Natural Products and Bioprospecting    2024, Vol. 14 Issue (4) : 31-31     DOI: 10.1007/s13659-024-00452-0
REVIEW |
Advances on anticancer fungal metabolites: sources, chemical and biological activities in the last decade (2012-2023)
Antonio Evidente
Institute Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 70125, Pozzuoli, NA, Italy
Download: PDF(4788 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Among microorganisms, fungi are the ones that have the most imagination in producing secondary metabolites with the most varied structural differences, which are produced through different biosynthetic pathways. Therefore, they synthesize secondary metabolites classifiable into numerous families of natural compounds such as amino acids, alkaloids, anthraquinones, aromatic compounds, cyclohexene epoxides, furanones, macrolides, naphthoquinones, polyketides, pyrones, terpenes, etc. They also produced metabolites with very complex structures that can not be classified in the known families of natural compounds. Many fungal metabolites show different biological activities with potential applications in agriculture, food chemistry, cosmetics, pharmacology and medicine. This review is focused on the fungal secondary metabolites with anticancer activity isolated in the last ten years. For some metabolites, when described, their biosynthetic origin, the mode of action and the results of structure activity relationships studies are also reported.
Keywords Fungi      Metabolites      Chemical characterization      Anticancer activity     
Corresponding Authors: Antonio Evidente,E-mail:evidente@unina.it     E-mail: evidente@unina.it
Issue Date: 01 August 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Antonio Evidente
Trendmd:   
Cite this article:   
Antonio Evidente. Advances on anticancer fungal metabolites: sources, chemical and biological activities in the last decade (2012-2023)[J]. Natural Products and Bioprospecting, 2024, 14(4): 31-31.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00452-0     OR     http://npb.kib.ac.cn/EN/Y2024/V14/I4/31
[1] Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770-803.
[2] Sullivan R, Smith JE, Rowan NJ. Medicinal mushrooms and cancer therapy: translating a traditional practice into Western medicine. Perspect Biol Med. 2006;49:159-70.
[3] Moradali MF, Mostafavi H, Ghods S, Hedjaroude GA. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int Immunopharmacol. 2007;7:701-24.
[4] Zjawiony JKJ. Biologically active compounds from Aphyllophorales (polypore) fungi. J Nat Prod. 2004;67:300-10.
[5] Zaidman BZ, Yassin M, Mahajna J, Wasser SP. Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol. 2005;67:453-68.
[6] Evidente A, Kornienko A, Cimmino A, Andolfi A, Lefranc F, Mathieu V, Kiss R. Fungal metabolites with anticancer activity. Nat Prod Rep. 2014;31:617-27.
[7] Braga RM, Padilla G, Araújo WL. The biotechnological potential of Epicoccum spp.: diversity of secondary metabolites. Crit Rev Microbiol. 2018;44:759-78.
[8] Perumal S, Radhakrishnan R, Sathasivam R, Arun M, Song J, Park SU. Endophytes: a vital source of medicine-a review. Trop J Pharm Res. 2023;22:1133-42.
[9] Punniyakotti S, Saxena Pal R, Khera K, Katiyar D. Miscellaneous naturally derived anticancer agents. Curr Drug Ther. 2023;18:357-64.
[10] Kim SK, Dewapriya P. Anticancer potentials of marine‐derived fungal metabolites. In: KIm SK, editor. Marine microbiology. Hoboken (NJ): Wiley; 2013. p. 237-245.
[11] Greve H, Mohamed IE, Pontius A, Kehraus S, Gross H, König GM. Fungal metabolites: structural diversity as incentive for anticancer drug development. Phytochem Rev. 2010;9:537-45.
[12] Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D. Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep. 2011;28:1208-28.
[13] Cimmino A, Masi M, Evidente M, Superchi S, Evidente A. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization. Nat Prod Rep. 2015;32:1629-53.
[14] Turner WB, Aldridge DC. Fungal metabolites II. London: Academic Press; 1983.
[15] Cole JR, Jarvis BB, Schweikert MA. Secondary fungal metabolites. Amsterdam: Academic Press; 2003.
[16] Dewick PM. Medicinal natural products. Chichester: John Wiley & Sons Ltd; 2009.
[17] Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75:311-35.
[18] Roscetto E, Masi M, Esposito M, Di Lecce R, Delicato A, Maddau L, Calabrò V, Evidente A, Catania MR. Anti-biofilm activity of the fungal phytotoxin sphaeropsidin A against clinical isolates of antibiotic-resistant bacteria. Toxins. 2020;12:444. https://doi.org/10.3390/toxins12070444.
[19] Kornienko A, Evidente A, Vurro M, Mathieu V, Cimmino A, Evidente M, van Otterlo WAL, Dasari R, Lefranc F, Kiss R. Toward a cancer drug of fungal origin. Med Res Rev. 2015;35:937-67.
[20] Marra M, Camoni L, Visconti S, Fiorillo A, Evidente A. The surprising story of fusicoccin: A wilt-inducing phytotoxin, a tool in plant physiology and a 14-3-3-targeted drug. Biomolecules. 2021;11:1393. https://doi.org/10.3390/biom11091393.
[21] Evidente A. The incredible story of the ophiobolin A and sphaeropsidin A: two fungal terpenoids from wilt-inducing phytotoxins to promising anticancer drugs. Nat Prod Rep. 2024. https://doi.org/10.1039/d3np00035d.
[22] Masi M, Andolfi A, Mathieu V, Boari A, Cimmino A, Banuls LMY, Vurro M, Kornienko A, Kiss R, Evidente A. Fischerindoline, a pyrroloindole sesquiterpenoid isolated from Neosartorya pseudofischeri, with in vitro growth inhibitory activity in human cancer cell lines. Tetrahedron. 2013;69:7466-70.
[23] Eamvijarn A, Kijjoa A, Bruyère C, Mathieu V, Manoch L, Lefranc F, Silva A, Kiss R, Herz W. Secondary metabolites from a culture of the fungus Neosartorya pseudofischeri and their in vitro activity in human cancer cells. Planta Med. 2012;78:1767-76.
[24] Kanokmedhakul K, Kanokmedhakul S, Suwannatrai R, Soytong K, Prabpai S, Kongsaeree P. Bioactive meroterpenoids and alkaloids from the fungus Eurotium chevalieri. Tetrahedron. 2011;67:5461-8.
[25] Schnekenburger M, Mathieu V, Lefranc F, Jang JY, Masi M, Kijjoa A, Evidente A, Kim HY, Kiss R, Dicato M, Han BW, Diederich M. The fungal metabolite eurochevalierine, a sequiterpene alkaloid, displays anticancer properties through selective sirtuin 1/2 inhibition. Molecules. 2018;23:333. https://doi.org/10.3390/molecules23020333.
[26] Cimmino A, Mathieu V, Masi M, Baroncelli R, Boari A, Pescitelli G, Ferderin M, Lisy R, Evidente M, Tuzi A, Zonno MC, Kornienko K, Kiss R, Evidente A. Higginsianins A and B, two diterpenoid α-pyrones produced by Colletotrichum higginsianum, with in vitro cytostatic activity. J Nat Prod. 2016;79:116-25.
[27] García-Pajón CM, Collado IG. Secondary metabolites isolated from Colletotrichum species. Nat Prod Rep. 2003;20:426-31.
[28] Sangermano F, Masi M, Vivo M, Ravindra P, Cimmino A, Pollice A, Evidente A, Calabrò V. Higginsianins A and B, two fungal diterpenoid α-pyrones with cytotoxic activity against human cancer cells. Toxicol in Vitro. 2019;61: 104614. https://doi.org/10.1016/j.tiv.2019.104614.
[29] Masi M, Cimmino A, Salzano F, Di Lecce R, Górecki M, Calabrò V, Pescitelli G, Evidente A. Higginsianins D and E, cytotoxic diterpenoids produced by Colletotrichum higginsianum. J Nat Prod. 2020;83:1131-8.
[30] Spiga D, Marras F, Maddau L, Franceschini A, Corda P. Prove preliminari di lotta contro il “Marciume del colletto” del carciofo da Sclerotium rolfsii mediante Trichoderma viride. Not Protezione Piante. 1998;8:173-9.
[31] Maalik A, Bukhari SM, Zaidi ASMA, Shah KH, Khan FA. Chlorogenic acid: a pharmacologically potent mol-ecule. Acta Pol Pharm. 2016;73:851-4.
[32] Ahmad B, Rizwan M, Rauf A, Raza M, Shumaila B, Molnar J, Csonka A, Szabo D, Mubarak MS, Noor M, Siddiwui B. Isolation of chlorogenic acid from soil borne fungi Screlotium rolfsii, its reversal of multidrug resistance and anti-proliferative in mouse lymphoma cells. Med Chem. 2017;13:721-6.
[33] Evidente A. Bioactive lipodepsipeptides produced by bacteria and fungi. Int J Mol Sci. 2022;23:12342. https://doi.org/10.3390/ijms232012342.
[34] Urbaniak M, Waśkiewicz A, Stępień Ł. Fusarium cyclodepsipeptide mycotoxins: Chemistry, biosynthesis, and occurrence. Toxins. 2020;12:765. https://doi.org/10.3390/toxins12120765.
[35] Masi M, Freda F, Clement S, Cimmino A, Cristofaro M, Meyer S, Evidente A. Phytotoxic activity and structure-activity-relationships of radicinin derivatives against the invasive weed buffelgrass (Cenchrus ciliaris). Molecules. 2019;24:2793. https://doi.org/10.3390/molecules24152793.
[36] Suzuki M, Sakuno E, Ishihara A, Tamura JI, Nakajima H. Conversions of deoxyradicinin to radicinin and of radicinin to 3-epi-radicinin in the phytopathogenic fungus Bipolaris coicis. Phytochemistry. 2012;75:14-20.
[37] Marsico G, Ciccone MS, Masi M, Freda F, Cristofaro M, Evidente A, Superchi S, Scafato P. Synthesis and herbicidal activity against buffelgrass (Cenchrus ciliaris) of (±)-3-deoxyradicinin. Molecules. 2019;24:3193. https://doi.org/10.3390/molecules24173193.
[38] Mathieu V, Superchi S, Masi M, Scafato P, Kornienko A, Evidente A. In vitro effects of fungal phytotoxins on cancer cell viability: First insight into structure activity relationship of a potent metabolite of Cochliobolus australiensis radicinin. Toxins. 2022;14:517. https://doi.org/10.3390/toxins14080517.
[39] Cimmino A, Bahmani Z, Masi M, Di Lecce R, Amini J, Abdollahzadeh J, Tuzi A, Evidente A. Massarilactones D and H, phytotoxins produced by Kalmusia variispora, associated with grapevine trunk diseases (GTDs) in Iran. Nat Prod Res. 2021;35:5192-8.
[40] Teponno RB, Noumeur SR, Helaly SE, Hüttel S, Harzallah D, Stadler M. Furanones and anthranilic acid derivatives from the endophytic fungus Dendrothyrium variisporum. Molecules. 2017;22:1674. https://doi.org/10.3390/molecules22101674.
[41] Tan RX, Zou WX. Endophytes: a rich source of functional metabolites. Nat Prod Rep. 2001;18:448-59.
[42] Schultes RE, Holmstedt R. The vegetal ingredients of the Myristicaceae snuffs of the Northwest Amazon. Rhodera. 1968;70:113-60.
[43] Shimada I, Takahashi T, Kawan Y, Kimura Y. Chloroisosulochrin, chloroisosulochrin dehydrate, and pestheic acid, plant growth regulators, produced by Pestalotiopsis theae. Z Naturforsch C. 2001;56b:797-803.
[44] Adeboya MO, Edwards RL, Lassoe T, Maitland DJ, Shields L, Whalley AJS. Metabolites of the higher fungi. Maldoxin, maldoxone, dihydromaldoxin, isodihydromaldoxin and dechlorodihydromaldoxin. A spirocyclohexadienone, a depsidone and three diphenyl ethers: keys in the depsidone biosynthetic pathway from a member of the fungus genus Xylaria. J Chem Soc Chem Commun. 1996;1:1419-25.
[45] Sousa JMC, Matos LA, Alcântara DFA, Ribeiro HF, Santos LS, Oliveira MN, Brito-Junior LC, Khayat AS, Guimarães AC, Cunha LA, Burbano RR, Bahia MO. Cellular responses induced in vitro by pestheic acid, a fungal metabolite, in a gastric adenocarcinoma cell line (PG100). Genet Mol Res. 2013;12:4106-15.
[46] Ju Z, Lin X, Lu X, Tu Z, Wang J, Kaliyaperumal K, Liu J, Tian Y, Xu S, Liu Y. Botryoisocoumarin A, a new COX-2 inhibitor from the mangrove Kandelia candel endophytic fungus Botryosphaeria sp. KcF6. J Antibiot. 2015;68:653-6.
[47] Bergeron RJ, Gavanaugh PF Jr, Kline SJ, Hughes RG Jr, Elliott GT, Porter CW. Antineoplastic and antiherpetic activity of spermidine catecholamide iron chelators. Biochem Biophys Res Commun. 1984;121:848-54.
[48] Li YL, Yi JL, Cai J, Zhou XM, Chen L, Zhuo X, Lai XY. Two new bioactive secondary metabolites from the endophytic fungus Talaromyces assiutensis JTY2. Nat Prod Res. 2022;36:3695-700.
[49] Wang CF, Yang XQ, Shi WZ, Long X, Su S, Cen RH, Yang YB, Ding ZT. The production of broad-spectrum antibiotics from phytopathogen Epicoccum sorghinum by culturing in host edible mushroom Thelephora ganbajun extract. Phytochemistry. 2022;200: 113221. https://doi.org/10.1016/j.phytochem.2022.113221.
[50] Deng CM, Liu SX, Huang CH, Pang JY, Lin YC. Secondary metabolites of a mangrove endophytic fungus Aspergillus terreus (No. GX7-3B) from the South China Sea. Mar Drugs. 2013;11:2616-24.
[51] Nozawa Y, Sakai N, Matsumoto K, Mizoue K. A novel neuritogenic compound, NGA0187. J Antibiot. 2002;55:629-34.
[52] An CY, Li XM, Li CS, Gao SS, Shang Z, Wang BG. Triazoles and other N-containing metabolites from the marine-derived endophytic fungus Penicillium chrysogenum EN-118. Helv Chim Acta. 2013;96:682-7.
[53] Elsebai MF, Ghabbour HA, Mehiri M. Unusual nitrogenous phenalenone derivatives from the marine-derived fungus Coniothyrium cereale. Molecules. 2016;21:178. https://doi.org/10.3390/molecules21020178.
[54] Zou JX, Song YP, Ji NY. Deoxytrichodermaerin, a harziane lactone from the marine algicolous fungus Trichoderma longibrachiatum A-WH-20-2. Nat Prod Res. 2021;35:216-21.
[55] Vasarri M, Vitale GA, Varese GC, Barletta E, D’Auria MV, de Pascale D, Degl’Innocenti D. Dihydroauroglaucin isolated from the Mediterranean sponge Grantia compressa endophyte marine fungus Eurotium chevalieri inhibits migration of human neuroblastoma cells. Pharmaceutics. 2022;14:616. https://doi.org/10.3390/pharmaceutics14030616.
[56] Kamat S, Kumari M, Sajna KV, Singh SK, Kaushalendra KA, Jayabaskaran C. Improved chrysin production by a combination of fermentation factors and elicitation from Chaetomium globosum. Microorganisms. 2023;11:999. https://doi.org/10.3390/microorganisms11040999.
[57] Wright GD. Unlocking the potential of natural products in drug discovery. Microb Biotechnol. 2019;12:55-7.
[58] Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: Advances and opportunities. Nat Rev Drug Discov. 2021;20:200-16.
[59] Cragg GM, Pezzuto JM. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemo-preventive agents. Med Princ Pract. 2016;25:41-59.
[60] Jiménez C. Marine natural products in medicinal chemistry. ACS Med Chem Lett. 2018;9:959-61.
[61] Ameen F, Al-Nadhari S, Al-Homaidan AA. Marine microorganisms as an untapped source of bioactive compounds. Saudi J Biol Sci. 2021;28:224-31.
[62] Huang H, Wang F, Luo M, Chen Y, Song Y, Zhang W, Zhang S, Ju J. Halogenated anthraquinones from the ma-rine-derived fungus Aspergillus sp. SCSIO F063. J Nat Prod. 2012;75:1346-52.
[63] Yamada T, Jinno M, Kikuchi T, Kajimoto T, Numata A, Tanaka R. Three new azaphilones produced by a marine fish-derived Chaetomium globosum. J Antibiot. 2012;65:413-7.
[64] Sun Y, Takada K, Takemoto Y, Yoshida M, Nogi Y, Okada S, Matsunaga S. Gliotoxin analogues from a ma-rine-derived fungus, Penicillium sp., and their cytotoxic and histone methyltransferase inhibitory activities. J Nat Prod. 2012;75:111-4.
[65] Cai M, Zhou X, Lu J, Fan W, Zhou J, Niu C, Kang L, Sun X, Zhang Y. An integrated control strategy for the fermentation of the marine-derived fungus Aspergillus glaucus for the production of anti-cancer polyketide. Mar Biotechnol. 2012;14:665-71.
[66] Du L, Zhu T, Fang Y, Liu H, Gu Q, Zhu W, Aspergiolide A. anovel anthraquinone derivative with naphtho[1, 2, 3-de]chromene2, 7-dione skeleton isolated from a marine-derived fungus Aspergillus glaucus. Tetrahedron. 2007;63:1085-8.
[67] Song F, Ren B, Yu K, Chen C, Guo H, Yang N, Gao H, Liu X, Liu M, Tong Y, Dai H, Bai H, Wang J, Zhang L. Quinazolin-4-one coupled with pyrrolidin-2-iminium alkaloids from marine-derived fungus Penicillium aurantiogriseum. Mar Drugs. 2012;10:1297-306.
[68] Chen Z, Zheng Z, Huang H, Song Y, Zhang X, Ma J, Wang B, Zhang C, Ju J. Penicacids A-C, three new myco-phenolic acid derivatives and immunosuppressive activities from the marine-derived fungus Penicillium sp. SOF07. Bioorg Med Chem Lett. 2012;22:3332-5.
[69] Jackson RC, Weber G, Morris HP. IMP dehydrogenase, an enzyme linked with proliferation and malignancy. Nature. 1975;256:331-3.
[70] Weber G, Nakamura H, Natsumeda Y, Szekeres T, Nagai M. Regulation of GTP biosynthesis. Adv Enzyme Regul. 1992;32:57-69.
[71] Shu Q, Nair V. Inosine monophosphate dehydrogenase (IMPDH) as a target in drug discovery. Med Res Rev. 2008;28:219-32.
[72] Shang Z, Li XM, Li CS, Wang BG. Diverse secondary metabolites produced by marine-derived fungus Nigrospora sp. MA75 on various culture media. Chem Biodiver. 2012;9:1338-48.
[73] Venkata Dasu V, Panda T. Studies on production of griseofulvin. Bioprocess Eng. 1999;21:489-95.
[74] Afiyatullov SS, Zhuravleva OI, Antonov AS, Kalinovsky AI, Pivkin MV, Menchinskaya ES, Aminin DL. New metabolites from the marine-derived fungus Aspergillus fumigatus. Nat Prod Commun. 2012;7:497-500.
[75] Tan QW, Ouyang MA, Shen S, Li W. Bioactive metabolites from a marine-derived strain of the fungus Neosartorya fischeri. Nat Prod Res. 2012;26:1402-7.
[76] Wang J, Lu Z, Liu P, Wang Y, Li J, Hong K, Zhu W. Cytotoxic polyphenols from the fungus Penicillium ex-pansum 091 006 endogenous with the mangrove plant Excoecaria agallocha. Planta Med. 2012;80:1861-6.
[77] García-Caballero M, Marí-Beffa M, Cañedo L, Medina MÁ, Quesada AR. Toluquinol, a marine fungus metabolite, is a new angiosuppresor that interferes the Akt pathway. Biochem Pharm. 2013;85:1727-40.
[78] Yurchenko AN, Smetanina OF, Kalinovskii AI, Kirichuk NN, Yurchenko EA, Afiyatullov SS. Biologically active metabolites of the facultative marine fungus Penicillium citrinum. Chem Nat Compd. 2013;48:996-8.
[79] Li C, Zhang WW, Zheng QH, Liu QY, Zhong P, Hu X, Fang ZX, Zhang QQ. Aculeatusquinones A-D, novel metabolites from the marine-derived fungus Aspergillus aculeatus. Heterocycles. 2013;87:861-8.
[80] Sallam AA, Houssen WE, Gissendanner CR, Orabi KY, Foudah AI, El Sayed KA. Bioguided discovery and pharmacophore modeling of the mycotoxic indole diterpene alkaloids penitrems as breast cancer proliferation, migration, and invasion inhibitors. Med Chem Comm. 2013;4:1360-9.
[81] Wang ML, Lu CH, Xu QY, Song SY, Hu ZY, Zheng ZH. Four new citrinin derivatives from a marine-derived Penicillium sp. fungal strain. Molecules. 2013;18:5723-35.
[82] Shen S, Li W, Wang J. A novel and other bioactive secondary metabolites from a marine fungus Penicillium oxalicum 0312F1. Nat Prod Res. 2013;27:2286-91.
[83] Sun L, Li D, Tao M, Chen Y, Zhang Q, Dan F, Zhang W. Two new polyketides from a marine sediment-derived fungus Eutypella scoparia FS26. Nat Prod Res. 2013;27:1298-304.
[84] Mansoor TA, Hong J, Lee CO, Bae SJ, Im KS, Jung JH. Cytotoxic sterol derivatives from a marine sponge Homaxinella sp. J Nat Prod. 2005;68:331-6.
[85] Amagata T, Doi M, Ohta T, Minoura K, Numata A. Absolute stereostructures of novel cytotoxic metabolites, gym-nastatins A-E, from a Gymnascella species separated from a Halichondria sponge. J Chem Soc Perkin Trans. 1998;21:3585-600.
[86] Amagata T, Tanaka M, Yamada T, Minoura K, Numata A. Gymnastatins and dankastatins, growth inhibitory metabolites of a Gymnascella species from a Halichondria sponge. J Nat Prod. 2008;71:340-5.
[87] Amagata T, Tanaka M, Yamada T, Chen YP, Minoura K, Numata A. Additional cytotoxic substances isolated from the sponge-derived Gymnascella dankaliensis. Tetrahedron Lett. 2013;54:5960-2.
[88] Eamvijarn A, Gomes NM, Dethoup T, Buaruang J, Manoch L, Silva A, Pedro M, Marini I, Roussis V, Kijjoa A. Bioactive meroditerpenes and indole alkaloids from the soil fungus Neosartorya fischeri (KUFC 6344), and the marine-derived fungi Neosartorya laciniosa (KUFC 7896) and Neosartorya tsunodae (KUFC 9213). Tetrahedron. 2013;69:8583-91.
[89] Zhang QQ, Chen L, Hu X, Gong MW, Zhang WW, Zheng QH, Liu QY. Novel cytotoxic metabolites from the marine-derived fungus Trichoderma citrinoviride. Heterocycles. 2014;89:189-96.
[90] Wang WJ, Li DY, Li YC, Hua HM, Ma EL, Li ZL. Caryophyllene sesquiterpenes from the marine-derived fungus Ascotricha sp. ZJ-M-5 by the one strain-many compounds strategy. J Nat Prod. 2014;77:1367-71.
[91] Wu CJ, Li CW, Cui CB. Seven new and two known lipopeptides as well as five known polyketides: The activated production of silent metabolites in a marine-derived fungus by chemical mutagenesis strategy using diethyl sulphate. Mar Drugs. 2014;12:1815-38.
[92] Li HJ, Jiang WH, Liang WL, Huang JX, Mo YF, Ding YQ, Lam CK, Qian XJ, Zhu XF, Lan WJ. Induced marine fungus Chondrostereum sp. as a means of producing new sesquiterpenoids chondrosterins I and J by using glycerol as the carbon source. Mar Drugs. 2014;12:167-75.
[93] Kramer A, Paun L, Imhoff JF, Kempken F, Labes A. Development and validation of a fast and optimized screening method for enhanced production of secondary metabolites using the marine Scopulariopsis brevicaulis strain LF580 producing anticancer active scopularide A and B. PLoS ONE. 2014;9: e103320. https://doi.org/10.1371/journal.pone.0103320.
[94] Saraiva NN, Rodrigues BS, Jimenez PC, Guimarães LA, Torres MC, Rodrigues-Filho E, Pfenning LH, Abreu LM, Mafezoli J, de Mattos MC, Costa-Lotufo LVF, de Oliveira MDC. Cytotoxic compounds from the marine-derived fungus Aspergillus sp. recovered from the sediments of the Brazilian coast. Nat Prod Res. 2015;29:1545-50.
[95] Dos Santos Dias AC, Ruiz N, Couzinet-Mossion A, Bertrand S, Duflos M, Pouchus YF, Barnathan G, Nazih H, Wielgosz-Collin G. The marine-derived fungus Clonostachys rosea, source of a rare conjugated 4-Me-6E,8E-hexadecadienoic acid reducing viability of MCF-7 breast cancer cells and gene expression of lipogenic enzymes. Mar Drugs. 2015;13:4934-48.
[96] Wu CJ, Yi L, Cui CB, Li CW, Wang N, Han X. Activation of the silent secondary metabolite production by in-troducing neomycin-resistance in a marine-derived Penicillium purpurogenum G59. Mar Drugs. 2015;13:2465-87.
[97] Gao SS, Li XM, Williams K, Proksch P, Ji NY, Wang BG. Rhizovarins A-F, indole-diterpenes from the man-grove-derived endophytic fungus Mucor irregularis QEN-189. J Nat Prod. 2016;79:2066-74.
[98] Fang W, Lin X, Wang J, Liu Y, Tao H, Zhou X. Asperpyrone-type bis-naphtho-γ-pyrones with COX-2-inhibitory activities from marine-derived fungus Aspergillus niger. Molecules. 2016;21:941. https://doi.org/10.3390/molecules21070941.
[99] Prata-Sena M, Ramos AA, Buttachon S, Castro-Carvalho B, Marques P, Dethoup T, Kijjoa A, Rocha E. Cytotoxic activity of secondary metabolites from marine-derived fungus Neosartorya siamensis in human cancer cells. Phytother Res. 2016;30:1862-71.
[100] Ramos AA, Castro-Carvalho B, Prata-Sena M, Malhão F, Buttachon S, Dethoup T, Kijjoa A, Rocha E. Can marine-derived fungus Neosartorya siamensis KUFA 0017 extract and its secondary metabolites enhance antitumor activity of doxorubicin? An in vitro survey unveils interactions against lung cancer cells. Environ Toxicol. 2020;35:507-17.
[101] Pavão GB, Venâncio VP, de Oliveira ALL, Hernandes LC, Almeida MR, Antunes LMG, Debonsi HM. Differential genotoxicity and cytotoxicity of phomoxanthone A isolated from the fungus Phomopsis longicolla in HL60 cells and peripheral blood lymphocytes. Toxicol in Vitro. 2016;37:211-7.
[102] Liao L, Bae SY, Won TH, You M, Kim SH, Oh DC, Lee SK, Oh KB, Shin J. Asperphenins A and B, lipopeptidyl benzophenones from a marine-derived Aspergillus sp. fungus. Org Lett. 2017;19:2066-9.
[103] Kim YS, Kim SK, Park SJ. Apoptotic effect of demethoxyfumitremorgin C from marine fungus Aspergillus fumigatus on PC3 human prostate cancer cells. Chem Biol Interact. 2017;269:18-24.
[104] Du L, Zhang QQ, Chen L, Bi YX, Li YP, Li XX, Liu QY, Ying QY, Zheng QH. Secalonic acids H and I, two new secondary metabolites from the marine-derived fungus Penicillium oxalicum. Heterocycles. 2017;94:1766-74.
[105] Huang LH, Chen YX, Yu JC, Yuan J, Li HJ, Ma WZ, Watanapokasin R, Hu KC, Niaz SI, De-Po Yang DP, Lan WJ. Secondary metabolites from the marine-derived fungus Dichotomomyces sp. L-8 and their cytotoxic activity. Molecules. 2017;22:444. https://doi.org/10.3390/molecules22030444.
[106] Liu S, Wang H, Su M, Hwang GJ, Hong J, Jung JH. New metabolites from the sponge-derived fungus Aspergillus sydowii J05B-7F-4. Nat Prod Res. 2017;31:1682-6.
[107] Kebede B, Wrigley SK, Prashar A, Rahlff J, Wolf M, Reinshagen J, Gribbon P, Imhoff JF, Silber J, Labes A, Ellinger B. Establishing the secondary metabolite profile of the marine fungus: Tolypocladium geodes sp. MF458 and subsequent optimisation of bioactive secondary metabolite production. Mar Drugs. 2017;15:84. https://doi.org/10.3390/md15040084.
[108] Wang N, Li CW, Cui CB, Cai B, Xu LL, Zhu HJ. Four new antitumor metabolites isolated from a mutant 3-f-31 strain derived from Penicillium purpurogenum G59. Eur J Med Chem. 2018;158:548-58.
[109] Ivanets EV, Yurchenko AN, Smetanina OF, Rasin AB, Zhuravleva OI, Pivkin MV, Roman S, Popov RS, Gunhild von Amsberg G, Shamil S, Afiyatullov SS, Dyshlovoy SA. Asperindoles A-D and a p-terphenyl derivative from the ascidian-derived fungus Aspergillus sp. KMM 4676. Mar Drugs. 2018;16:232. https://doi.org/10.3390/md16070232.
[110] Nie YL, Wu YD, Wang CX, Lin R, Xie Y, Fang DS, Jiang H, Lian YY. Structure elucidation and antitumour activity of a new macrolactam produced by marine-derived actinomycete Micromonospora sp. FIM05328. Nat Prod Res. 2018;32:2133-8.
[111] Li Q, Zhu R, Yi W, Chai W, Zhang Z, Lian XY. Peniciphenalenins A-F from the culture of a marine-associated fungus Penicillium sp. ZZ901. Phytochemistry. 2018;152:53-60.
[112] Park JY, Ji YS, Zhu H, Zhang Y, Park DH, Kim YJ, Yoo HH, Kang KS. Anti-angiogenic effect of asperchalasine a via attenuation of VEGF signaling. Biomolecules. 2019;9:358. https://doi.org/10.3390/biom9080358.
[113] Xu J, Tan H, Chen Y, Li S, Guo H, Huang Z, Lia H, Gaob X, Liu H, Zhang W. Lithocarpinols A and B, a pair of diastereomeric antineoplastic tenellone derivatives from the deep-sea derived fungus Phomopsis lithocarpus FS508. Chin Chem Lett. 2019;30:439-42.
[114] Neuhaus GF, Adpressa DA, Bruhn T, Loesgen S. Polyketides from marine-derived Aspergillus porosus: challenges and opportunities for determining absolute configuration. J Nat Prod. 2019;82:2780-9.
[115] Ham J, Lim W, Kim K, Heo YM, Ryu SM, Lee D, Kim JJ, Song G. Gentisyl alcohol inhibits proliferation and induces apoptosis via mitochondrial dysfunction and regulation of MAPK and PI3K/AKT pathways in epithelial ovarian cancer cells. Mar Drugs. 2019;17:331. https://doi.org/10.3390/md17060331.
[116] Fredimoses M, Zhou X, Ai W, Tian X, Yang B, Lin X, Liu J, Liu Y, Emerixanthone E. a new xanthone derivative from deep sea fungus Emericella sp SCSIO 05240. Nat Prod Res. 2019;33:2088-94.
[117] Wang N, Dong Y, Yang Y, Xu R, Li CW, Cui CB. Penicimutanin C, a new alkaloidal compound, isolated from a neomycin-resistant mutant 3-f-31of Penicillium purpurogenum G59. Chem Biodiver. 2020;17: e2000241. https://doi.org/10.1002/cbdv.202000241.
[118] Zhang J, Chen Y, Liu Z, Guo B, Gao X, Liu H, Zhang W. Cytotoxic secondary metabolites from a sea-derived fungal strain of Hypoxylon rubiginosum FS521. Chin J Org Chem. 2020;40:1367. https://doi.org/10.6023/cjoc201912012.
[119] Tang R, Zhou D, Kimishima A, Setiawan A, Arai M. Selective cytotoxicity of marine-derived fungal metabolite (3S,6S)-3,6-dibenzylpiperazine-2,5-dione against cancer cells adapted to nutrient starvation. J Antibiot. 2020;73:873-5.
[120] Abdel-Naime WA, Kimishima A, Setiawan A, Fahim JR, Fouad MA, Kamel MS, Arai M. Mitochondrial tar-geting in an anti-austerity approach involving bioactive metabolites isolated from the marine-derived fungus Aspergillus sp. Mar Drugs. 2020;18:555. https://doi.org/10.3390/md18110555.
[121] Dezaire A, Marchand CH, Vallet M, Ferrand N, Chaouch S, Mouray E, Larsen AK, Michèle Sabbah M, Lemaire SD, Prado S, Escargueil AE. Secondary metabolites from the culture of the marine-derived fungus Paradendryphiella salina PC 362H and evaluation of the anticancer activity of its metabolite hyalodendrin. Mar Drugs. 2020;18:191. https://doi.org/10.3390/md18040191.
[122] Bae SY, Liao L, Park SH, Kim WK, Shin J, Lee SK. Antitumor activity of asperphenin A, a lipopeptidyl benzophenone from marine-derived Aspergillus sp fungus, by inhibiting tubulin polymerization in colon cancer cells. Mar Drugs. 2020;18:110. https://doi.org/10.3390/md18020110.
[123] Fan B, Dewapriya P, Li F, Blümel M, Tasdemir D. Pyrenosetins A-C, new decalinoylspirotetramic acid derivatives isolated by bioactivity-based molecular networking from the seaweed-derived fungus Pyrenochaetopsis sp. FVE-001. Mar Drugs. 2020;18:47. https://doi.org/10.3390/md18010047.
[124] Fan B, Dewapriya P, Li F, Grauso L, Blümel M, Mangoni A, Tasdemir D, Pyrenosetin D. a new pentacyclic decal-inoyltetramic acid derivative from the algicolous fungus Pyrenochaetopsis sp. FVE-087. Mar Drugs. 2020;18:281. https://doi.org/10.3390/md18060281.
[125] Handayani D, Putri RA, Ismed F, Hertiani T, Ariantari NP, Proksch P. Bioactive metabolite from marine sponge-derived fungus Cochliobolus geniculatus WR12. Rasayan J Chem. 2020;13:417-22.
[126] Zhang X, Song C, Bai Y, Hu J, Pan H. Cytotoxic and antimicrobial activities of secondary metabolites isolated from the deep-sea-derived Actinoalloteichus cyanogriseus 12A22. Biotech. 2021;11:283. https://doi.org/10.1007/s13205-021-02846-0.
[127] Zhou J, Zhang H, Ye J, Wu X, Wang W, Lin H, Yan X, Lazaro JEH, Wang T, Naman CB, He S. Cytotoxic polyketide metabolites from a marine mesophotic zone Chalinidae sponge-associated fungus Pleosporales sp. NBUF144. Mar Drugs. 2021;19:186. https://doi.org/10.3390/md19040186.
[128] Shaker S, Sun TT, Wang LY, Ma WZ, Wu DL, Guo YW, Dong J, Chen YX, Zhu LP, Yang DP, Li HJ, Lan WJ. Reactive oxygen species altering the metabolite profile of the marine-derived fungus Dichotomomyces cejpii F31-1. Nat Prod Res. 2021;35:41-8.
[129] Sobolevskaya MP, Berdyshev DV, Zhuravleva OI, Denisenko VA, Dyshlovoy SA, von Amsberg G, Khudya-kova YV, Kirichuk NN, Afiyatullov SS. Polyketides metabolites from the marine sediment-derived fungus Ther-momyces lanuginosus Tsikl. KMM 4681. Phytochem Lett. 2021;41:114-8.
[130] Chen X, Wei J, Tang J, Wu B. Two new prenylated glycine derivatives from the marine-derived fungus Fusarium sp. TW56-10. Chem Biodivers. 2022;19:e202100899. https://doi.org/10.1002/cbdv.202100899.
[131] Kwon H, Yim JH, Lee DH. Metabolites from antarctic marine-derived Sporothrix sp. Sf-7266. Life Sci Nat Resour Res. 2020;28:45-9.
[132] Choi HY, Ahn JH, Kwon H, Yim JH, Lee D, Choi JH. Citromycin isolated from the antarctic ma-rine-derived fungi, Sporothrix sp., inhibits ovarian cancer cell invasion via Suppression of ERK signaling. Mar Drugs. 2022;20:275. https://doi.org/10.3390/md20050275.
[133] El-Sayed AS, Hassan WH, Sweilam SH, Alqarni MHS, El Sayed ZI, Abdel-Aal MM, Abdelsalam E, Abdelaziz S. Production, bioprocessing and anti-proliferative activity of camptothecin from Penicillium chrysogenum, an endozoic of marine sponge, Cliona sp., as a metabolically stable camptothecin producing isolate. Molecules. 2022;27:3033. https://doi.org/10.3390/molecules27093033.
[134] Zhang J, Guo ZY, Shao CL, Zhang XQ, Cheng F, Zou K, Chen JF. Nigrosporin B, a potential anti-cervical cancer agent, induces apoptosis and protective autophagy in human cervical cancer Ca ski cells mediated by PI3K/AKT/mTOR signaling pathway. Molecules. 2022;27:2431. https://doi.org/10.3390/molecules27082431.
[135] Qiao H, Zhang SH, Dong Y, Yang Y, Xu R, Chen B, Wang Y, Zhu TJ, Cui CB, Zhang GG, Li CW. Chrysomutanin and related meroterpenoids from a DES mutant of the marine-derived fungus Penicillium chrysogenum S-3-25. Nat Prod Res. 2022;36:1834-41.
[136] Anh CV, Kwon JH, Kang JS, Lee HS, Heo CS, Shin HJ. Antibacterial and cytotoxic phenolic polyketides from two marine-derived fungal strains of Aspergillus unguis. Pharmaceuticals. 2022;15:74. https://doi.org/10.3390/ph15010074.
[137] Buttachon S, Ramos A, Inácio Â, Dethoup T, Gales L, Lee M, Costa P, Silva A, Sekeroglu N, Rocha E, Pinto MMM, Pereira JA, Kijjoa A. Bis-indolyl benzenoids, hydroxypyrrolidine derivatives and other constituents from cul-tures of the marine sponge-associated fungus Aspergillus candidus KUFA0062. Mar Drugs. 2018;16:119. https://doi.org/10.3390/md16040119.
[138] Malhão F, Ramos AA, Buttachon S, Dethoup T, Kijjoa A, Rocha E. Cytotoxic and antiproliferative effects of preussin, a hydroxypyrrolidine derivative from the marine sponge-associated fungus Aspergillus candidus KUFA 0062, in a panel of breast cancer cell lines and using 2D and 3D cultures. Mar Drugs. 2019;17:448. https://doi.org/10.3390/md17080448.
[139] Seabra R, Malhão F, Correia A, Costa C, Kijjoa A, Rocha E. Effects and mechanisms of action of preussin, a marine fungal metabolite, against the triple-negative breast cancer cell line, MDA-MB-231, in 2D and 3D cultures. Mar Drugs. 2023;21:166. https://doi.org/10.3390/md21030166.
[140] Liu Y, Lin L, Zheng H, He YL, Li Y, Zhou C, Hong P, Sun S, Zhang Y, Qian ZJ. Mechanisms of antitumor invasion and metastasis of the marine fungal derivative epi-aszonalenin A in HT1080 cells. Mar Drugs. 2023;21:156. https://doi.org/10.3390/md21030156.
[141] Hu Y, Ma S, Pang X, Cong M, Liu Q, Han F, Wang J, Feng W, Liu Y, Wang J. Cytotoxic pyridine alkaloids from a marine-derived fungus Arthrinium arundinis exhibiting apoptosis-inducing activities against small cell lung cancer. Phytochemistry. 2023.
[1] Ismail Ware, Katrin Franke, Andrej Frolov, Kseniia Bureiko, Elana Kysil, Maizatulakmal Yahayu, Hesham Ali El Enshasy, Ludger A. Wessjohann. Comparative metabolite analysis of Piper sarmentosum organs approached by LC-MS-based metabolic profiling[J]. Natural Products and Bioprospecting, 2024, 14(4): 30-30.
[2] Kritika Jalota, Vikas Sharma, Chiti Agarwal, Suruchi Jindal. Eco-friendly approaches to phytochemical production: elicitation and beyond[J]. Natural Products and Bioprospecting, 2024, 14(1): 5-5.
[3] Weiwei Peng, Qi Huang, Xin Ke, Wenxuan Wang, Yan Chen, Zihuan Sang, Chen Chen, Siyu Qin, Yuting Zheng, Haibo Tan, Zhenxing Zou. Koningipyridines A and B, two nitrogen-containing polyketides from the fungus Trichoderma koningiopsis SC-5[J]. Natural Products and Bioprospecting, 2024, 14(1): 8-8.
[4] Li Wu, Ning Yang, Meng Guo, Didi Zhang, Reza A. Ghiladi, Hasan Bayram, Jun Wang. The role of sound stimulation in production of plant secondary metabolites[J]. Natural Products and Bioprospecting, 2023, 13(6): 40-40.
[5] Fengli Li, Saisai Gu, Sitian Zhang, Shuyuan Mo, Jieru Guo, Zhengxi Hu, Yonghui Zhang. Three new amide derivatives from the fungus Alternaria brassicicola[J]. Natural Products and Bioprospecting, 2023, 13(4): 28-28.
[6] Ke Ye, Hong-Lian Ai, Ji-Kai Liu. Identification and Bioactivities of Secondary Metabolites Derived from Endophytic Fungi Isolated from Ethnomedicinal Plants of Tujia in Hubei Province: A Review[J]. Natural Products and Bioprospecting, 2021, 11(2): 185-205.
[7] Rufin Marie Kouipou Toghueo. Anti-leishmanial and Anti-inflammatory Agents from Endophytes: A Review[J]. Natural Products and Bioprospecting, 2019, 9(5): 311-328.
[8] Rong Chen, Jian-Wei Tang, Xing-Ren Li, Miao Liu, Wen-Ping Ding, Yuan-Fei Zhou, Wei-Guang Wang, Xue Du, Han-Dong Sun, Pema-Tenzin Puno. Secondary Metabolites from the Endophytic Fungus Xylaria sp. Hg1009[J]. Natural Products and Bioprospecting, 2018, 8(2): 121-129.
[9] Satheesh Kumar Palanisamy, N. M. Rajendran, Angela Marino. Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development[J]. Natural Products and Bioprospecting, 2017, 7(1): 1-111.
[10] Valery M. Dembitsky, Tatyana A. Gloriozova, Vladimir V. Poroikov. Pharmacological and Predicted Activities of Natural Azo Compounds[J]. Natural Products and Bioprospecting, 2017, 7(1): 151-169.
[11] Caroline Alves Breda, Alessandra Marcon Gasperini, Vera Lucia Garcia, Karin Maia Monteiro, Giovana Anceski Bataglion, Marcos Nogueira Eberlin, Marta Cristina Teixeira Duarte. Phytochemical Analysis and Antifungal Activity of Extracts from Leaves and Fruit Residues of Brazilian Savanna Plants Aiming Its Use as Safe Fungicides[J]. Natural Products and Bioprospecting, 2016, 6(4): 195-204.
[12] Ce Kuang, Shu-Xi Jing, Yan Liu, Shi-Hong Luo, Sheng-Hong Li. Drimane Sesquiterpenoids and Isochromone Derivative from the Endophytic Fungus Pestalotiopsis sp. M-23[J]. Natural Products and Bioprospecting, 2016, 6(3): 155-160.
[13] Hui Zhou, Yan-Long Yang, Jun Zeng, Ling Zhang, Zhi-Hui Ding, Ying Zeng. Identification and Characterization of a d-Cadinol Synthase Potentially Involved in the Formation of Boreovibrins in Boreostereum vibrans of Basidiomycota[J]. Natural Products and Bioprospecting, 2016, 6(3): 167-171.
[14] Ming-Ming Zhai, Jie Li, Chun-Xiao Jiang, Yan-Ping Shi, Duo-Long Di, Phillip Crews, Quan-Xiang Wu. The Bioactive Secondary Metabolites from Talaromyces species[J]. Natural Products and Bioprospecting, 2016, 6(1): 1-24.
[15] Frank Surup, Eric Kuhnert, Elena Liscinskij, Marc Stadler. Silphiperfolene-Type Terpenoids and Other Metabolites from Cultures of the Tropical Ascomycete Hypoxylon rickii(Xylariaceae)[J]. Natural Products and Bioprospecting, 2015, 5(3): 167-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed