed for a fifth and a sixth monohexoside series:glucogallocatechins (m/z 779-3371) and glucoafzelechins (m/z 747-3339). The intraperitoneal administration of different doses of AERM (50, 150 and 300 lg mL-1) have a morphine-like effect and intense anti-inflammatory activity.
Keywords Catechins      Tannins      Morphine-like effect      Anti-inflammatory      Mangroves     
Fund:This work was supported by Fundaçaõ de Amparo à Pesquisa do Estado de Saõ Paulo (FAPESP) (Grant 2009/52237-9 to WV, fellowship 2014/23951-3 to LMSM).
Corresponding Authors: Wagner Vilegas     E-mail: wagner.vilegas@unesp.br
Issue Date: 28 January 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Leonardo Mendes de Souza Mesquita
Caroline Fabri Bittencourt Rodrigues
Cláudia Quintino da Rocha
Mayara Silveira Bianchim
Clenilson Martins Rodrigues
Vanda Maria de Oliveira
Henrique Hessel Gaeta
Mariana Novo Belchor
Marcos Hikari Toyama
Wagner Vilegas
Trendmd:   
Cite this article:   
Leonardo Mendes de Souza Mesquita,Caroline Fabri Bittencourt Rodrigues,Cláudia Quintino da Rocha, et al. LC-ESI-IT-MS/MS and MALDI-TOF Approach: Identification of Natural Polymers from Rhizophora mangle Barks and Determination of Their Analgesic and Anti-inflammatory Properties[J]. Natural Products and Bioprospecting, 2019, 9(1): 23-34.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-018-0192-8     OR     http://npb.kib.ac.cn/EN/Y2019/V9/I1/23
1. M. Nebula, H. Harisankar, N. Chandramohanakumar, Nat. Prod. Bioprospect. 3, 207 (2013)
2. F. Kandil, M. Grace, D. Seigler, J. Cheeseman, Trees 18, 518 (2004)
3. C.B. Groenewald, B.S. Essner, D. Wright, M.D. Fesinmeyer, T.M. Palermo, J. Pain 15, 925 (2014)
4. S.R. Savage, K.L. Kirsh, S.D. Passik, Addict. Sci. Clin. Pract. 4, 4 (2008)
5. A.G. Atanasov, B. Waltenberger, E.-M. Pferschy-Wenzig, T. Linder, C. Wawrosch, P. Uhrin, V. Temml, L. Wang, S. Schwaiger, E.H. Heiss, Biotechnol. Adv. 33, 1582 (2015)
6. E.R. Rayburn, S.J. Ezell, R. Zhang, Mol. Cell. Pharmacol. 1, 29 (2009)
7. S. Shaikh, H. Verma, N. Yadav, M. Jauhari, J. Bullangowda, ISRN Anesthesiol. (2012). https://doi.org/10.5402/2012/985495
8. L.-L. Zhang, Y.-M. Lin, H.-C. Zhou, S.-D. Wei, J.-H. Chen, Molecules 15, 420 (2010)
9. F.M. de-Faria, A.C.A. Almeida, A. Luiz-Ferreira, C. Takayama, R.J. Dunder, M.A. da Silva, M.J. Salvador, P.V. Abdelnur, M.N. Eberlin, W. Vilegas, Sci. World J. (2012). https://doi.org/10.1100/2012/327071
10. M. Maldini, P. Montoro, S. Piacente, C. Pizza, Nat. Prod. Commun. 4, 1671 (2009)
11. C. Yan, Z. Xiu, X. Li, C. Hao, J. Mol. Graph. Model. 26, 420 (2007)
12. M. Liu, Y. Zheng, C. Wang, J. Xie, B. Wang, Z. Wang, J. Han, D. Sun, M. Niu, Food Chem. 196, 148 (2016)
13. H.-J. Li, M.L. Deinzer, Anal. Chem. 79, 1739 (2007)
14. E. de Armas, Y. Sarracent, E. Marrero, O. Fernández, C. Branford-White, Curr. Med. Res. Opin. 21, 1711 (2005)
15. P. Glare, D. Walsh, D. Sheehan, Am. J. Hosp. Palliat. Med. 23, 229 (2006)
16. B. Banerjee, D. Bagchi, Digestion 63, 203 (2001)
17. Z. Zakaria, E. Jaios, M. Omar, S.A. Rahman, S. Hamid, S. Ching, L. Teh, M. Salleh, S. Deny, M. Taher, BMC Complement. Altern. Med. 16, 488 (2016)
18. A. Tjølsen, O.-G. Berge, S. Hunskaar, J.H. Rosland, K. Hole, Pain 51, 5 (1992)
19. L. da Silva Lopes, R.B. Marques, H.B. Fernandes, S. da Silva Pereira, M.C. Ayres, M.H. Chaves, F.R. Almeida, J. Biomed. Sci. 19, 68 (2012)
20. E. Ricciotti, G.A. FitzGerald, Arterioscler. Thromb. Vasc. Biol. 31, 986 (2011)
21. F.M. de Faria, A. Luiz-Ferreira, E.A.R. Socca, A.C.A. de Almeida, R.J. Dunder, L.P. Manzo, M.A. da Silva, W. Vilegas, A.L. Rozza, C.H. Pellizzon, Evid. Based Complement. Altern. Med. (2012). https://doi.org/10.1155/2012/753971.753971
22. I. Posadas, M. Bucci, F. Roviezzo, A. Rossi, L. Parente, L. Sautebin, G. Cirino, Br. J. Pharmacol. 142, 331 (2004)
23. B. Damerau, L. Lege, H.-D. Oldigs, W. Vogt, Naunyn Schmiedebergs Arch. Pharmacol. 287, 141 (1975)
24. H. Karmouty-Quintana, F. Blé, C. Cannet, S. Zurbruegg, J.R. Fozard, C. Page, N. Beckmann, Br. J. Pharmacol. 154, 1063 (2008)
25. A. Amić, Z. Marković, J.M.D. Marković, S. Jeremić, B. Lučić, D. Amić, Comput. Biol. Chem. 65, 45 (2016)
26. A. Schäfer, Z. Chovanová, J. Muchová, K. Sumegová, A. Liptáková, Z. Dŭračková, P. Högger, Biomed. Pharmacother. 60, 5 (2006)
27. S. Melgaço, M. Saraiva, T. Lima, G. Junior, E. Daher, Medicina (Mex.) 43, 382-390 (2010)
28. R. Rohini, A. Das, Pharm. Lett. 2, 95 (2010)
29. R. Kanagaratnam, R. Sheikh, F. Alharbi, D.H. Kwon, Phytomedicine 36, 194 (2017)
30. A.I. Basbaum, D.M. Bautista, G. Scherrer, D. Julius, Cell 139, 267 (2009)
31. Y. Ishida, K. Kitagawa, K. Goto, H. Ohtani, Rapid Commun. Mass Spectrom. 19, 706 (2005)
32. D. Dubuisson, S.G. Dennis, Pain 4, 161 (1977)
33. S. Hunskaar, K. Hole, Pain 30, 103 (1987)
34. M. Shibata, T. Ohkubo, H. Takahashi, R. Inoki, Pain 38, 347 (1989)
35. D. Le Bars, M. Gozariu, S.W. Cadden, Pharmacol. Rev. 53, 597 (2001)
[1] Xian-Yuan Lu, Feng-Hua Zhou, Ya-Qian Dong, Lin-Na Gong, Qing-Yun Li, Lan Tang, Zheng Cai, Jing-Yu He, Meng-Hua Liu. Codonopsis tangshen Oliv. Amelioration Effect on Diabetic Kidney Disease Rats Induced by High Fat Diet Feeding Combined with Streptozotocin[J]. Natural Products and Bioprospecting, 2018, 8(6): 441-451.
[2] Yin-E Zhi, Xu-Jie Qin, Hui Liu, Yuan Zeng, Wei Ni, Li He, Zu-Ding Wang, Hai-Yang Liu. Structurally Diverse Polymethylated Phloroglucinol Meroterpenoids from Baeckea frutescens[J]. Natural Products and Bioprospecting, 2018, 8(6): 431-439.
[3] Regina M. S. ARAÚJO, Antônio F. M. VAZ, Jaciana S. AGUIAR, Luana C. B. B. COELHO, Patrícia M. G. PAIVA, Ana M. M. MELO, Teresinha G. SILVA, Maria T. S. CORREIA. Lectin from Crataeva tapia bark exerts antitumor, antiinflammtory and analgesic activities[J]. Natural Products and Bioprospecting, 2011, 1(2): 97-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed