Natural Products and Bioprospecting    2024, Vol. 14 Issue (4) : 30-30     DOI: 10.1007/s13659-024-00453-z
ORIGINAL ARTICLES |
Comparative metabolite analysis of Piper sarmentosum organs approached by LC-MS-based metabolic profiling
Ismail Ware1,2,3, Katrin Franke1,4,5, Andrej Frolov1, Kseniia Bureiko1, Elana Kysil1, Maizatulakmal Yahayu3, Hesham Ali El Enshasy3,6, Ludger A. Wessjohann1,5
1. Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
2. Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400 Sabah, Malaysia;
3. Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia;
4. Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany;
5. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany;
6. City of Scientific Research and Technology Applications, New Borg Al Arab, Alexandria 21934, Egypt
Download: PDF(2865 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Piper sarmentosum Roxb. (Piperaceae) is a traditional medicinal and food plant widely distributed in the tropical and subtropical regions of Asia, offering both health and culinary benefits. In this study the secondary metabolites in different organs of P. sarmentosum were identified and their relative abundances were characterized. The metabolic profiles of leaves, roots, stems and fruits were comprehensively investigated by liquid chromatography high-resolution mass spectrometry (LC-HR-MS) and the data subsequently analyzed using multivariate statistical methods. Manual interpretation of the tandem mass spectrometric (MS/MS) fragmentation patterns revealed the presence of 154 tentatively identified metabolites, mostly represented by alkaloids and flavonoids. Principle component analysis and hierarchical clustering indicated the predominant occurrence of flavonoids, lignans and phenyl propanoids in leaves, aporphines in stems, piperamides in fruits and lignan-amides in roots. Overall, this study provides extensive data on the metabolite composition of P. sarmentosum, supplying useful information for bioactive compounds discovery and patterns of their preferential biosynthesis or storage in specific organs. This can be used to optimize production and harvesting as well as to maximize the plant’s economic value as herbal medicine or in food applications.
Keywords Piper sarmentosum      LC-MS/MS      Multivariate analysis      Metabolite profiling      Secondary metabolites      Alkaloids     
Fund:This study was supported by the German Academic Exchange Service (DAAD) as a grant scholarship and part of the Ph.D. thesis of IW. Funding program/-ID: Research Grants - Doctoral Programs in Germany, 2017/18 (57299294), ST34.
Corresponding Authors: Katrin Franke,E-mail:kfranke@ipb-halle.de;Ludger A. Wessjohann,E-mail:wessjohann@ipb-halle.de     E-mail: kfranke@ipb-halle.de;wessjohann@ipb-halle.de
Issue Date: 01 August 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ismail Ware
Katrin Franke
Andrej Frolov
Kseniia Bureiko
Elana Kysil
Maizatulakmal Yahayu
Hesham Ali El Enshasy
Ludger A. Wessjohann
Trendmd:   
Cite this article:   
Ismail Ware,Katrin Franke,Andrej Frolov, et al. Comparative metabolite analysis of Piper sarmentosum organs approached by LC-MS-based metabolic profiling[J]. Natural Products and Bioprospecting, 2024, 14(4): 30-30.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00453-z     OR     http://npb.kib.ac.cn/EN/Y2024/V14/I4/30
[1] Simmonds SE, Smith JF, Davidson C, Buerki S. Phylogenetics and comparative plastome genomics of two of the largest genera of angiosperms, Piper and Peperomia (Piperaceae). Mol Phylogenet Evol. 2021;163: 107229.
[2] Quijano-Abril MA, Callejas-Posada R, Miranda-Esquivel DR. Areas of endemism and distribution patterns for neotropical Piper species (Piperaceae). J Biogeogr. 2006;33:1266-78.
[3] Ware I, Franke K, Hussain H, Morgan I, Rennert R, Wessjohann LA. Bioactive phenolic compounds from Peperomia obtusifolia. Molecules. 2022;27:4363.
[4] Suwanphakdee C, Chantaranothai P. A new species and three taxonomic changes in Piper (Piperaceae) from Thailand. Blumea. 2011;56:235-9.
[5] Asmarayani R. Phylogenetic relationships in malesian-pacific Piper (Piperaceae) and their implications for systematics. Taxon. 2018;67:693-724.
[6] Salehi B, Zakaria ZA, Gyawali R, Ibrahim SA, Rajkovic J, Shinwari ZK, Khan T, Sharifi-Rad J, Ozleyen A, Turkdonmez E, Valussi M, Tumer TB, Fidalgo LM, Martorell M, Setzer WN. Piper species: a comprehensive review on their phytochemistry, biological activities and applications. Molecules. 2019;24:1364.
[7] Schnabel A, Cotinguiba F, Athmer B, Vogt T. Piper nigrum CYP719A37 catalyzes the decisive methylenedioxy bridge formation in piperine biosynthesis. Plants. 2021;10:128.
[8] Jackel L, Schnabel A, Stellmach H, Klauss U, Matschi S, Hause G, Vogt T. The terminal enzymatic step in piperine biosynthesis is co-localized with the product piperine in specialized cells of black pepper (Piper nigrum L.). Plant J. 2022;111:731-47.
[9] Burkill IH, Birtwistle W, Foxworthy FW, Scrivenor JB, Watson JG. A dictionary of the economic products of the Malay Peninsula. Governments of Malaysia and Singapore by the Ministry of Agriculture and cooperatives: 1966.
[10] Zakaria ZA, Patahuddin H, Mohamad AS, Israf DA, Sulaiman MR. In vivo anti-nociceptive and anti-inflammatory activities of the aqueous extract of the leaves of Piper sarmentosum. J Ethnopharmacol. 2010;128:42-8.
[11] Hussain K, Hashmi FK, Latif A, Ismail Z, Sadikun A. A review of the literature and latest advances in research of Piper sarmentosum. Pharm Biol. 2012;50:1045-52.
[12] Ridtitid W, Rattanaprom W, Thaina P, Chittrakarn S, Sunbhanich M. Neuromuscular blocking activity of methanolic extract of Piper sarmentosum leaves in the rat phrenic nerve-hemidiaphragm preparation. J Ethnopharmacol. 1998;61:135-42.
[13] Chanwitheesuk A, Teerawutgulrag A, Rakariyatham N. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem. 2005;92:491-7.
[14] Chaveerach A, Mokkamul P, Sudmoon R, Tanee T. Ethnobotany of the genus Piper (Piperaceae) in Thailand. Ethnobot Res Appl. 2006;4:223-31.
[15] Sun X, Chen W, Dai W, Xin H, Rahmand K, Wang Y, Zhang J, Zhang S, Xu L, Han T. Piper sarmentosum Roxb.: a review on its botany, traditional uses, phytochemistry, and pharmacological activities. J Ethnopharmacol. 2020;263: 112897.
[16] Li CY, Tsai WJ, Damu AG, Lee EJ, Wu TS, Dung NX, Thang TD, Thanh L. Isolation and identification of antiplatelet aggregatory principles from the leaves of Piper lolot. J Agric Food Chem. 2007;55:9436-42.
[17] Ware I, Franke K, Dube M, El Enshasy HA, Wessjohann LA. Characterization and bioactive potential of secondary metabolites isolated from Piper sarmentosum Roxb. Int J Mol Sci. 2023;24:1328.
[18] Md. Salleh MFRR, Aminuddin A, Hamid AA, Salamt N, Japar-Sidik FZ, Ugusman A. Piper sarmentosum Roxb. attenuates vascular endothelial dysfunction in nicotine-induced rats. Front Pharmacol. 2021;12: 667102.
[19] Chan EWL, Yeo ETY, Wong KWL, See ML, Wong KY, Yap JKY, Gan SY. Piper sarmentosum Roxb. attenuates beta amyloid (αβ)-induced neurotoxicity via the inhibition of amyloidogenesis and tau hyperphosphorylation in SH-SY5Y cells. Curr Alzheimer Res. 2021;18:80-7.
[20] Kumar SR, Ramli ESM, Nasir NAA, Ismail NM, Fahami NAM. Methanolic extract of Piper sarmentosum attenuates obesity and hyperlipidemia in fructose-induced metabolic syndrome rats. Molecules. 2021;26:3985.
[21] Wolfender JL, Marti G, Thomas A, Bertrand S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J Chromatogr A. 2015;1382:136-64.
[22] Luca SV, Minceva M, Gertsch J, Skalicka-Woźniak K. LC-HRMS/MS-based phytochemical profiling of Piper spices: global association of piperamides with endocannabinoid system modulation. Food Res Int. 2021;141: 110123.
[23] Afzan A, Kasim N, Ismail NH, Azmi N, Ali AM, Mat N, Wolfender JL. Differentiation of Ficus deltoidea varieties and chemical marker determination by UHPLC-TOFMS metabolomics for establishing quality control criteria of this popular Malaysian medicinal herb. Metabolomics. 2019;15:35.
[24] Farag MA, Abdelwareth A, Zayed A, Eissa TF, Dokalahy E, Frolov A, Wessjohann LA. A comparative metabolomics approach for Egyptian mango fruits classification based on UV and UPLC/MS and in relation to its antioxidant effect. Foods. 2022;11:2127.
[25] Pei H, Su W, Gui M, Dou M, Zhang Y, Wang C, Lu D. Comparative analysis of chemical constituents in different parts of lotus by UPLC and QTOF-MS. Molecules. 2021;26:1855.
[26] Oh JH, Ha IJ, Lee MY, Kim EO, Park D, Lee JH, Lee SG, Kim DW, Lee TH, Lee EJ, Kim CK. Identification and metabolite profiling of alkaloids in aerial parts of Papaver rhoeas by liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. J Sep Sci. 2018;41:2517-27.
[27] El Senousy AS, Farag MA, Al-Mandy DA, Wessjohann LA. Developmental changes in leaf phenolics composition from three artichoke cvs. (Cynara scolymus) as determined via UHPLC-MS and chemometrics. Phytochemistry. 2014;108:67-76.
[28] Schutz D, Achten E, Creydt M, Riedl J, Fischer M. Non-targeted LC-MS metabolomics approach towards an authentication of the geographical origin of grain maize (Zea mays L.) samples. Foods. 2021;10:2160.
[29] Farag MA, Khaled SE, El Gingeehy Z, Shamma SN, Zayed A. Comparative metabolite profiling and fingerprinting of medicinal cinnamon bark and its commercial preparations via a multiplex approach of GC-MS, UV, and NMR techniques. Metabolites. 2022;12:614.
[30] Hegazi NM, Khattab AR, Frolov A, Wessjohann LA, Farag MA. Authentication of saffron spice accessions from its common substitutes via a multiplex approach of UV/VIS fingerprints and UPLC/MS using molecular networking and chemometrics. Food Chem. 2022;367: 130739.
[31] Lee JW, Ji SH, Choi BR, Choi DJ, Lee YG, Kim HG, Kim GS, Kim K, Lee YH, Baek NI, Lee DY. UPLC-QTOF/MS-based metabolomics applied for the quality evaluation of four processed Panax ginseng products. Molecules. 2018;23:2062.
[32] Li K, Fan Y, Wang H, Fu Q, Jin Y, Liang X. Qualitative and quantitative analysis of an alkaloid fraction from Piper longum L. using ultra-high performance liquid chromatography-diode array detector-electrospray ionization mass spectrometry. J Pharm Biome Anal. 2015;109:28-35.
[33] Farag MA, Porzel A, Mahrous EA, El-Massry MM, Wessjohann LA. Integrated comparative metabolite profiling via MS and NMR techniques for Senna drug quality control analysis. Anal Bioanal Chem. 2015;407:1937-49.
[34] El-Hawary EA, Zayed A, Laub A, Modolo LV, Wessjohann LA, Farag MA. How does LC/MS compare to UV in coffee authentication and determination of antioxidant effects? Brazilian and middle eastern coffee as case studies. Antioxidants. 2022;11:131.
[35] Han YX, Wang PF, Zhao M, Chen LM, Wang ZM, Liu XQ, Gao HM, Gong MX, Li H, Zhu JZ, Liu CG. Chemical profiling of Xueshuan xinmaining tablet by HPLC and UPLC-ESI-Q-TOF/MS. Evid Based Complement Alternat Med. 2018;2018:2781597.
[36] Wu C, Liu H, Rong X, Liu J, Ding W, Cheng X, Xing J, Wang C. Phytochemical composition profile and space-time accumulation of secondary metabolites for Dracocephalum moldavica Linn. via UPLC-Q/TOF-MS and HPLC-DAD method. Biomed Chromatogr. 2020;34: e4865.
[37] Trapp SC, Croteau RB. Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics. 2001;158:811-32.
[38] Selmar D, Kleinwachter M. Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind Crops Prod. 2013;42:558-66.
[39] Yang LL, Yang L, Yang X, Zhang T, Lan YM, Zhao Y, Han M, Yang LM. Drought stress induces biosynthesis of flavonoids in leaves and saikosaponins in roots of Bupleurum chinense DC. Phytochemistry. 2020;177: 112434.
[40] Zheng YK, Su BJ, Wang YQ, Wang HS, Liao HB, Liang D. New tyramine- and aporphine-type alkamides with no release inhibitory activities from Piper puberulum. J Nat Prod. 2021;84:1316-25.
[41] Wu Y, Zheng CJ, Deng XH, Qin LP. Two new bis-alkaloids from the aerial part of Piper flaviflorum. Helv Chim Acta. 2013;96:951-5.
[42] Leonard W, Zhang PZ, Ying DY, Fang ZX. Lignanamides: sources, biosynthesis and potential health benefits—a mini review. Crit Rev Food Sci Nutr. 2021;61:1404-14.
[43] Flores-Sanchez IJ, Verpoorte R. Secondary metabolism in cannabis. Phytochem Rev. 2008;7:615-39.
[44] Yoshikawa M, Yamaguchi S, Murakami T, Matsuda H, Yamahara J, Murakami N. Absolute stereostructures of trifoliones A, B, C, and D, new biologically active diterpenes from the tuber of Sagittaria trifolia L. Chem Pharm Bull. 1993;41:1677-9.
[45] Facchini PJ, Hagel J, Zulak KG. Hydroxycinnamic acid amide metabolism: physiology and biochemistry. Can J Bot. 2002;80:577-89.
[46] Yi L, Liang ZT, Peng Y, Yao X, Chen HB, Zhao ZZ. Tissue-specific metabolite profiling of alkaloids in Sinomenii caulis using laser microdissection and liquid chromatography-quadrupole/time of flight-mass spectrometry. J Chromatogr A. 2012;1248:93-103.
[47] Gorpenchenko TY, Grigorchuk VP, Bulgakov DV, Tchernoded GK, Bulgakov VP. Tempo-spatial pattern of stepharine accumulation in Stephania glabra morphogenic tissues. Int J Mol Sci. 2019;20:808.
[48] Samanani N, Alcantara J, Bourgault R, Zulak KG, Facchini PJ. The role of phloem sieve elements and laticifers in the biosynthesis and accumulation of alkaloids in opium poppy. Plant J. 2006;47:547-63.
[49] Singh S, Pathak N, Fatima E, Negi AS. Plant isoquinoline alkaloids: advances in the chemistry and biology of berberine. Eur J Med Chem. 2021;226: 113839.
[50] Morris JS, Facchini PJ. Isolation and characterization of reticuline N-methyltransferase involved in biosynthesis of the aporphine alkaloid magnoflorine in opium poppy. J Biol Chem. 2016;291:23416-27.
[51] Marques JV, Dalisay DS, Yang H, Lee C, Davin LB, Lewis NG. A multi-omics strategy resolves the elusive nature of alkaloids in Podophyllum species. Mol Biosyst. 2014;10:2838-49.
[52] Priestap HA, Velandia AE, Johnson JV, Barbieri MA. Secondary metabolite uptake by the aristolochia-feeding papilionoid butterfly Battus polydamas. Biochem Syst Ecol. 2012;40:126-37.
[53] Pearce G, Marchand PA, Griswold J, Lewis NG, Ryan CA. Accumulation of feruloyltyramine and p-coumaroyltyramine in tomato leaves in response to wounding. Phytochemistry. 1998;47:659-64.
[54] Newman MA, von Roepenack-Lahaye E, Parr A, Daniels MJ, Dow JM. Induction of hydroxycinnamoyl-tyramine conjugates in pepper by Xanthomonas campestris, a plant defense response activated by hrp gene-dependent and hrp gene-independent mechanisms. Mol Plant-Microbe Interact. 2001;14:785-92.
[55] Zacares L, Lopez-Gresa MP, Fayos J, Primo J, Belles JM, Conejero V. Induction of p-coumaroyldopamine and feruloyldopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae. Mol Plant-Microbe Interact. 2007;20:1439-48.
[56] Yu L, Hu XL, Xu RR, Ba YY, Chen XQ, Wang X, Cao B, Wu X. Amide alkaloids characterization and neuroprotective properties of Piper nigrum L.: a comparative study with fruits, pericarp, stalks and leaves. Food Chem. 2022;368: 130832.
[57] Schnabel A, Athmer B, Manke K, Schumacher F, Cotinguiba F, Vogt T. Identification and characterization of piperine synthase from black pepper Piper nigrum L. Commun Biol. 2021;4:445.
[58] Whitehead SR, Bowers MD. Chemical ecology of fruit defence: synergistic and antagonistic interactions among amides from Piper. Funct Ecol. 2014;28:1094-106.
[59] Jeon HJ, Kim K, Kim YD, Lee SE. Naturally occurring Piper plant amides potential in agricultural and pharmaceutical industries: perspectives of piperine and piperlongumine. Appl Biol Chem. 2019;62:63.
[60] Haq IU, Imran M, Nadeem M, Tufail T, Gondal TA, Mubarak MS. Piperine: a review of its biological effects. Phytother Res. 2021;35:680-700.
[61] Quijia CR, Chorilli M. Characteristics, biological properties and analytical methods of piperine: a review. Crit Rev Anal Chem. 2020;50:62-77.
[62] Takahashi M, Hirose N, Ohno S, Arakaki M, Wada K. Flavor characteristics and antioxidant capacities of hihatsumodoki (Piper retrofractum Vahl) fresh fruit at three edible maturity stages. J Food Sci Technol. 2018;55:1295-305.
[63] Hjelmeland AK, Ebeler SE. Glycosidically bound volatile aroma compounds in grapes and wine: a review. Am J Enol Vitic. 2015;66:1-11.
[64] Vogt T, Jones P. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci. 2000;5:380-6.
[65] Bowles D, Lim EK, Poppenberger B, Vaistij FE. Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol. 2006;57:567-97.
[66] Jones P, Vogt T. Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta. 2001;213:164-74.
[67] Khew CY, Harikrishna JA, Wee WY, Lau ET, Hwang SS. Transcriptional sequencing and gene expression analysis of various genes in fruit development of three different black pepper (Piper nigrum L.) varieties. Int J Genomics. 2020;2020:1540915.
[68] Hostetler GL, Ralston RA, Schwartz SJ. Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr. 2017;8:423-35.
[69] Falcone Ferreyra ML, Rius S, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci. 2012;3:222.
[70] Böttner L, Grabe V, Gablenz S, Böhme N, Appenroth KJ, Gershenzon J, Huber M. Differential localization of flavonoid glucosides in an aquatic plant implicates different functions under abiotic stress. Plant Cell Environ. 2021;44:900-14.
[71] Printz B, Lutts S, Hausman JF, Sergeant K. Copper trafficking in plants and its implication on cell wall dynamics. Front Plant Sci. 2016;7:601.
[72] Rodriguez-Garcia C, Sanchez-Quesada C, Toledo E, Delgado-Rodriguez M, Gaforio JJ. Naturally lignan-rich foods: a dietary tool for health promotion? Molecules. 2019;24:917.
[73] Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem. 2001;49:3106-12.
[74] Ugusman A, Zakaria Z, Hui CK, Nordin NA, Mahdy ZA. Flavonoids of Piper sarmentosum and its cytoprotective effects against oxidative stress. EXCLI J. 2012;11:705-14.
[75] Lee JH, Cho S, Paik HD, Choi CW, Nam KT, Hwang SG, Kim SK. Investigation on antibacterial and antioxidant activities, phenolic and flavonoid contents of some Thai edible plants as an alternative for antibiotics. Asian-Australas J Anim Sci. 2014;27:1461-8.
[76] Baba MS, Hassan ZAA. Piper sarmentosum leaf as a promising non-toxic antiparasitic agent against trypanosoma evansi-induced mice. Malays J Microsc. 2019;15:46-60.
[77] Hematpoor A, Liew SY, Chong WL, Azirun MS, Lee VS, Awang K. Inhibition and larvicidal activity of phenylpropanoids from Piper sarmentosum on acetylcholinesterase against mosquito vectors and their binding mode of interaction. PLoS ONE. 2016;11: e0155265.
[78] Hematpoor A, Liew SY, Azirun MS, Awang K. Insecticidal activity and the mechanism of action of three phenylpropanoids isolated from the roots of Piper sarmentosum Roxb. Sci Rep. 2017;7:12576.
[79] Alseekh S, Aharoni A, Brotman Y, Contrepois K, D’Auria J, Ewald J, Ewald JC, Fraser PD, Giavalisco P, Hall RD, Heinemann M, Link H, Luo J, Neumann S, Nielsen J, de Souza LP, Saito K, Sauer U, Schroeder FC, Schuster S, Siuzdak G, Skirycz A, Sumner LW, Snyder MP, Tang H, Tohge T, Wang Y, Wen W, Wu S, Xu G, Zamboni N, Fernie AR. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods. 2021;18:747-56.
[80] Li Z, Zhang X, Liao J, Fan X, Cheng Y. An ultra-robust fingerprinting method for quality assessment of traditional Chinese medicine using multiple reaction monitoring mass spectrometry. J Pharm Anal. 2021;11:88-95.
[81] Wu Z, Wang X, Chen M, Hu H, Cao J, Chai T, Wang H. A study on tissue-specific metabolite variations in Polygonum cuspidatum by high-resolution mass spectrometry-based metabolic profiling. Molecules. 2019;24:1058.
[82] dos Santos CHC, de Carvalho MG, Laub A, Franke K, Wessjohann LA. UHPLC-ESI-Orbitrap-HR-MS analysis of cyclopeptide alkaloids from Ziziphus joazeiro. Nat Prod Commun. 2021;16.
[83] Szabo D, Schlosser G, Vekey K, Drahos L, Revesz A. Collision energies on QTOF and orbitrap instruments: how to make proteomics measurements comparable? J Mass Spectrom. 2021;56: e4693.
[84] Li CR, Hou XH, Xu YY, Gao W, Li P, Yang H. Manual annotation combined with untargeted metabolomics for chemical characterization and discrimination of two major Crataegus species based on liquid chromatography quadrupole time-of-flight mass spectrometry. J Chromatogr A. 2020;1612: 460628.
[85] Revesz A, Rokob TA, JeanneDitFouque D, Turiak L, Memboeuf A, Vekey K, Drahos L. Selection of collision energies in proteomics mass spectrometry experiments for best peptide identification: study of mascot score energy dependence reveals double optimum. J Proteome Res. 2018;17:1898-906.
[86] Pei H, Xue L, Tang M, Tang H, Kuang S, Wang L, Ma X, Cai X, Li Y, Zhao M, Peng A, Ye H, Chen L. Alkaloids from black pepper (Piper nigrum L.) exhibit anti-inflammatory activity in murine macrophages by inhibiting activation of NF-кB pathway. J Agric Food Chem. 2020;68:2406-17.
[87] Islam MT, Hasan J, Snigdha H, Ali ES, Sharifi-Rad J, Martorell M, Mubarak MS. Chemical profile, traditional uses, and biological activities of Piper chaba hunter: a review. J Ethnopharmacol. 2020;257: 112853.
[88] Mayr S, Bec KB, Grabska J, Schneckenreiter E, Huck CW. Near-infrared spectroscopy in quality control of Piper nigrum: a comparison of performance of benchtop and handheld spectrometers. Talanta. 2021;223: 121809.
[89] Sun C, Pei S, Pan Y, Shen Z. Rapid structural determination of amides in Piper longum by high-performance liquid chromatography combined with ion trap mass spectrometry. Rapid Commun Mass Spectrom. 2007;21:1497-503.
[90] Rios MY, Gomez-Calvario V. 1H and 13C NMR data, occurrence, biosynthesis, and biological activity of Piper amides. Mag Reson Chem. 2019;57:993-993.
[91] Luca SV, Gaweł-Bęben K, Strzępek-Gomółka M, Czech K, Trifan A, Zengin G, Korona-Glowniak I, Minceva M, Gertsch J, Skalicka-Woźniak K. Insights into the phytochemical and multifunctional biological profile of spices from the genus Piper. Antioxidants. 2021;10:1642.
[92] Conceição RS, Reis IMA, Cerqueira APM, Perez CJ, Junior MCDS, Branco A, Ifa DR, Botura MB. Rapid structural characterisation of benzylisoquinoline and aporphine alkaloids from Ocotea spixiana acaricide extract by HPTLC-DESI-MSn. Phytochem Anal. 2020;31:711-21.
[93] Sim HJ, Yoon SH, Kim MS, Kim B, Park HM, Hong J. Identification of alkaloid constituents from Fangchi species using pH control liquid-liquid extraction and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2015;29:837-54.
[94] Wolff T, Santos PFP, Valente LMM, Magalhaes A, Tinoco LW, Pereira RCA, Guimaraes EF. Piperamides from Piper ottonoides by NMR and GC-MS based mixture analysis. J Braz Chem Soc. 2015;26:2321-30.
[95] Strunz GM, Finlay HJ. Expedient synthesis of unsaturated amide alkaloids from Piper spp: exploring the scope of recent methodology. Can J Chem. 1996;74:419-32.
[96] Xiao X, Ren W, Zhang N, Bing T, Liu XJ, Zhao ZW, Shangguan DH. Comparative study of the chemical constituents and bioactivities of the extracts from fruits, leaves and root barks of Lycium barbarum. Molecules. 2019;24:1585.
[97] Stévigny C, Jiwan JLH, Rozenberg R, de Hoffmann E, Quetin-Leclercq J. Key fragmentation patterns of aporphine alkaloids by electrospray ionization with multistage mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:523-8.
[98] Carnevale Neto F, Andréo MA, Raftery D, Lopes JLC, Lopes NP, Castro-Gamboa I, Lameiro de Noronha Sales Maia BH, Costa EV, Vessecchi R. Characterization of aporphine alkaloids by electrospray ionization tandem mass spectrometry and density functional theory calculations. Rapid Commun Mass Spectrom. 2020;34: e8533.
[99] Schmidt J, Raith K, Boettcher C, Zenk MH. Analysis of benzylisoquinoline-type alkaloids by electrospray tandem mass spectrometry and atmospheric pressure photoionization. Eur J Mass Spectrom. 2005;11:325-33.
[100] Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013;2013: 162750.
[101] Hu L, Liang Z, Wang Y, Wei G, Huang YC. Identification of C-glycosyl flavones and O-glycosyl flavones in five Dendrobium species by high-performance liquid chromatography coupled with electrospray ionization multi-stage tandem MS. Rapid Commun Mass Spectrom. 2022;36: e9158.
[102] Purba RAP, Paengkoum S, Paengkoum P. Development of a simple high-performance liquid chromatography-based method to quantify synergistic compounds and their composition in dried leaf extracts of Piper sarmentosum Roxb. Separations. 2021;8:152.
[103] Tagrida M, Benjakul S. Ethanolic extract of betel (Piper betle L.) and chaphlu (Piper sarmentosum Roxb.) dechlorophyllized using sedimentation process: production, characteristics, and antioxidant activities. J Food Biochem. 2020;44: e13508.
[104] Rodríguez-Rivera MP, Lugo-Cervantes E, Winterhalter P, Jerz G. Metabolite profiling of polyphenols in peels of Citrus limetta Risso by combination of preparative high-speed countercurrent chromatography and LC-ESI-MS/MS. Food Chem. 2014;158:139-52.
[105] Wang Y, Liao X, Zhou C, Hu L, Wei G, Huang Y, Lei Z, Ren Z, Liu Z, Liu Z. Identification of C-glycosyl flavones and quality assessment in Dendrobium nobile. Rapid Commun Mass Spectrom. 2021;35: e9012.
[106] Pascale R, Acquavia MA, Cataldi TRI, Onzo A, Coviello D, Bufo SA, Scrano L, Ciriello R, Guerrieri A, Bianco G. Profiling of quercetin glycosides and acyl glycosides in sun-dried peperoni di Senise peppers (Capsicum annuum L.) by a combination of LC-ESI (-)-MS/MS and polarity prediction in reversed-phase separations. Anal Bioanal Chem. 2020;412:3005-15.
[107] Parejo I, Jáuregui O, Viladomat F, Bastida J, Codina C. Characterization of acylated flavonoid-O-glycosides and methoxylated flavonoids from Tagetes maxima by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:2801-10.
[1] Kritika Jalota, Vikas Sharma, Chiti Agarwal, Suruchi Jindal. Eco-friendly approaches to phytochemical production: elicitation and beyond[J]. Natural Products and Bioprospecting, 2024, 14(1): 5-5.
[2] Weiwei Peng, Qi Huang, Xin Ke, Wenxuan Wang, Yan Chen, Zihuan Sang, Chen Chen, Siyu Qin, Yuting Zheng, Haibo Tan, Zhenxing Zou. Koningipyridines A and B, two nitrogen-containing polyketides from the fungus Trichoderma koningiopsis SC-5[J]. Natural Products and Bioprospecting, 2024, 14(1): 8-8.
[3] Li Wu, Ning Yang, Meng Guo, Didi Zhang, Reza A. Ghiladi, Hasan Bayram, Jun Wang. The role of sound stimulation in production of plant secondary metabolites[J]. Natural Products and Bioprospecting, 2023, 13(6): 40-40.
[4] Fengli Li, Saisai Gu, Sitian Zhang, Shuyuan Mo, Jieru Guo, Zhengxi Hu, Yonghui Zhang. Three new amide derivatives from the fungus Alternaria brassicicola[J]. Natural Products and Bioprospecting, 2023, 13(4): 28-28.
[5] Cheng-Yong Tan, Bao-Bao Shi, Mei-Fen Bao, Xiang-Hai Cai. Anti-inflammatory maistemonine-class alkaloids of Stemona japonica[J]. Natural Products and Bioprospecting, 2023, 13(2): 8-8.
[6] Ke-Pu Huang, Li-Li Xu, Sheng Li, Yin-Ling Wei, Lian Yang, Xiao-Jiang Hao, Hong-Ping He, Yu Zhang. Uncarialines A-E, new alkaloids from Uncaria rhynchophylla and their anticoagulant activity[J]. Natural Products and Bioprospecting, 2023, 13(2): 13-13.
[7] Yue Zhao, Wen-Ke Gao, Xiang-Dong Wang, Li-Hua Zhang, Hai-Yang Yu, Hong-Hua Wu. Phytochemical and pharmacological studies on Solanum lyratum: a review[J]. Natural Products and Bioprospecting, 2022, 12(6): 39-39.
[8] Kyu Hwan Shim, Min Ju Kang, Niti Sharma, Seong Soo A.An. Beauty of the beast: anticholinergic tropane alkaloids in therapeutics[J]. Natural Products and Bioprospecting, 2022, 12(5): 33-33.
[9] Mei-Ling Xiang, Bin-Yuan Hu, Zi-Heng Qi, Xiao-Na Wang, Tian-Zhen Xie, Zhao-Jie Wang, Dan-Yu Ma, Qi Zeng, Xiao-Dong Luo. Chemistry and bioactivities of natural steroidal alkaloids[J]. Natural Products and Bioprospecting, 2022, 12(4): 23-23.
[10] Ghodsi Mohammadi Ziarani, Negar Jamasbi, Fatemeh Mohajer. Recent advances on the synthesis of natural pyrrolizidine alkaloids: alexine, and its stereoisomers[J]. Natural Products and Bioprospecting, 2022, 12(1): 1-15.
[11] Pan-Pan Wei, Jia-Cheng Ji, Xu-Jun Ma, Zheng-Hui Li, Hong-Lian Ai, Xin-Xiang Lei, Ji-Kai Liu. Three new pyrrole alkaloids from the endophytic fungus Albifimbria viridis[J]. Natural Products and Bioprospecting, 2022, 12(1): 1-5.
[12] Na Zhang, Fan Xia, Song-Yu Li, Yin Nian, Li-Xin Wei, Gang Xu. Diterpenoid Alkaloids from the Aerial Parts of Aconitum flavum Hand. -Mazz[J]. Natural Products and Bioprospecting, 2021, 11(4): 421-429.
[13] Hao-Yi Li, Bing-Chao Yan, Li-Xin Wei, Han-Dong Sun, Pema-Tenzin Puno. Tangutidines A-C, Three Amphoteric Diterpene Alkaloids from Aconitum tanguticum[J]. Natural Products and Bioprospecting, 2021, 11(4): 459-464.
[14] Ke Ye, Hong-Lian Ai, Ji-Kai Liu. Identification and Bioactivities of Secondary Metabolites Derived from Endophytic Fungi Isolated from Ethnomedicinal Plants of Tujia in Hubei Province: A Review[J]. Natural Products and Bioprospecting, 2021, 11(2): 185-205.
[15] Zong-Qing Huo, Qian Zhao, Wen-Tao Zhu, Xiao-Jiang Hao, Yu Zhang. Bousmekines A-E, New Alkaloids from Two Bousigonia Species: B.angustifolia and B. mekongensis[J]. Natural Products and Bioprospecting, 2021, 11(2): 207-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed