REVIEW |
|
|
|
|
|
Newly isolated terpenoids (covering 2019-2024) from Aspergillus species and their potential for the discovery of novel antimicrobials |
Olusesan Ojo1,2, Idris Njanje1, Dele Abdissa1,3, Tarryn Swart1, Roxanne L. Higgitt1, Rosemary A. Dorrington1 |
1. Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa; 2. Department of Chemical Sciences, Lead City University, P. O. Box 30678, Ibadan, Oyo State, Nigeria; 3. Department of Chemistry, College of Natural Sciences, Jimma University, P. O Box 378, Jimma, Ethiopia |
|
|
Abstract The rapid emergence of drug-resistant microbial pathogens has posed challenges to global health in the twenty-first century. This development has significantly made most antibiotics ineffective in the treatment of infections they cause, resulting in increasing treatment costs and annual death rates. To address the challenge posed by these pathogens, we explore the potential of secondary metabolites from Aspergillus species as a source of new and effective therapeutic agents to treat drug-resistant infections. Terpenoids, a distinct group of natural products, are extensively distributed in plants and fungi, and have been attributed with significant antibacterial, anticancer, and antiviral activities. In this review, we present an overview of Aspergillus species, and review the novel terpenoids isolated from them from 2019 to April 2024, highlighting anti-infective activity against members of the ESKAPE pathogens. We further focus on the strategies through which the structural framework of these new terpenoids could be modified and/or optimized to feed a pipeline of new lead compounds targeting microbial pathogens. Overall, this review provides insight into the therapeutic applications of terpenoids sourced from Aspergillus species and the potential for the discovery of new compounds from these fungi to combat antimicrobial resistance.
|
Keywords
Antimicrobial resistance
ESKAPE pathogens
Fungi
Secondary metabolites
Anti-infective activities
|
Fund:This work was supported by grants awarded to RAD by the South African Medical Research Council (SAMRC), with funds received from the South African National Department of Health, and the UK Medical Research Council, with funds received from the UK Government's Newton Fund (Grant No.: 96185) and by South African National Research Foundation (NRF) through the DSI/NRF South African Research Chair Initiative (NRF UID 87583). OO was supported by a Rhodes University Post-Doctoral Fellowship, while IN and TS received Post-Doctoral Fellowships from the SAMRC. DA was supported by DAAD Scholarship (Reference number: 91758998). The authors’ opinions and conclusions as expressed in this paper are their own and should not be attributed to any of the funding bodies itemized above. |
Corresponding Authors:
Olusesan Ojo, E-mail:ojoolusesan33@gmail.com;Rosemary A. Dorrington, E-mail:r.dorrington@ru.ac.za
E-mail: ojoolusesan33@gmail.com;r.dorrington@ru.ac.za
|
Issue Date: 17 May 2025
|
|
|
[1] Kalpana S, Lin W-Y, Wang Y-C, Fu Y, Lakshmi A, Wang H-Y. Antibiotic resistance diagnosis in ESKAPE pathogens—a review on proteomic perspective. Diagnostics. 2023;13:1014. https://doi.org/10.3390/diagnostics13061014. [2] Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol. 2023;21:519-34. https://doi.org/10.1038/s41579-023-00877-3. [3] Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evol. 2020;88:26-40. https://doi.org/10.1007/s00239-019-09914-3. [4] Bungau S, Tit DM, Behl T, Aleya L, Zaha DC. Aspects of excessive antibiotic consumption and environmental influences correlated with the occurrence of resistance to antimicrobial agents. Curr Opin in Environ Sci Health. 2021;19: 100224. https://doi.org/10.1016/j.coesh.2020.10.012. [5] Lee Y, Puumala E, Robbins N, Cowen LE. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond. Chem Rev. 2021;121:3390-411. https://doi.org/10.1021/acs.chemrev.0c00199. [6] Ippolito MM, Moser KA, Kabuya J-BB, Cunningham C, Juliano JJ. Antimalarial drug resistance and implications for the WHO global technical strategy. Curr Epidemiol Rep. 2021;8:46-62. https://doi.org/10.1007/s40471-021-00266-5. [7] Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903-10. https://doi.org/10.2147/IDR.S234610. [8] De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020. https://doi.org/10.1128/cmr.00181-19. [9] Zhen X, Lundborg CS, Sun X, Hu X, Dong H. Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review. Antimicrob Resist Infect Control. 2019;8:137. https://doi.org/10.1186/s13756-019-0590-7. [10] Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial antibiotic resistance: the most critical pathogens. Pathogens. 2021;10:1310. https://doi.org/10.3390/pathogens10101310. [11] Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, et al. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci. 2018;19:1578. https://doi.org/10.3390/ijms19061578. [12] Bernardini S, Tiezzi A, Laghezza Masci V, Ovidi E. Natural products for human health: an historical overview of the drug discovery approaches. Nat Prod Res. 2018;32:1926-50. https://doi.org/10.1080/14786419.2017.1356838. [13] Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770-803. https://doi.org/10.1021/acs.jnatprod.9b01285. [14] Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200-16. https://doi.org/10.1038/s41573-020-00114-z. [15] Lalchhandama K. History of penicillin. Wiki J Med. 2021;8:1-16. https://doi.org/10.3316/informit.644471542314939. [16] Tiwari P, Bae H. Endophytic fungi: key insights, emerging prospects, and challenges in natural product drug discovery. Microorganisms. 2022;10:360. https://doi.org/10.3390/microorganisms10020360. [17] Gakuubi MM, Munusamy M, Liang Z-X, Ng SB. Fungal endophytes: a promising frontier for discovery of novel bioactive compounds. J Fungi. 2021;7:786. https://doi.org/10.3390/jof7100786. [18] Frisvad JC, Larsen TO. Chemodiversity in the genus Aspergillus. Appl Microbiol Biotechnol. 2015;99:7859-77. https://doi.org/10.1007/s00253-015-6839-z. [19] Zhang X, Li Z, Gao J. Chemistry and biology of secondary metabolites from Aspergillus genus. Nat Prod J. 2018;8:275-304. https://doi.org/10.2174/2210315508666180501154759. [20] Boruta T, Milczarek I, Bizukojc M. Evaluating the outcomes of submerged co-cultivation: production of lovastatin and other secondary metabolites by Aspergillus terreus in fungal co-cultures. Appl Microbiol Biotechnol. 2019;103:5593-605. https://doi.org/10.1007/s00253-019-09874-0. [21] El-hawary SS, Moawad AS, Bahr HS, Ramadan Abdelmohsen U, Mohammed R. Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Adv. 2020;10:22058-79. https://doi.org/10.1039/D0RA04290K. [22] Sun Y, Liu W-C, Shi X, Zheng H-Z, Zheng Z-H, Lu X-H, et al. Inducing secondary metabolite production of Aspergillus sydowii through microbial co-culture with Bacillus subtilis. Microb Cell Fact. 2021;20:42. https://doi.org/10.1186/s12934-021-01527-0. [23] Yao F-H, Liang X, Cheng X, Ling J, Dong J-D, Qi S-H. Antifungal peptides from the marine gorgonian-associated fungus Aspergillus sp. SCSIO41501. Phytochemistry. 2021;192: 112967. https://doi.org/10.1016/j.phytochem.2021.112967. [24] He W, Xu Y, Wu D, Wang D, Gao H, Wang L, et al. New alkaloids from the diversity-enhanced extracts of an endophytic fungus Aspergillus flavus GZWMJZ-288. Bioorg Chem. 2021;107: 104623. https://doi.org/10.1016/j.bioorg.2020.104623. [25] Fang S-T, Liu X-H, Yan B-F, Miao F-P, Yin X-L, Li W-Z, et al. Terpenoids from the marine-derived fungus Aspergillus sp. RR-YLW-12, associated with the red alga Rhodomela confervoides. J Nat Prod. 2021;84:1763-71. https://doi.org/10.1021/acs.jnatprod.1c00021. [26] Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in pharmacological activities of terpenoids. Nat Prod Comm. 2020;15:1934578X20903555. https://doi.org/10.1177/1934578X20903555. [27] Dong L-M, Huang L-L, Dai H, Xu Q-L, Ouyang J-K, Jia X-C, et al. Anti-MRSA sesquiterpenes from the semi-mangrove plant Myoporum bontioides A Gray. Mar Drugs. 2018;16:438. https://doi.org/10.3390/md16110438. [28] Azuama OC, Ortiz S, Quirós-Guerrero L, Bouffartigues E, Tortuel D, Maillot O, et al. Tackling Pseudomonas aeruginosa virulence by mulinane-like diterpenoids from Azorella atacamensis. Biomolecules. 2020;10:1626. https://doi.org/10.3390/biom10121626. [29] Johansen B, Duval RE, Sergere J-C. First evidence of a combination of terpinen-4-ol and α-terpineol as a promising tool against ESKAPE pathogens. Molecules. 2022;27:7472. https://doi.org/10.3390/molecules27217472. [30] Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem. 2021;19:1644-704. https://doi.org/10.1039/D0OB02162H. [31] Gozari M, Alborz M, El-Seedi HR, Jassbi AR. Chemistry, biosynthesis and biological activity of terpenoids and meroterpenoids in bacteria and fungi isolated from different marine habitats. Eur J Med Chem. 2021;210: 112957. https://doi.org/10.1016/j.ejmech.2020.112957. [32] Sun L, Wang H, Yan M, Sai C, Zhang Z. Research advances of bioactive sesquiterpenoids isolated from marine-derived Aspergillus sp. Molecules. 2022;27:7376. https://doi.org/10.3390/molecules27217376. [33] Zhao W-Y, Yi J, Chang Y-B, Sun C-P, Ma X-C. Recent studies on terpenoids in Aspergillus fungi: chemical diversity, biosynthesis, and bioactivity. Phytochemistry. 2022;193: 113011. https://doi.org/10.1016/j.phytochem.2021.113011. [34] Abdel-Wahab NM, Scharf S, Özkaya FC, Kurtán T, Mándi A, Fouad MA, et al. Induction of secondary metabolites from the marine-derived fungus Aspergillus versicolor through co-cultivation with Bacillus subtilis. Planta Med. 2019;85:503-12. https://doi.org/10.1055/a-0835-2332. [35] Aloke C, Achilonu I. Coping with the ESKAPE pathogens: evolving strategies, challenges and future prospects. Microb Pathog. 2023;175: 105963. https://doi.org/10.1016/j.micpath.2022.105963. [36] Garcia J, Rodrigues F, Castro F, Aires A, Marques G, Saavedra MJ. Antimicrobial, antibiofilm, and antioxidant properties of Boletus edulis and Neoboletus luridiformis against multidrug-resistant ESKAPE pathogens. Front Nutr. 2022. https://doi.org/10.3389/fnut.2021.773346. [37] Jadimurthy R, Mayegowda SB, Nayak SC, Mohan CD, Rangappa KS. Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. Biotechnol Rep. 2022;34: e00728. https://doi.org/10.1016/j.btre.2022.e00728. [38] Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, et al. Revisiting ESKAPE pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol. 2023;13:1159798. https://doi.org/10.3389/fcimb.2023.1159798. [39] David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 2019;4:1919-29. https://doi.org/10.1038/s41564-019-0492-8. [40] Hamidian M, Nigro SJ. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microbial Genomics. 2019;5: e000306. https://doi.org/10.1099/mgen.0.000306. [41] Lin K-Y, Lauderdale T-L, Wang J-T, Chang S-C. Carbapenem-resistant Pseudomonas aeruginosa in Taiwan: prevalence, risk factors, and impact on outcome of infections. J Microbiol Immunol Infect. 2016;49:52-9. https://doi.org/10.1016/j.jmii.2014.01.005. [42] Hsu L-Y, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A, Tambyah PA. Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev. 2016;30:1-22. https://doi.org/10.1128/cmr.00042-16. [43] Cheng X, Ma L, Wang Y, Sun W, Su J. Prevalence and molecular characteristics of heterogeneous vancomycin intermediate Staphylococcus aureus in a tertiary care center of northern China. Diagn Microbiol Infect Dis. 2024;108: 116180. https://doi.org/10.1016/j.diagmicrobio.2024.116180. [44] Khan M, Summers S, Rice SA, Stapleton F, Willcox MDP, Subedi D. Acquired fluoroquinolone resistance genes in corneal isolates of Pseudomonas aeruginosa. Infect Genet Evol. 2020;85: 104574. https://doi.org/10.1016/j.meegid.2020.104574. [45] Steinbach WJ. Aspergillus species. In: Principles and practice of pediatric infectious diseases. Elsevier; 2023. p. 1262- 1268.e2. https://doi.org/10.1016/B978-0-323-75608-2.00244-5. [46] Fisher MC, Gurr SJ, Cuomo CA, Blehert DS, Jin H, Stukenbrock EH, et al. Threats posed by the fungal kingdom to humans, wildlife, and agriculture. MBio. 2020. https://doi.org/10.1128/mbio.00449-20. [47] Taniwaki MH, Pitt JI, Magan N. Aspergillus species and mycotoxins: occurrence and importance in major food commodities. Curr Opin Food Sci. 2018;23:38-43. https://doi.org/10.1016/j.cofs.2018.05.008. [48] Claeys L, Romano C, De Ruyck K, Wilson H, Fervers B, Korenjak M, et al. Mycotoxin exposure and human cancer risk: a systematic review of epidemiological studies. Comprehensive Rev Food Sci Food Safety. 2020;19:1449-64. https://doi.org/10.1111/1541-4337.12567. [49] Cairns TC, Nai C, Meyer V. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biol Biotechnol. 2018;5:13. https://doi.org/10.1186/s40694-018-0054-5. [50] Hillier SG, Lathe R. Terpenes, hormones and life: isoprene rule revisited. J Endocrinol. 2019;242:R9-22. https://doi.org/10.1530/JOE-19-0084. [51] Luo P, Huang J-H, Lv J-M, Wang G-Q, Hu D, Gao H. Biosynthesis of fungal terpenoids. Nat Prod Rep. 2024. https://doi.org/10.1039/D3NP00052D. [52] Ruzicka L. The isoprene rule and the biogenesis of terpenic compounds. Experientia. 1953;9:357-67. https://doi.org/10.1007/BF02167631. [53] Li X-D, Li X-M, Yin X-L, Li X, Wang B-G. Antimicrobial sesquiterpenoid derivatives and monoterpenoids from the deep-sea sediment-derived fungus Aspergillus versicolor SD-330. Mar Drugs. 2019;17:563. https://doi.org/10.3390/md17100563. [54] Pan G, Li Y, Che X, Tian D, Han W, Wang Z, et al. New thio-compounds and monoterpenes with anti-inflammatory activities from the fungus Aspergillus sp. CYH26. Front Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.668938. [55] Ding H, Wang J-P, Deng S-P, Gan J-L, Li B-X, Yao L-L, et al. A new sesquiterpenoid from the aconitum-derived fungus Aspergillus fumigatus M1. Nat Prod Res. 2023;37:3443-51. https://doi.org/10.1080/14786419.2022.2080207. [56] Chen Y, Zhu H-Y, Xu L-C, Wang S-P, Liu S, Liu G-D, et al. Antimicrobial and cytotoxic phenolic bisabolane sesquiterpenoids from the fungus Aspergillus flavipes 297. Fitoterapia. 2021;155: 105038. https://doi.org/10.1016/j.fitote.2021.105038. [57] Liu Y-P, Fang S-T, Wang B-G, Ji N-Y. Phenol derivatives from the cold-seep fungus Aspergillus sydowii 10-31. Phytochem Lett. 2022;52:63-6. https://doi.org/10.1016/j.phytol.2022.09.007. [58] Yang X, Yu H, Ren J, Cai L, Xu L, Liu L. Sulfoxide-containing bisabolane sesquiterpenoids with antimicrobial and nematicidal activities from the marine-derived fungus Aspergillus sydowii LW09. J Fungi. 2023;9:347. https://doi.org/10.3390/jof9030347. [59] Jiang Y, Cui C, Chen C, Wang N, Liao H, Li Q, et al. Two pairs of new bisabolane-type sesquiterpenoids from Aspergillus sydowii. Chem Biodivers. 2023;20: e202301047. https://doi.org/10.1002/cbdv.202301047. [60] Pang X, Lin X, Zhou X, Yang B, Tian X, Wang J, et al. New quinoline alkaloid and bisabolane-type sesquiterpenoid derivatives from the deep-sea-derived fungus Aspergillus sp. SCSIO06786. Fitoterapia. 2020;140: 104406. https://doi.org/10.1016/j.fitote.2019.104406. [61] Li X-D, Li X, Li X-M, Yin X-L, Wang B-G. Antimicrobial bisabolane-type sesquiterpenoids from the deep-sea sediment-derived fungus Aspergillus versicolor SD-330. Nat Prod Res. 2021;35:4265-71. https://doi.org/10.1080/14786419.2019.1696792. [62] Liu N, Peng S, Yang J, Cong Z, Lin X, Liao S, et al. Structurally diverse sesquiterpenoids and polyketides from a sponge-associated fungus Aspergillus sydowii SCSIO41301. Fitoterapia. 2019;135:27-32. https://doi.org/10.1016/j.fitote.2019.03.031. [63] Zhang X, Dong Y, Liu X, Wang R, Lu J, Song F. New bisabolane-type sesquiterpenoid from Aspergillus sydowii BTBU20213012. Nat Prod Res. 2023. https://doi.org/10.1080/14786419.2023.2236764. [64] Yu H-Y, Chen Y-S, Wang Y, Zou Z-B, Xie M-M, Li Y, et al. Anti-necroptosis and anti-ferroptosis compounds from the deep-sea-derived fungus Aspergillus sp. MCCC 3A00392. Bioorg Chem. 2024;144: 107175. https://doi.org/10.1016/j.bioorg.2024.107175. [65] Jiang Y, Chen C, Zhu H, Li Q, Mao L, Liao H, et al. An indole diketopiperazine alkaloid and a bisabolane sesquiterpenoid with unprecedented skeletons from Aspergillus fumigatus. Org Biomol Chem. 2023;21:2236-42. https://doi.org/10.1039/D2OB02220F. [66] Liu Y-F, Yue Y-F, Feng L-X, Zhu H-J, Cao F. Asperienes A-D, Bioactive sesquiterpenes from the marine-derived fungus Aspergillus flavus. Mar Drugs. 2019;17:550. https://doi.org/10.3390/md17100550. [67] Lacey HJ, Gilchrist CLM, Crombie A, Kalaitzis JA, Vuong D, Rutledge PJ, et al. Nanangenines: drimane sesquiterpenoids as the dominant metabolite cohort of a novel Australian fungus, Aspergillus nanangensis. Beilstein J Org Chem. 2019;15:2631-43. https://doi.org/10.3762/bjoc.15.256. [68] Fang S-T, Shi Z-Z, Song Y-P, Yin X-L, Ji N-Y. New ophiobolin sesterterpenoid and drimane sesquiterpenoids from a marine-alga-derived fungus Aspergillus sp. Fitoterapia. 2023;170: 105659. https://doi.org/10.1016/j.fitote.2023.105659. [69] Li H, Zhang R, Cao F, Wang J, Hu Z, Zhang Y. Proversilins A-E, drimane-type sesquiterpenoids from the endophytic Aspergillus versicolor. J Nat Prod. 2020;83:2200-6. https://doi.org/10.1021/acs.jnatprod.0c00298. [70] Salman K, Zhu H, Sun Z, Li Y, Wang L, Wang R, et al. Seven drimane-type sesquiterpenoids from an earwig-associated Aspergillus sp. Chin J Nat Med. 2023;21:58-64. https://doi.org/10.1016/S1875-5364(23)60385-1. [71] Li F, Mo S, Yin J, Zhang S, Gu S, Ye Z, et al. Structurally diverse metabolites from a soil-derived fungus Aspergillus calidoustus. Bioorg Chem. 2022;127: 105988. https://doi.org/10.1016/j.bioorg.2022.105988. [72] An C-L, Kong F-D, Li Y, Ma Q-Y, Xie Q-Y, Yuan J-Z, et al. Asperpenes D and E from the fungus Aspergillus sp. SCS-KFD66 isolated from a bivalve mollusk, Sanguinolaria chinensis. J Asian Nat Prod Res. 2021;23:117-22. https://doi.org/10.1080/10286020.2019.1709450. [73] Niu S, Huang S, Wang J, He J, Chen M, Zhang G, et al. Malfilanol C, a new sesquiterpenoid isolated from the deep-sea-derived Aspergillus puniceus A2 fungus. Nat Prod Res. 2024;38:1362-8. https://doi.org/10.1080/14786419.2022.2144299. [74] Shang R-Y, Cui J, Li J-X, Miao X-X, Zhang L, Xie D-D, et al. Nigerin and ochracenes J-L, new sesquiterpenoids from the marine sponge symbiotic fungus Aspergillus niger. Tetrahedron. 2022;104: 132599. https://doi.org/10.1016/j.tet.2021.132599. [75] Zang Y, Zhou B, Wei M, Shi Z, Feng G, Deng M, et al. Aureoterrolides B-M: eremophilane-type sesquiterpenoids isolated from Aspergillus aureoterreus and their cytotoxicity. Phytochem. 2022;202: 113294. https://doi.org/10.1016/j.phytochem.2022.113294. [76] Liu Z, Zhao J-Y, Sun S-F, Li Y, Qu J, Liu H-T, et al. Sesquiterpenes from an endophytic Aspergillus flavus. J Nat Prod. 2019;82:1063-71. https://doi.org/10.1021/acs.jnatprod.8b01084. [77] Chen W, Chen C, Long J, Lan S, Lin X, Liao S, et al. Bioactive secondary metabolites from the deep-sea derived fungus Aspergillus sp. SCSIO 41029. J Antibiot. 2021;74:156-9. https://doi.org/10.1038/s41429-020-00378-y. [78] Zhou G, Sun C, Hou X, Che Q, Zhang G, Gu Q, et al. Ascandinines A-D, indole diterpenoids, from the sponge-derived fungus Aspergillus candidus HDN15-152. J Org Chem. 2021;86:2431-6. https://doi.org/10.1021/acs.joc.0c02575. [79] Li W, Yi G, Lin K, Chen G, Hui Y, Chen W. Cytotoxic indole diterpenoids from a Sphagneticola trilobata-derived fungus Aspergillus sp. PQJ-1. Molecules. 2023;28:7003. https://doi.org/10.3390/molecules28207003. [80] Zhang F, Yang L, Xie Q-Y, Guo J-C, Ma Q-Y, Dai L-T, et al. Diverse indole-diterpenoids with protein tyrosine phosphatase 1B inhibitory activities from the marine coral-derived fungus Aspergillus sp. ZF-104. Phytochem. 2023;216: 113888. https://doi.org/10.1016/j.phytochem.2023.113888. [81] Chaiyosang B, Kanokmedhakul K, Yodsing N, Boonlue S, Yang J-X, Wang YA, et al. Three new indole diterpenoids from Aspergillus aculeatus KKU-CT2. Nat Prod Res. 2022;36:4973-81. https://doi.org/10.1080/14786419.2021.1914613. [82] Elsbaey M, Tanaka C, Miyamoto T. New secondary metabolites from the mangrove endophytic fungus Aspergillus versicolor. Phytochem Lett. 2019;32:70-6. https://doi.org/10.1016/j.phytol.2019.04.023. [83] Moussa AY, Sobhy HA, Eldahshan OA, Singab ANB. Caspicaiene: a new kaurene diterpene with anti-tubercular activity from an Aspergillus endophytic isolate in Gleditsia caspia desf. Nat Prod Res. 2021;35:5653-64. https://doi.org/10.1080/14786419.2020.1824222. [84] Han J, Lu F, Bao L, Wang H, Chen B, Li E, et al. Terphenyl derivatives and terpenoids from a wheat-born mold Aspergillus candidus. J Antibiot. 2020;73:189-93. https://doi.org/10.1038/s41429-019-0266-9. [85] Yang W, Chen T, Chen Y, Tan Q, Ou Y, Li G, et al. Antiplasmodial asperterpenoids from two Aspergillus oryzae transformants with heterologous expression of sesterterpene genes. J Org Chem. 2022;87:16807-19. https://doi.org/10.1021/acs.joc.2c02501. [86] Li Y-L, Gao Y, Liu C-Y, Sun C-J, Zhao Z-T, Lou H-X. Asperunguisins A-F, cytotoxic asperane sesterterpenoids from the endolichenic fungus Aspergillus unguis. J Nat Prod. 2019;82:1527-34. https://doi.org/10.1021/acs.jnatprod.8b01066. [87] Choi B-K, Trinh PTH, Lee H-S, Choi B-W, Kang JS, Ngoc NTD, et al. New ophiobolin derivatives from the marine fungus Aspergillus flocculosus and their cytotoxicities against cancer cells. Mar Drugs. 2019;17:346. https://doi.org/10.3390/md17060346. [88] Chi L-P, Li X-M, Wan Y-P, Li X, Wang B-G. Ophiobolin sesterterpenoids and farnesylated phthalide derivatives from the deep sea cold-seep-derived fungus Aspergillus insuetus SD-512. J Nat Prod. 2020;83:3652-60. https://doi.org/10.1021/acs.jnatprod.0c00860. [89] Fu A, Chen C, Li Q, Ding N, Dong J, Chen Y, et al. Niduenes A-F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chin Chem Lett. 2023. https://doi.org/10.1016/j.cclet.2023.109100. [90] Li Q, Chen C, Wei M, Dai C, Cheng L, Tao J, et al. Niduterpenoids A and B: two sesterterpenoids with a highly congested hexacyclic 5/5/5/5/3/5 ring system from the fungus Aspergillus nidulans. Org Lett. 2019;21:2290-3. https://doi.org/10.1021/acs.orglett.9b00581. [91] Wei M, Zhou P, Huang L, Yin J, Li Q, Dai C, et al. Spectanoids A-H: eight undescribed sesterterpenoids from Aspergillus spectabilis. Phytochem. 2021;191: 112910. https://doi.org/10.1016/j.phytochem.2021.112910. [92] Li Q, Zheng Y, Fu A, Wei M, Kang X, Chen C, et al. 30-norlanostane triterpenoids and steroid derivatives from the endophytic fungus Aspergillus nidulans. Phytochem. 2022;201: 113257. https://doi.org/10.1016/j.phytochem.2022.113257. [93] Liu L, Ni H-F, Qiu X, Wan L, Zhao M. Cytotoxic tetracyclic triterpenes from the endophytic fungus Aspergillus fumigatus of Cleidion brevipetiolatum. Phytochem Lett. 2021;44:87-9. https://doi.org/10.1016/j.phytol.2021.06.005. [94] Qin F, Luo L, Liu Y-C, Bo X-L, Wu F-R, Wang F-F, et al. Diisoprenyl-cyclohexene-type meroterpenoids from a mangrove endophytic fungus Aspergillus sp. GXNU-Y65 and their anti-nonalcoholic steatohepatitis activity in AML12 cells. Phytochem. 2024;218: 113955. https://doi.org/10.1016/j.phytochem.2023.113955. [95] Bo X, Zhao Y, Qin F, Wu F, Tan M, Ju S, et al. Cytotoxic metabolites from the mangrove endophytic fungus Aspergillus sp. GXNU QG1a. Nat Prod Res. 2024. https://doi.org/10.1080/14786419.2024.2303601. [96] Antipova TV, Zaitsev KV, Oprunenko YF, Ya. Zherebker A, Rystsov GK, Zemskova MY, et al. Austalides V and W, new meroterpenoids from the fungus Aspergillus ustus and their antitumor activities. Bioorg Med Chem Lett. 2019;29: 126708. https://doi.org/10.1016/j.bmcl.2019.126708. [97] Elnaggar M, Elissawy AM, Youssef FS, Kicsák M, Kurtán T, Singab ANB, et al. Austalide derivative from marine-derived Aspergillus sp. and evaluation of its cytotoxic and ADME/TOPKAT properties. RSC Adv. 2023;13:16480-7. https://doi.org/10.1039/D3RA02632A. [98] Cen S, Jia J, Ge Y, Ma Y, Li X, Wei J, et al. A new antibacterial 3,5-dimethylorsellinic acid-based meroterpene from the marine fungus Aspergillus sp. CSYZ-1. Fitoterapia. 2021;152: 104908. https://doi.org/10.1016/j.fitote.2021.104908. [99] Mo S, Yin J, Ye Z, Li F, Lin S, Zhang S, et al. Asperanstinoids A-E: undescribed 3,5-dimethylorsellinic acid-based meroterpenoids from Aspergillus calidoustus. Phytochem. 2021;190: 112892. https://doi.org/10.1016/j.phytochem.2021.112892. [100] Wen H, Yang X, Liu Q, Li S, Li Q, Zang Y, et al. Structurally diverse meroterpenoids from a marine-derived Aspergillus sp. fungus. J Nat Prod. 2020;83:99-104. https://doi.org/10.1021/acs.jnatprod.9b00878. [101] Tang Y, Liu Y, Ruan Q, Zhao M, Zhao Z, Cui H. Aspermeroterpenes A-C: three meroterpenoids from the marine-derived fungus Aspergillus terreus GZU-31-1. Org Lett. 2020;22:1336-9. https://doi.org/10.1021/acs.orglett.9b04648. [102] Li H-L, Li X-M, Li X, Yang S-Q, Wang B-G. Structure, absolute configuration and biological evaluation of polyoxygenated meroterpenoids from the marine algal-derived Aspergillus terreus EN-539. Phytochem Lett. 2019;32:138-42. https://doi.org/10.1016/j.phytol.2019.05.017. [103] Tang Y, Chen X, Zhou Y, Zhao M, He J, Liu Y, et al. Furanaspermeroterpenes A and B, two unusual meroterpenoids with a unique 6/6/6/5/5 pentacyclic skeleton from the marine-derived fungus Aspergillus terreus GZU-31-1. Bioorg Chem. 2021;114: 105111. https://doi.org/10.1016/j.bioorg.2021.105111. [104] Tang Y, Li Y, Zhao M, Ruan Q, Liu Y, Li C, et al. Furanasperterpenes A and B, two meroterpenoids with a novel 6/6/6/6/5 ring system from the marine-derived fungus Aspergillus terreus GZU-31-1. Bioorg Chem. 2020;100: 103968. https://doi.org/10.1016/j.bioorg.2020.103968. [105] Hamed A, Abdel-Razek AS, Omran DA, El-Metwally MM, El-Hosari DG, Frese M, et al. Terretonin O: a new meroterpenoid from Aspergillus terreus. Nat Prod Res. 2020;34:965-74. https://doi.org/10.1080/14786419.2018.1544977. [106] Li X, Li L, Li X-M, Li H-L, Konuklugil B, Wang B-G. Ustusaustin A: a new neuraminidase inhibitory meroterpene from the ascidian-derived endophytic fungus Aspergillus ustus TK-5. Nat Prod Res. 2021;35:4939-44. https://doi.org/10.1080/14786419.2020.1752211. [107] Yan D, Matsuda Y. Genome mining-driven discovery of 5-methylorsellinate-derived meroterpenoids from Aspergillus funiculosus. Org Lett. 2021;23:3211-5. https://doi.org/10.1021/acs.orglett.1c00951. [108] Wu T, Salim AA, Capon RJ. Millmerranones A-F: a Meroterpene cyclic carbonate and related metabolites from the Australian fungus Aspergillus sp. CMB-MRF324. Org Lett. 2021;23:8424-8. https://doi.org/10.1021/acs.orglett.1c03150. [109] Deng M, Tan X, Qiao Y, Sun W, Xie S, Shi Z, et al. New secondary metabolites from the endophytic fungus Aspergillus sp. from Tripterygium wilfordii. Nat Prod Res. 2022;36:3544-52. https://doi.org/10.1080/14786419.2020.1868464. [110] Mahizan NA, Yang S-K, Moo C-L, Song AA-L, Chong C-M, Chong C-W, et al. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules. 2019;24:2631. https://doi.org/10.3390/molecules24142631. [111] Sharma A, Biharee A, Kumar A, Jaitak V. Antimicrobial terpenoids as a potential substitute in overcoming antimicrobial resistance. Curr Drug Targets. 2020;21:1476-94. https://doi.org/10.2174/1389450121666200520103427. [112] Aghaei Gharehbolagh S, Izadi A, Talebi M, Sadeghi F, Zarrinnia A, Zarei F, et al. New weapons to fight a new enemy: a systematic review of drug combinations against the drug-resistant fungus Candida auris. Mycoses. 2021;64:1308-16. https://doi.org/10.1111/myc.13277. [113] Sieniawska E, Swatko-Ossor M, Sawicki R, Skalicka-Woźniak K, Ginalska G. Natural terpenes influence the activity of antibiotics against isolated Mycobacterium tuberculosis. Med Princ Pract. 2016;26:108-12. https://doi.org/10.1159/000454680. [114] Zacchino SA, Butassi E, Cordisco E, Svetaz LA. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms. Phytomed. 2017;37:14-26. https://doi.org/10.1016/j.phymed.2017.10.021. [115] Hong B, Luo T, Lei X. Late-stage diversification of natural products. ACS Cent Sci. 2020;6:622-35. https://doi.org/10.1021/acscentsci.9b00916. [116] Jansen DJ, Shenvi RA. Synthesis of medicinally relevant terpenes: reducing the cost and time of drug discovery. Future Med Chem. 2014;6:1127-48. https://doi.org/10.4155/fmc.14.71. [117] Akunuri R, Unnissa T, Vadakattu M, Bujji S, Mahammad Ghouse S, Madhavi Yaddanapudi V, et al. Bacterial pyruvate kinase: a new potential target to combat drug-resistant Staphylococcus aureus infections. ChemistrySelect. 2022;7: e202201403. https://doi.org/10.1002/slct.202201403. [118] Jackson E, Dowd C. Inhibition of 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase (Dxr): a review of the synthesis and biological evaluation of recent inhibitors. Curr Topics Med Chem. 2012;12:706-28. [119] Xiao B, Shi G, Chen X, Yan H, Ji X. Crystal structure of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase, a potential target for the development of novel antimicrobial agents. Structure. 1999;7:489-96. https://doi.org/10.1016/S0969-2126(99)80065-3. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|