Natural Products and Bioprospecting    2018, Vol. 8 Issue (6) : 441-451     DOI: 10.1007/s13659-018-0187-5
ORIGINAL ARTICLES |
Codonopsis tangshen Oliv. Amelioration Effect on Diabetic Kidney Disease Rats Induced by High Fat Diet Feeding Combined with Streptozotocin
Xian-Yuan Lu1, Feng-Hua Zhou2, Ya-Qian Dong1, Lin-Na Gong1, Qing-Yun Li1, Lan Tang1, Zheng Cai1, Jing-Yu He3, Meng-Hua Liu1
1 Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
2 School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China;
3 Bioengineering Research Centre, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, China
Download: PDF(15607 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Diabetic kidney disease (DKD) is the most serious microvascular complication during the development of diabetes with the characterizations of glomerular basement membrane thickening, mesangial expansion, and glomerular sclerosis, eventually leading to end-stage renal disease. This study aimed to investigate the melioration effect of Codonopisis tangshen Oliv. (COD) on the DKD model, which was established by unilateral nephrectomy (UN)-high fat diet feeding (HFD) combined with streptozotocin (STZ). After the DKD rats were oral treated with COD at a dose of 2.7 mg/kg for 4 consecutive weeks, the blood glucose, lipid metabolism, renal function, inflammatory mediators, and fibrosis-associated proteins were examined. In vivo, the COD administration obviously relieved the weight loss, water intake, and blood glucose; decreased the total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels; and improved the renal function by reducing the expression of serum creatinine, uric acid, and urinary protein compared with the model group. The levels of pro-inflammatory cytokines of tumor necrosis factor-α, interleukin-1β, and IL-6 were significantly inhibited by COD. Meanwhile, the deposition of collagen fiber was markedly increased, and the protein and mRNA expressions of transforming growth factor-β1 and α-smooth muscle actin were markedly elevated in DKD rats, but they were decreased to some extent after the COD treatment. In conclusion, COD exhibited a protective effect on the UN-HFD feeding combined with STZ-induced DKD model by improving the blood glucose and lipid metabolism, relieving the inflammatory response, and mitigating the renal fibrosis, which provided scientific evidence for its applications in clinic.
Keywords Diabetic kidney disease      Codonopisis tangshen Oliv.      Lipid metabolism      Anti-inflammatory      Anti-fibrotic     
Fund:This research was funded by the National Natural Science Foundation of China Grant Numbers 81503376 and 81774213, Applied Science and Technology Research Foundation of Guangdong Province Grant Number 2016B020237005, College Students Entrepreneurship Training Program of Southern Medical University (201712121083) and Scientific Enlightenment Program of Southern Medical University (b1000501).
Corresponding Authors: Feng-Hua Zhou, Meng-Hua Liu     E-mail: wendyzhou515@126.com;liumenghua@smu.edu.cn
Issue Date: 21 November 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xian-Yuan Lu
Feng-Hua Zhou
Ya-Qian Dong
Lin-Na Gong
Qing-Yun Li
Lan Tang
Zheng Cai
Jing-Yu He
Meng-Hua Liu
Trendmd:   
Cite this article:   
Xian-Yuan Lu,Feng-Hua Zhou,Ya-Qian Dong, et al. Codonopsis tangshen Oliv. Amelioration Effect on Diabetic Kidney Disease Rats Induced by High Fat Diet Feeding Combined with Streptozotocin[J]. Natural Products and Bioprospecting, 2018, 8(6): 441-451.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-018-0187-5     OR     http://npb.kib.ac.cn/EN/Y2018/V8/I6/441
1. World Health Organization, In the WHO Document Production Services (World Health Organization, Geneva, 2017)
2. T. Behl, I. Kaur, H. Goel, R.K. Pandey, World J. Pharm. Pharm. Sci. 3, 370-387 (2014)
3. J. Ge, J.J. Miao, X.Y. Sun, J.Y. Yu, J. Ethnopharmacol. 189, 238-249 (2016)
4. P.X. Han, M.M. Shao, L. Guo, W.J. Wang, G.F. Song, X.W. Yu, C.L. Zhang, N. Ge, T.G. Yi, S.M. Li, H. Du, H.L. Sun, Am. J. Transl. Res. 10, 1071-1084 (2018)
5. P.B. Mark, P. Winocour, ABCD-RA Clinical Practice Guidelines-Lipid Management in DN &/or DM CKD (The Renal Association, Bristol, 2017), pp. 1-26
6. Y.G. Du, K.N. Zhang, Z.L. Gao, F.J. Dai, X.X. Wu, K.F. Chai, Exp. Ther. Med. 15, 2156-2164 (2018)
7. H.Y. Bi, L.P. Zhang, Z. Chen, B. Wu, J. Chin. Mater. Med. 33, 590-594 (2008)
8. J.Y. He, N. Ma, S. Zhu, K. Komatsu, Z.Y. Li, W.M. Fu, J. Nat. Med. 69, 1-21 (2015)
9. International Pharmacopoeia Commission, Pharmacopoeia of People's Republic of China, vol. 1 (In China Medical Science Press, Beijing, China, 2015), pp. 281-282
10. J.L. Shergis, S. Liu, X. Chen, A.L. Zhang, X. Guo, C. Lu, C.C. Xue, Phytother. Res. 29, 167-186 (2015)
11. K.M. Park, K.H. Hussein, H.S. Nam, H.M. Kim, B.M. Kang, D.G. Lee, H.J. Han, H.M. Woo, Lab Anim. 50, 88-93 (2016)
12. N. Hong, M. Lee, S. Park, Y.H. Lee, S.M. Jin, J.H. Kim, B.W. Lee, Sci. Rep. 8, 6710-6718 (2018)
13. A.L. Almalki, A.A. Sayed, H.R. El Rabey, Evid. Based Complement Alternat. Med. 11, 769409 (2013)
14. J. Girard, Nephrol. Ther. 1, 35-41 (2017)
15. A.A. Wasik, S. Lehtonen, Front. Endocrinol. (Lausanne) 9, 1-12 (2018)
16. Y. Katsuda, Y. Kemmochi, M. Maki, R. Sano, Y. Toriniwa, Y. Ishii, K. Miyajima, K. Kakimoto, T. Ohta, J. Diabetes Res. 1-6 (2014)
17. Y. Katsuda, Y. Kemmochi, M. Maki, R. Sano, Y. Toriniwa, Y. Ishii, K. Miyajima, K. Kakimoto, T. Ohta, J. Diabetes Res. 2014, 363126 (2014)
18. W.J.K. Yakush, Nurs. Clin. N. Am. 52, 575-587 (2017)
19. Y. Fan, J. Zhang, W. Xiao, K. Lee, Z. Li, J. Wen, L. He, D. Gui, R. Xue, G. Jian, X. Sheng, J.C. He, N. Wang, Sci. Rep. 7, 323 (2017)
20. W. Wu, J.J. Yang, H.M. Yang, M.M. Huang, Q.J. Fang, G. Shi, Z.M. Mao, W.B. Han, S.M. Shen, Y.G. Wan, Int. J. Mol. Med. 40, 721-730 (2017)
21. R.Z. Alicic, E.J. Johnson, K.R. Tuttle, Adv. Chronic Kidney Dis. 25, 181-191 (2018)
22. A. Vallée, Y. Lecarpentier, R. Guillevin, J.N. Vallée, Oncotarget. 8, 90579-90604 (2017)
23. H. Peng, Q. Wang, T. Lou, J. Qin, S. Jung, V. Shetty, F. Li, Y. Wang, X.H. Feng, W.E. Mitch, B.H. Graham, Z. Hu, Nat. Commun. 8, 14932017 (2017)
24. S.Z. Wu, S.J. Yang, H.M. Chen, F.F. Peng, H. Yu, J.C. Krepinsky, B.F. Zhang, Biosci Rep. https://doi.org/10.1042/bsr20171061 (2017)
25. S. Liu, L. Ye, J. Tao, C. Ge, L. Huang, J. Yu, Pharm. Biol. 56, 1-11 (2018)
26. T.W. Kim, Y.J. Kim, C.S. Seo, H.T. Kim, S.R. Park, M.Y. Lee, J.Y. Jun, Phytomedicine. 23, 331-339 (2016)
27. C.Y. Dua, Y.Z. Ren, F. Yao, J.L. Duan, H.E. Zhao, Y.X. Du, X. Xiao, H.J. Duan, Y.H. Shi, Int. J. Biochem. Cell Biol. 90, 17-28 (2017)
28. J.Y. He (Division of Pharmacognosy, Institute of Natural Medicine University of Toyama, 2013), pp. 1-96
29. J.Y. He, S. Zhu, K. Komatsu, Phytochem. Anal. 25, 213-219 (2014)
30. X.L. Tong, W.K. Liu, Y. Zhai, Z. Zhen, B. Chang, H.Y. Ji, Crossstrait conference on the Development of Traditional Chinese Medicine (2009)
31. Y.P. Zhang (In People's Medical Publishing House Co., Ltd., Beijing, 1996), p. 238
32. M. Uil, A.M.L.S. Cantlebery, L.M. Butter, P.W.B. Larsen, O.J. de Boer, J.C. Leemans, S. Florquin, J.J.T.H. Roelofs, Sci. Rep. 8, 5542 (2018)
33. C.C. Chang, Y.C. Chen, H.C. Huang, F.Y. Lee, F.Y. Chang, H.C. Lin, C.Y. Chan, S.S. Wang, S.D. Lee, J. Chin. Med. Assoc. 69, 563-568 (2006)
34. A. Li, X. Zhang, M. Shu, M. Wu, J. Wang, J. Zhang, R. Wang, P. Li, Y. Wang, Phytomedicine. 30, 28-41 (2017)
35. H. Sun, N. Ge, M. Shao, X. Cheng, Y. Li, S. Li, J. Shen, Diabetes Res. Clin. Pract. 100, 85-95 (2013)
36. C.Y. Zeng, T.T. Chen, Y. Zhang, Q. Chen, J. Cancer. 8, 786-792 (2017)
37. C.S. Lo, Y. Shi, S.Y. Chang, S. Abdo, I. Chenier, J.G. Filep, J.R. Ingelfinger, S.L. Zhang, J.S. Chan, Diabetologia. 58, 2443-2454 (2015)
38. H.J. Anders, B. Suarez-Alvarez, M. Grigorescu, O. Foresto-Neto, S. Steiger, J. Desai, J.A. Marschner, M. Honarpisheh, C. Shi, J. Jordan, L. Müller, N. Burzlaff, T. Bäuerle, S.R. Mulay, Kidney Int. 93, 656-669 (2017)
39. D. Marotta, J. Karar, W.T. Jenkins, M. Kumanova, K.W. Jenkins, J.W. Tobias, D. Baldwin, A. Hatzigeorgiou, P. Alexiou, S.M. Evans, R. Alarcon, A. Maity, C. Koch, C. Koumenis, Cancer Res. 71, 779-789 (2011)
40. X.T. Xue, X.X. Kou, C.S. Li, R.Y. Bi, Z. Meng, X.D. Wang, Y.H. Zhou, Y.H. Gan, Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-15285-w
[1] Yin-E Zhi, Xu-Jie Qin, Hui Liu, Yuan Zeng, Wei Ni, Li He, Zu-Ding Wang, Hai-Yang Liu. Structurally Diverse Polymethylated Phloroglucinol Meroterpenoids from Baeckea frutescens[J]. Natural Products and Bioprospecting, 2018, 8(6): 431-439.
[2] Li Peng, Yanting Lu, Yuhui Xu, Jing Hu, Fang Wang, Yumei Zhang, Wenyong Xiong. Pyrocincholic acid 3β-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranoside suppresses adipogenesis and regulates lipid metabolism in 3T3-L1 adipocytes[J]. Natural Products and Bioprospecting, 2017, 7(3): 225-234.
[3] Regina M. S. ARAÚJO, Antônio F. M. VAZ, Jaciana S. AGUIAR, Luana C. B. B. COELHO, Patrícia M. G. PAIVA, Ana M. M. MELO, Teresinha G. SILVA, Maria T. S. CORREIA. Lectin from Crataeva tapia bark exerts antitumor, antiinflammtory and analgesic activities[J]. Natural Products and Bioprospecting, 2011, 1(2): 97-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed