ORIGINAL ARTICLES |
|
|
|
|
|
Koningipyridines A and B, two nitrogen-containing polyketides from the fungus Trichoderma koningiopsis SC-5 |
Weiwei Peng1,3, Qi Huang1,4, Xin Ke1,3, Wenxuan Wang1, Yan Chen1,3, Zihuan Sang1,3, Chen Chen1,3, Siyu Qin1, Yuting Zheng1, Haibo Tan1,2,3, Zhenxing Zou1 |
1. Xiangya School of Pharmaceutical Sciences, Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China; 2. National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, 341000, People's Republic of China; 3. Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China; 4. Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China |
|
|
Abstract Two novel koninginin derivatives, koningipyridines A and B (1 and 2), along with four known compounds (3-6) were isolated from the EtOAc extract of the endophytic fungus Trichoderma koningiopsis SC-5. Among them, koningipyridine A featured an unprecedented pentacyclic ketal skeleton with the formation of a fascinating 6/6/5/6/5 fused ring system and shared a characteristic pyridine core, which represents the first example of nitrogen-containing koninginin-type natural product. Moreover, koningipyridine B was the first member in the koninginin family sharing a unique 6/6/5 dihydropyridine skeleton, and it was suggested to be the critical biosynthetic precursor of koningipyridine A. The structures of 1 and 2 were elucidated by the interpretation of 1D and 2D NMR spectroscopy, HRESIMS data, as well as theoretical calculations of 13C NMR and electronic circular dichroism (ECD). Moreover, all isolates were screened for antimicrobial activities against Staphylococcus aureus, MRSA, and Escherichia coli as well as the cytotoxic effects against three cancer cell lines (A549, Hela, and HepG2).
|
Keywords
Trichoderma koningiopsis
Endophytic fungi
Secondary metabolites
Koningipyridine
Cytotoxic activity
|
Fund:Financial support for this research was provided by the National Natural Science Foundation of China (Nos. 82173711 and 82003929), Youth Innovation Promotion Association of CAS (2020342), Natural Science Foundation of Hunan Province (Nos. 2021JJ30917 and 2021JJ40993), Key Research and Development Project of Hainan Province (No. ZDYF2022SHFZ048), and the Central South University postgraduate independent exploration and innovation project (No. 2022zzts0899). |
Corresponding Authors:
Haibo Tan,E-mail:tanhaibo@scbg.ac.cn;Zhenxing Zou,E-mail:zouzhenxing@csu.edu.cn
E-mail: tanhaibo@scbg.ac.cn;zouzhenxing@csu.edu.cn
|
Issue Date: 19 February 2024
|
|
|
[1] Aly AH, Debbab A, Proksch P. Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol. 2011;90:1829–45. https://doi.org/10.1007/s00253-011-3270-y.
[2] Liu JJ, Liu G. Analysis of secondary metabolites from plant endophytic fungi. Methods Mol Biol. 2018;1848:25–38. https://doi.org/10.1007/978-1-4939-8724-5_3.
[3] Song FH, Dai HQ, Tong YJ, Ren B, Chen C, Sun N, et al. Trichodermaketones A-D and 7-O-methylkoninginin D from the marine fungus Trichoderma koningii. J Nat Prod. 2010;73:806–10. https://doi.org/10.1021/np900642p.
[4] Sun Y, Tian L, Huang J, Ma HY, Zheng Z, Lv A, et al. Trichodermatides A-D, novel polyketides from the marine-derived fungus Trichoderma reesei. Org Lett. 2008;10:393–6. https://doi.org/10.1021/ol702674f.
[5] Shi XS, Li HL, Li XM, Wang DJ, Li X, Meng LH, et al. Highly oxygenated polyketides produced by Trichoderma koningiopsis QA-3, an endophytic fungus obtained from the fresh roots of the medicinal plant Artemisia argyi. Bioorg Chem. 2020;94: 103448. https://doi.org/10.1016/j.bioorg.2019.103448.
[6] Chavez JR, Raja HA, Gra TN, Gallagher JM, Metri P, Xue D, et al. Prealamethicin F50 and related peptaibols from Trichoderma arundinaceum: validation of their authenticity via in situ chemical analysis. RSC Adv. 2017;7:45733–41. https://doi.org/10.1039/c7ra09602j.
[7] Miao FP, Liang XR, Yin XL, Wang G, Ji NY. Absolute configurations of unique harziane diterpenes from Trichoderma species. Org Lett. 2012;14:3815–7. https://doi.org/10.1021/ol3014717.
[8] Chen SC, Li HH, Chen YC, Li SN, Xu JL, Guo H, et al. Three new diterpenes and two new sesquiterpenoids from the endophytic fungus Trichoderma koningiopsis A729. Bioorg Chem. 2019;86:368–74. https://doi.org/10.1016/j.bioorg.2019.02.005.
[9] Shi XS, Meng L, Li X, Wang DJ, Zhou XW, Du FY, et al. Polyketides and terpenoids with potent antibacterial activities from the Artemisia argyi-derived fungus Trichoderma koningiopsis QA-3. Chem Biodivers. 2020;17: e2000566. https://doi.org/10.1002/cbdv.202000566.
[10] Song YP, Miao FP, Fang ST, Yin XL, Ji NY. Halogenated and nonhalogenated metabolites from the marine-alga-endophytic fungus Trichoderma asperellum cf44-2. Mar Drugs. 2018;16:266. https://doi.org/10.3390/md16080266.
[11] Li MF, Li GH, Zhang KQ. Non-volatile metabolites from Trichoderma spp. Metabolites. 2019;9:58. https://doi.org/10.3390/metabo9030058.
[12] Zhou P, Wu ZD, Tan DD, Yang J, Zhou Q, Zeng FR, et al. Atrichodermones A-C, three new secondary metabolites from the solid culture of an endophytic fungal strain Trichoderma atroviride. Fitoterapia. 2017;123:18–22. https://doi.org/10.1016/j.fitote.2017.09.012.
[13] Hu X, Gong MW, Zhang WW, Zheng QH, Liu QY, Chen L, et al. Novel cytotoxic metabolites from the marine-derived fungus Trichoderma citrinoviride. Heterocycles. 2014;89:189–96. https://doi.org/10.1002/chin.201424217.
[14] Ding G, Wang HL, Li L, Chen AJ, Chen L, Chen H, et al. Trichoderones A and B: two pentacyclic cytochalasans from the plant endophytic fungus Trichoderma gamsii. Eur J Org Chem. 2012;2012:2516–9. https://doi.org/10.1002/ejoc.201200053.
[15] Reino JL, Guerrero RF, Hernández-Galán R, Collado IG. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry. 2008;7:89–123. https://doi.org/10.1007/s11101-006-9032-2.
[16] El-Hasan A, Walker F, Schone J, Buchenauer H. Detection of viridiofungin A and other antifungal metabolites excreted by Trichoderma harzianum active against different plant pathogens. Eur J Plant Pathol. 2009;124:457–70. https://doi.org/10.1007/s10658-009-9433-3.
[17] Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods. 2010;8:187–93. https://doi.org/10.1016/j.mimet.2010.03.011.
[18] Mukherjee M, Mukherjee PK, Horwitz BA, Berg CG, Zeilinger S. Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian J Microbiol. 2012;52:522–9. https://doi.org/10.1007/s12088-012-0308-5.
[19] Khan RAA, Najeeb S, Hussain S, Xie B, Li Y. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms. 2020;8:817. https://doi.org/10.3390/microorganisms8060817.
[20] Vinale F, Sivasithamparam K, Ghisalberti EL, Ruocco M, Wood S, Lorito M. Trichoderma secondary metabolites that affect plant metabolism. Nat Prod Commun. 2012;7:1545–50. https://doi.org/10.1177/1934578x1200701133.
[21] Liu K, Yang YB, Miao CP, Zheng YK, Chen JL, Chen YW, et al. Koningiopisins A-H, polyketides with synergistic antifungal activities from the endophytic fungus Trichoderma koningiopsis. Planta Med. 2016;82:371–6. https://doi.org/10.1055/s-0035-1558228.
[22] Wang YL, Hu BY, Qian MA, Wang ZH, Zou JM, Sang XY, et al. Koninginin W, a new polyketide from the endophytic fungus Trichoderma koningiopsis YIM PH30002. Chem Biodivers. 2021;18: e2100460. https://doi.org/10.1002/cbdv.202100460.
[23] Cutler HG, Cutler SJ, Ross SA, Sayed KE, Dugan FM, Bartlett MG, et al. Koninginin G, a new metabolite from Trichoderma aureoviride. J Nat Prod. 1999;62:137–9. https://doi.org/10.1021/np9801817.
[24] Hu M, Li QL, Yang YB, Liu K, Miao CP, Zhao LX, et al. Koninginins R-S from the endophytic fungus Trichoderma koningiopsis. Nat Prod Res. 2017;31:835–9. https://doi.org/10.1080/14786419.2016.1250086.
[25] Liu K, Yang YB, Chen JL, Miao CP, Wang Q, Zhou H, et al. Koninginins N-Q, polyketides from the endophytic fungus Trichoderma koningiopsis harbored in Panax notoginseng. Nat Prod Bioprospect. 2016;6:49–55. https://doi.org/10.1007/s13659-015-0085-z.
[26] Lang BY, Li J, Zhou XX, Chen YH, Yang YH, Li XN, et al. Koninginins L and M, two polyketides from Trichoderma koningii 8662. Phytochem Lett. 2015;11:1–4. https://doi.org/10.1016/j.phytol.2014.10.031.
[27] Zhou XX, Li J, Yang YH, Zeng Y, Zhao PJ. Three new koninginins from Trichoderma neokongii 8722. Phytochem Lett. 2014;8:137–40. https://doi.org/10.1016/j.phytol.2014.03.004.
[28] Shi XS, Wang DJ, Li XM, Li HL, Meng LH, Li X, et al. Antimicrobial polyketides from Trichoderma koningiopsis QA-3, an endophytic fungus obtained from the medicinal plant Artemisia argyi. RSC Adv. 2017;7:51335–42. https://doi.org/10.1039/C7RA11122C.
[29] Dunlop RW, Simon A, Sivasithamparam K, Ghisalberti EL. An antibiotic from Trichoderma Koningii active against soilborne plant pathogens. J Nat Prod. 1989;52:67–74. https://doi.org/10.1021/np50061a008.
[30] Parker SR, Cutler HG, Schreiner PR. Koninginin E: isolation of a biologically active natural product from Trichoderma koningii. Biosci Biotechnol Biochem. 1995;59:1747–9. https://doi.org/10.1271/bbb.59.1747.
[31] Ghisalberti EL, Rowland CY. Antifungal metabolites from Trichoderma harzianum. J Nat Prod. 1993;56:1799–804. https://doi.org/10.1021/np50100a020.
[32] Kang FH, Lu XX, Zhang S, Chen DK, Kuang M, Peng WW, et al. Diaportones A-C: three new metabolites from endophytic fungus Diaporthe foeniculina BZM-15. Front Chem. 2021;9: 755351. https://doi.org/10.3389/fchem.2021.755351.
[33] Lu XX, Zhang YJ, Zhang WG, Wang H, Zhang J, Wang SS, et al. Cyclohexanone and phenolic acid derivatives from endophytic fungus Diaporthe foeniculina. Front Chem. 2021;9: 738307. https://doi.org/10.3389/fchem.2021.738307.
[34] Zhang S, Chen DK, Kuang M, Peng WW, Chen Y, Tan JB, et al. Rhytidhylides A and B, two new phthalide derivatives from the endophytic fungus Rhytidhysteron sp. BZM-9. Molecules. 2021;26:6092. https://doi.org/10.3390/molecules26206092.
[35] Zhang S, Wang WX, Tan JB, Kang FH, Chen DK, Xu KP, et al. Rhytidhyesters A-D, 4 new chlorinated cyclopentene derivatives from the endophytic fungus Rhytidhysteron sp. BZM-9. Planta Med. 2021;87:489–97. https://doi.org/10.1055/a-1429-3396.
[36] Zhang WG, Lu XX, Huo LQ, Zhang S, Chen Y, Zou ZX, et al. Sesquiterpenes and steroids from an endophytic Eutypella scoparia. J Nat Prod. 2021;84:1715–24. https://doi.org/10.1021/acs.jnatprod.0c01167.
[37] Zhang WG, Lu XX, Wang H, Chen Y, Zhang J, Zou ZX, et al. Antibacterial secondary metabolites from the endophytic fungus Eutypella scoparia SCBG-8. Tetrahedron Lett. 2021;79: 153314. https://doi.org/10.1016/j.tetlet.2021.153314.
[38] Peng WW, Kuang M, Huang YT, Li MF, Zheng YT, Xu L, et al. Pseudocercones A-C, three new polyketide derivatives from the endophytic fungus Pseudocercospora sp. TSS-1. Nat Prod Res. 2022. https://doi.org/10.1080/14786419.2022.2138874.
[39] Kuang M, Peng WW, Huang YT, Li MF, Qin SY, Zheng YT, et al. Two new chromone derivatives from the rhizosphere soil fungus Ilyonectria robusta. Nat Prod Res. 2022. https://doi.org/10.1080/14786419.2022.2147169.
[40] Chen Y, Wang H, Ke X, Sang ZH, Kuang M, Peng WW, et al. Five new secondary metabolites from an endophytic fungus Phomopsis sp. SZSJ-7B. Front Plant Sci. 2022;13:1049015. https://doi.org/10.3389/fpls.2022.1049015.
[41] Cutler HG, Himmelsbach DS, Arrendale RF, Cole PD, Cox RH. Koninginin A—a novel plant-growth regulator from Trichoderma-koningii. Agr Biol Chem Tokyo. 1989;53:2605–11. https://doi.org/10.1080/00021369.1989.10869746.
[42] Ditchfield R. Molecular orbital theory of magnetic shielding and magnetic susceptibility. J Chem Phys. 1972;56:5688–91. https://doi.org/10.1063/1.1677088.
[43] McWeeny R. Perturbation theory for the fock-dirac density matrix. Phys Rev. 1961;126:1028–34. https://doi.org/10.1103/PhysRev.126.1028.
[44] Chai JD, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys. 2008;10:6615–20. https://doi.org/10.1039/b810189b.
[45] Li J, Liu JK, Wang WX. GIAO 13C NMR calculation with sorted training sets improves accuracy and reliability for structural assignation. J Org Chem. 2020;85:11350–8. https://doi.org/10.1021/acs.joc.0c01451.
[46] Snatzke G. Circular dichroism and absolute conformation: application of qualitative MO theory to chiroptical phenomena. Angew Chem Int Ed Engl. 1979;18:363–77. https://doi.org/10.1002/anie.197903631.
[47] Frelek J, Snatzke G. Circulardichroismus-LXXX: bestimmung der absoluten konfiguration von 1-substituierten glycerin-derivaten und anderen aliphatischen vic-glykolen im mikromaßstab. Z Anal Chem. 1983;316:261–4. https://doi.org/10.1007/BF00594067.
[48] Snatzke G, Wagner U, Wolff HP. Circulardichroism-LXXV1: Cottonogenic derivatives of chiral bidentate ligands with the complex [Mo2 (O2CCH3)4]. Tetrahedron. 1981;37:349–61. https://doi.org/10.1016/S0040-4020(01)92021-6.
[49] Frelek J, Klimek A, Ruskowska P. Dinuclear transition metal complexes as auxiliary chromophores in chiroptical studies on bioactive compounds. Curr Org Chem. 2003;7:1081–104. https://doi.org/10.2174/1385272033486576.
[50] Politi M, De-Tommasi N, Pescitelli G, Di-Bari L, Morelli I, Braca A. Structure and absolute configuration of new diterpenes from Lavandula multifida. J Nat Prod. 2002;65:1742–5. https://doi.org/10.1021/np020260p.
[51] Gao Y, Duan FF, Liu L, Peng XG, Meng XG, Ruan HL. Hypothemycin-type resorcylic acid lactones with immunosuppressive activities from a Podospora sp. J Nat Prod. 2021;84:483–94. https://doi.org/10.1021/acs.jnatprod.0c01344.
[52] Di-Bari L, Pescitelli G, Pratelli C, Pini D, Salvadori P. Determination of absolute configuration of acyclic 1,2-diols with Mo2(OAc)4 1 Snatzke’s method revisited. J Org Chem. 2021;66:4819–25. https://doi.org/10.1021/jo010136v.
[53] Jo MS, Lee S, Yu JS, Baek SC, Cho YC, Kim KH. Megastigmane derivatives from the cladodes of Opuntia humifusa and their nitric oxide inhibitory activities in macrophages. J Nat Prod. 2020;83:684–92. https://doi.org/10.1021/acs.jnatprod.9b01120.
[54] Zhao LY, Liu HX, Huo LQ, Wang MM, Yang B, et al. Structural optimization and antibacterial evaluation of rhodomyrtosone B analogues against MRSA strains. Medchemcomm. 2018;9:1698–707. https://doi.org/10.1039/c8md00257f.
[55] McCauley J, Zivanovic A, Skropeta D. Bioassays for anticancer activities. Methods Mol Biol. 2013;1055:191–205. https://doi.org/10.1007/978-1-62703-577-4_14. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|