Short Communication |
|
|
|
|
|
Discovery of a parallel family of euglenatide analogs in Euglena gracilis |
Ahmed H. Elbanna1,2, Xinhui Kou1, Dilip V. Prajapati1, Surasree Rakshit1, Rebecca A. Butcher1 |
1. Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA; 2. Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt |
|
|
Abstract The euglenatides are a family of hybrid polyketide-nonribosomal peptides produced by the unicellular algae Euglena gracilis. These compounds have antiproliferative activity against fungal pathogens and mammalian cancer cell lines. Analysis of E. gracilis extracts revealed that the algae produce not only the euglenatides, but also a corresponding family of analogs that have the same molecular weights as the euglenatides, but are lacking the characteristic triene chromophore. In comparison to the euglenatides, the activity of these analogs is greatly reduced in a mammalian cytotoxicity assay, indicating that the triene is critical to the biological activity of the euglenatides.
|
Keywords
Euglena gracilis
Euglenatide
Natural products
Polyketide
Nonribosomal peptide
|
Fund:This work was supported by a grant from the National Institutes of Health (R35 GM144076 to R.A.B.). |
Corresponding Authors:
Rebecca A. BUTCHER,E-mail:butcher@chem.ufl.edu
E-mail: butcher@chem.ufl.edu
|
Issue Date: 15 February 2025
|
|
|
[1] Nivina A, Yuet KP, Hsu J, Khosla C. Evolution and diversity of assembly-line polyketide synthases. Chem Rev. 2019;119:12524–47. https://doi.org/10.1021/acs.chemrev.9b00525. [2] Miyanaga A, Kudo F, Eguchi T. Protein-protein interactions in polyketide synthase-nonribosomal peptide synthetase hybrid assembly lines. Nat Prod Rep. 2018;35:1185–209. https://doi.org/10.1039/c8np00022k. [3] Inwongwan S, Kruger NJ, Ratcliffe RG, O’Neill EC. Euglena central metabolic pathways and their subcellular locations. Metabolites. 2019;9:115. https://doi.org/10.3390/metabo9060115. [4] Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novak Vanclova AMG, Prasad B, Soukal P, Santana-Molina C, O’Neill E, Nankissoor NN, et al. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol. 2019;17:11. https://doi.org/10.1186/s12915-019-0626-8. [5] O’Neill EC, Trick M, Hill L, Rejzek M, Dusi RG, Hamilton CJ, Zimba PV, Henrissat B, Field RA. The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol Biosyst. 2015;11:2808–20. https://doi.org/10.1039/c5mb00319a. [6] Aldholmi M, Ahmad R, Carretero-Molina D, Perez-Victoria I, Martin J, Reyes F, Genilloud O, Gourbeyre L, Gefflaut T, Carlsson H, et al. Euglenatides, potent antiproliferative cyclic peptides isolated from the freshwater photosynthetic microalga Euglena gracilis. Angew Chem Int Ed Engl. 2022;61: e202203175. https://doi.org/10.1002/anie.202203175. [7] Shou Q, Feng L, Long Y, Han J, Nunnery JK, Powell DH, Butcher RA. A hybrid polyketide-nonribosomal peptide in nematodes that promotes larval survival. Nat Chem Biol. 2016;12:770–2. https://doi.org/10.1038/nchembio.2144. [8] Butcher RA. Small-molecule pheromones and hormones controlling nematode development. Nat Chem Biol. 2017;13:577–86. https://doi.org/10.1038/nchembio.2356. [9] Feng L, Gordon MT, Liu Y, Basso KB, Butcher RA. Mapping the biosynthetic pathway of a hybrid polyketide-nonribosomal peptide in a metazoan. Nat Commun. 2021;600:472–7. https://doi.org/10.1038/s41586-021-03767-x. [10] Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34:828–37. https://doi.org/10.1038/nbt.3597. [11] Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, Petras D, Gauglitz JM, Sikora N, Vargas F, et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc. 2020;15:1954–91. https://doi.org/10.1038/s41596-020-0317-5. [12] Willis RH, de Vries DJ. BRS1, a C30 bis-amino, bis-hydroxy polyunsaturated lipid from an Australian calcareous sponge that inhibits protein kinase C. Toxicon. 1997;35:1125–9. https://doi.org/10.1016/s0041-0101(96)00218-8. [13] Won TH, You M, Lee SH, Rho BJ, Oh DC, Oh KB, Shin J. Amino alcohols from the ascidian Pseudodistoma sp. Mar Drugs. 2014;12:3754–69. https://doi.org/10.3390/md12063754. [14] Ciavatta ML, Manzo E, Nuzzo G, Villani G, Varcamonti M, Gavagnin M. Crucigasterins A-E, antimicrobial amino alcohols from the Mediterranean colonial ascidian. Tetrahedron. 2010;66:7533–8. https://doi.org/10.1016/j.tet.2010.07.056. [15] Garrido L, Zubía E, Ortega MJ, Naranjo S, Salvá J. Obscuraminols, new unsaturated amino alcohols from the tunicate: structure and absolute configuration. Tetrahedron. 2001;57:4579–88. https://doi.org/10.1016/S0040-4020(01)00372-6. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|