Natural Products and Bioprospecting    2025, Vol. 15 Issue (1) : 10-10     DOI: 10.1007/s13659-024-00490-8
Short Communication |
Discovery of a parallel family of euglenatide analogs in Euglena gracilis
Ahmed H. Elbanna1,2, Xinhui Kou1, Dilip V. Prajapati1, Surasree Rakshit1, Rebecca A. Butcher1
1. Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA;
2. Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
Download: PDF(2752 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The euglenatides are a family of hybrid polyketide-nonribosomal peptides produced by the unicellular algae Euglena gracilis. These compounds have antiproliferative activity against fungal pathogens and mammalian cancer cell lines. Analysis of E. gracilis extracts revealed that the algae produce not only the euglenatides, but also a corresponding family of analogs that have the same molecular weights as the euglenatides, but are lacking the characteristic triene chromophore. In comparison to the euglenatides, the activity of these analogs is greatly reduced in a mammalian cytotoxicity assay, indicating that the triene is critical to the biological activity of the euglenatides.
Keywords Euglena gracilis      Euglenatide      Natural products      Polyketide      Nonribosomal peptide     
Fund:This work was supported by a grant from the National Institutes of Health (R35 GM144076 to R.A.B.).
Corresponding Authors: Rebecca A. BUTCHER,E-mail:butcher@chem.ufl.edu     E-mail: butcher@chem.ufl.edu
Issue Date: 15 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ahmed H. Elbanna
Xinhui Kou
Dilip V. Prajapati
Surasree Rakshit
Rebecca A. Butcher
Trendmd:   
Cite this article:   
Ahmed H. Elbanna,Xinhui Kou,Dilip V. Prajapati, et al. Discovery of a parallel family of euglenatide analogs in Euglena gracilis[J]. Natural Products and Bioprospecting, 2025, 15(1): 10-10.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00490-8     OR     http://npb.kib.ac.cn/EN/Y2025/V15/I1/10
[1] Nivina A, Yuet KP, Hsu J, Khosla C. Evolution and diversity of assembly-line polyketide synthases. Chem Rev. 2019;119:12524–47. https://doi.org/10.1021/acs.chemrev.9b00525.
[2] Miyanaga A, Kudo F, Eguchi T. Protein-protein interactions in polyketide synthase-nonribosomal peptide synthetase hybrid assembly lines. Nat Prod Rep. 2018;35:1185–209. https://doi.org/10.1039/c8np00022k.
[3] Inwongwan S, Kruger NJ, Ratcliffe RG, O’Neill EC. Euglena central metabolic pathways and their subcellular locations. Metabolites. 2019;9:115. https://doi.org/10.3390/metabo9060115.
[4] Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novak Vanclova AMG, Prasad B, Soukal P, Santana-Molina C, O’Neill E, Nankissoor NN, et al. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 2019;17:11. https://doi.org/10.1186/s12915-019-0626-8.
[5] O’Neill EC, Trick M, Hill L, Rejzek M, Dusi RG, Hamilton CJ, Zimba PV, Henrissat B, Field RA. The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol Biosyst. 2015;11:2808–20. https://doi.org/10.1039/c5mb00319a.
[6] Aldholmi M, Ahmad R, Carretero-Molina D, Perez-Victoria I, Martin J, Reyes F, Genilloud O, Gourbeyre L, Gefflaut T, Carlsson H, et al. Euglenatides, potent antiproliferative cyclic peptides isolated from the freshwater photosynthetic microalga Euglena gracilis. Angew Chem Int Ed Engl. 2022;61: e202203175. https://doi.org/10.1002/anie.202203175.
[7] Shou Q, Feng L, Long Y, Han J, Nunnery JK, Powell DH, Butcher RA. A hybrid polyketide-nonribosomal peptide in nematodes that promotes larval survival. Nat Chem Biol. 2016;12:770–2. https://doi.org/10.1038/nchembio.2144.
[8] Butcher RA. Small-molecule pheromones and hormones controlling nematode development. Nat Chem Biol. 2017;13:577–86. https://doi.org/10.1038/nchembio.2356.
[9] Feng L, Gordon MT, Liu Y, Basso KB, Butcher RA. Mapping the biosynthetic pathway of a hybrid polyketide-nonribosomal peptide in a metazoan. Nat Commun. 2021;600:472–7. https://doi.org/10.1038/s41586-021-03767-x.
[10] Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34:828–37. https://doi.org/10.1038/nbt.3597.
[11] Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, Petras D, Gauglitz JM, Sikora N, Vargas F, et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc. 2020;15:1954–91. https://doi.org/10.1038/s41596-020-0317-5.
[12] Willis RH, de Vries DJ. BRS1, a C30 bis-amino, bis-hydroxy polyunsaturated lipid from an Australian calcareous sponge that inhibits protein kinase C. Toxicon. 1997;35:1125–9. https://doi.org/10.1016/s0041-0101(96)00218-8.
[13] Won TH, You M, Lee SH, Rho BJ, Oh DC, Oh KB, Shin J. Amino alcohols from the ascidian Pseudodistoma sp. Mar Drugs. 2014;12:3754–69. https://doi.org/10.3390/md12063754.
[14] Ciavatta ML, Manzo E, Nuzzo G, Villani G, Varcamonti M, Gavagnin M. Crucigasterins A-E, antimicrobial amino alcohols from the Mediterranean colonial ascidian. Tetrahedron. 2010;66:7533–8. https://doi.org/10.1016/j.tet.2010.07.056.
[15] Garrido L, Zubía E, Ortega MJ, Naranjo S, Salvá J. Obscuraminols, new unsaturated amino alcohols from the tunicate: structure and absolute configuration. Tetrahedron. 2001;57:4579–88. https://doi.org/10.1016/S0040-4020(01)00372-6.
[1] María I. Osella, Mario O. Salazar, Carlos M. Solís, Ricardo L. E. Furlan. New semisynthetic α-glucosidase inhibitor from a doubly-chemically engineered extract[J]. Natural Products and Bioprospecting, 2025, 15(1): 4-4.
[2] Felaine Anne Sumang, Alan Ward, Jeff Errington, Yousef Dashti. Hibiscus acid and hydroxycitric acid dimethyl esters from Hibiscus flowers induce production of dithiolopyrrolone antibiotics by Streptomyces Strain MBN2-2[J]. Natural Products and Bioprospecting, 2024, 14(5): 40-40.
[3] Song-Yu Hou, Bing-Chao Yan, Han-Dong Sun, Pema-Tenzin Puno. Recent advances in the application of [2+2] cycloaddition in the chemical synthesis of cyclobutane-containing natural products[J]. Natural Products and Bioprospecting, 2024, 14(5): 37-37.
[4] Yin-Ping Song, Nai-Yun Ji. Chemistry and biology of marine-derived Trichoderma metabolites[J]. Natural Products and Bioprospecting, 2024, 14(3): 14-14.
[5] Chunsong Hu. Marine natural products and human immunity: novel biomedical resources for anti-infection of SARS-CoV-2 and related cardiovascular disease[J]. Natural Products and Bioprospecting, 2024, 14(2): 2-2.
[6] Shohreh Ariaeenejad, Javad Gharechahi, Mehdi Foroozandeh Shahraki, Fereshteh Fallah Atanaki, Jian-Lin Han, Xue-Zhi Ding, Falk Hildebrand, Mohammad Bahram, Kaveh Kavousi, Ghasem Hosseini Salekdeh. Precision enzyme discovery through targeted mining of metagenomic data[J]. Natural Products and Bioprospecting, 2024, 14(1): 7-7.
[7] Daniel W. Armstrong, Alain Berthod. Occurrence of D-amino acids in natural products[J]. Natural Products and Bioprospecting, 2023, 13(6): 47-47.
[8] Jing Fan, Pai Liu, Kuan Zhao, He-Ping Chen. Three previously undescribed metabolites from Cordyceps cicadae JXCH-1, an entomopathogenic fungus[J]. Natural Products and Bioprospecting, 2023, 13(6): 46-46.
[9] Dalila Carbone, Carmela Gallo, Genoveffa Nuzzo, Giusi Barra, Mario Dell'Isola, Mario Affuso, Olimpia Follero, Federica Albiani, Clementina Sansone, Emiliano Manzo, Giuliana d'Ippolito, Angelo Fontana. Marine natural product lepadin A as a novel inducer of immunogenic cell death via CD91-dependent pathway[J]. Natural Products and Bioprospecting, 2023, 13(5): 34-34.
[10] Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Warren A. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Leveraging off higher plant phylogenetic insights for antiplasmodial drug discovery[J]. Natural Products and Bioprospecting, 2023, 13(5): 35-35.
[11] Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Andrew W. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Prioritised identification of structural classes of natural products from higher plants in the expedition of antimalarial drug discovery[J]. Natural Products and Bioprospecting, 2023, 13(5): 37-37.
[12] Ji-Kai Liu. Natural products in cosmetics[J]. Natural Products and Bioprospecting, 2022, 12(6): 40-40.
[13] Si-Yuan Luo, Jun-Yu Zhu, Ming-Feng Zou, Sheng Yin, Gui-Hua Tang. Mulberry Diels–Alder-type adducts: isolation, structure, bioactivity, and synthesis[J]. Natural Products and Bioprospecting, 2022, 12(5): 31-31.
[14] Yulian Lv, Tian Tian, Yong-Jiang Wang, Jian-Ping Huang, Sheng-Xiong Huang. Advances in chemistry and bioactivity of the genus Erythroxylum[J]. Natural Products and Bioprospecting, 2022, 12(3): 15-15.
[15] Ji-Kai Liu. Antiaging agents: safe interventions to slow aging and healthy life span extension[J]. Natural Products and Bioprospecting, 2022, 12(3): 18-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed