Natural Products and Bioprospecting    2025, Vol. 15 Issue (1) : 9-9     DOI: 10.1007/s13659-024-00494-4
ORIGINAL ARTICLES |
Dibohemamines I-O from Streptomyces sp. GZWMJZ-662, an endophytic actinomycete from the medicinal and edible plant Houttuynia cordata Thunb.
Dong-Yang Wang1,2, Ming-Xing Li1,2, Yan-Chao Xu1,3, Peng Fu4, Wei-Ming Zhu1,4, Li-Ping Wang1,2
1. State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China;
2. Natural Product Research Center of Guizhou Province, Guiyang, 550014, China;
3. School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China;
4. School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
Download: PDF(1281 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  A chemical investigation of Streptomyces sp. GZWMJZ-662, an endophytic actinomycete isolated from Houttuynia cordata Thunb., has yielded eleven bohemamine dimers (1-11). Notably, the newly identified dibohemamines I–O (1-7) have not been previously reported. Their structures were elucidated through detailed spectroscopic analysis, encompassing high-resolution electrospray ionization mass, nuclear magnetic resonance, infrared radiation, ultraviolet–visible, and electronic circular dichroism spectroscopy. Dibohemamine I (1) exhibited selective cytotoxic effects against the cancer cell lines 786-O and GBC-SD among the 18 cell lines evaluated, with the half-inhibitory concentration values of 3.24±0.20 and 7.36±0.41 μM, respectively.
Keywords Endophytic actinomycete      Secondary metabolite      Dibohemamine      Cytotoxicity     
Fund:The National Natural Science Foundation of China,82460684,Li-Ping Wang, West Light Foundation, Chinese Academy of Sciences, RZ [2022]4, Li-Ping Wang, Research Foundation for Advanced Talents (D. Wang),TCZJZ [2022]02, Dong-Yang Wang, Project of State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, QJJ[2022]419, Peng Fu, Cultivation project of National Natural Science Foundation of Guizhou Medical University, 20NSP065, Li-Ping Wang, the 100 Leading Talents of Guizhou Province, W. Zhu, Wei-Ming Zhu.
Corresponding Authors: Wei-Ming ZHU,E-mail:weimingzhu@ouc.edu.cn;Li-Ping WANG,E-mail:wangliping2022@gmc.edu.cn     E-mail: weimingzhu@ouc.edu.cn;wangliping2022@gmc.edu.cn
Issue Date: 15 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dong-Yang Wang
Ming-Xing Li
Yan-Chao Xu
Peng Fu
Wei-Ming Zhu
Li-Ping Wang
Trendmd:   
Cite this article:   
Dong-Yang Wang,Ming-Xing Li,Yan-Chao Xu, et al. Dibohemamines I-O from Streptomyces sp. GZWMJZ-662, an endophytic actinomycete from the medicinal and edible plant Houttuynia cordata Thunb.[J]. Natural Products and Bioprospecting, 2025, 15(1): 9-9.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00494-4     OR     http://npb.kib.ac.cn/EN/Y2025/V15/I1/9
[1] Selim MSM, Abdelhamid SA, Mohamed SS. Secondary metabolites and biodiversity of actinomycetes. Genet Eng Biotechnol. 2021;19:72.
[2] Genilloud O. Actinomycetes: still a source of novel antibiotics. Nat Prod Rep. 2017;34:1203–32.
[3] Schniete JK, Fernández-Martínez LT. Natural product discovery in soil actinomycetes: unlocking their potential within an ecological context. Curr Opin Microbiol. 2024;79: 102487.
[4] Matsumoto A, Takahashi Y. Endophytic actinomycetes: promising source of novel bioactive compounds. J Antibiot (Tokyo). 2017;70(5):514–9.
[5] Nalini MS, Prakash HS. Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Lett Appl Microbiol. 2017;64:261–70.
[6] Ayswaria R, Vasu V, Krishna R. Diverse endophytic Streptomyces species with dynamic metabolites and their meritorious applications: a critical review. Crit Rev Microbiol. 2020;46:750–8.
[7] Bernardi DI, das Chagas FO, Monteiro AF, Dos Santos GF, de Souza Berlinck RG. Secondary metabolites of endophytic actinomycetes: isolation, synthesis, biosynthesis, and biological activities. Prog Chem Org Nat Prod 2019; 108: 207–296.
[8] Zotchev SB. Unlocking the potential of bacterial endophytes from medicinal plants for drug discovery. Microb Biotechnol. 2024;17: e14382.
[9] Wei P, Luo Q, Hou Y, Zhao F, Li F, Meng Q. Houttuynia Cordata Thunb.: a comprehensive review of traditional applications, phytochemistry, pharmacology and safety. Phytomedicine. 2023;123:155195.
[10] Das SK, Deka SJ, Paul D, Gupta DD, Das TJ, Maravi DK, Tag H, Hui PK. In-silico based identification of phytochemicals from Houttuynia cordata Thunb as potential inhibitors for overexpressed HER2 and VEGFR2 cancer genes. J Biomol Struct Dyn. 2022;40:6857–67.
[11] Lou YM, Guo ZZ, Zhu YF, Kong MY, Zhang RR, Lu LL, Wu FC, Liu ZQ, Wu JJ. Houttuynia cordata Thunb and its bioactive compound 2-undecanone significantly suppress benzo(a)pyrene-induced lung tumori.genesis by activating the Nrf2-HO-1/NQO-1 signaling pathway. J Exp Clin Canc Res. 2019;38:242.
[12] Inthi P, Pandith H, Kongtawelert P. Anti-cancer effect and active phytochemicals of Houttuynia cordata Thunb against human breast cancer cells. Asian Pac J Cancer Prev. 2023;24:1265–74.
[13] Chen YF, Yang JS, Chang WS, Tsai SC, Peng SF, Zhou YR. Houttuynia cordata Thunb extract modulates G0/G1 arrest and Fas/CD95-mediated death receptor apoptotic cell death in human lung cancer A549 cells. J Biomed Sci. 2013;20:18.
[14] Yin Y, Wang D, Wu D, He W, Zuo M, Zhu W, Xu Y, Wang L. Two new 4-Hydroxy-2-pyridone alkaloids with antimicrobial and cytotoxic activities from Arthrinium sp. GZWMJZ-606 endophytic with Houttuynia cordata Thunb. Molecules. 2023;28:2192.
[15] Fu P, Legako A, La S, MacMillan JB. Discovery, characterization, and analogue synthesis of bohemamine dimers generated by non-enzymatic biosynthesis. Chem Eur J. 2016;22:3491–5.
[16] Zhang R, Yan X, Yin S, Wang W, Zhu W, Fu P. Discovery of new bohemamines and synthesis of methylene-bridged chimeric derivatives through natural product chimera strategy. Chin J Chem. 2022;40:1413–21.
[17] Jiang B, Zhao W, Li S, Liu H, Yu L, Zhang Y, He H, Wu L. Cytotoxic dibohemamines D-F from a Streptomyces Species. J Nat Prod. 2017;80:2825–9.
[18] Bugni TS, Woolery M, Kauffman CA, Jensen PR, Fenical W. Bohemamines from a marine-derived Streptomyces sp. J Nat Prod. 2006;69:1626–8.
[19] Ueda JY, Hashimoto J, Nagai A, Nakashima T, Komaki H, Anzai K, Harayama S, Doi T, Takahashi T, Nagasawa K, Natsume T, Takagi M, Shin-ya K. New aureothin derivative, alloaureothin, from Streptomyces sp MM23. J Antibiot (Tokyo). 2007;60:321–4.
[20] Wang L, He W, Wang X, Li G, Wang D, Xu Y, Zhu W. Asteriquinones from Aspergillus sp. GZWMJZ-258 and their derivatives. J Nat Prod. 2023;86:2522–8.
[1] Yue-Mei Chen, Nan-Kai Cao, Si-Si Zhu, Meng Ding, Hai-Zhen Liang, Ming-Bo Zhao, Ke-Wu Zeng, Peng-Fei Tu, Yong Jiang. Euchrestifolines A-O, fifteen novel carbazole alkaloids with potent anti-ferroptotic activity from Murraya euchrestifolia[J]. Natural Products and Bioprospecting, 2025, 15(1): 5-5.
[2] Alica Fischle, Mika Lutsch, Florian Hübner, Linda Sch?ker-Hübner, Lina Schürmann, Finn K. Hansen, Svetlana A. Kalinina. Micro-scale screening of genetically modified Fusarium fujikuroi strain extends the apicidin family[J]. Natural Products and Bioprospecting, 2024, 14(6): 51-51.
[3] Qi-Xiu Hai, Kun Hu, Su-Ping Chen, Yang-Yang Fu, Xiao-Nian Li, Han-Dong Sun, Hong-Ping He, Pema-Tenzin Puno. Silvaticusins A-D: ent-kaurane diterpenoids and a cyclobutane-containing ent-kaurane dimer from Isodon silvaticus[J]. Natural Products and Bioprospecting, 2024, 14(5): 45-45.
[4] Ismail Ware, Katrin Franke, Andrej Frolov, Kseniia Bureiko, Elana Kysil, Maizatulakmal Yahayu, Hesham Ali El Enshasy, Ludger A. Wessjohann. Comparative metabolite analysis of Piper sarmentosum organs approached by LC-MS-based metabolic profiling[J]. Natural Products and Bioprospecting, 2024, 14(4): 30-30.
[5] Kritika Jalota, Vikas Sharma, Chiti Agarwal, Suruchi Jindal. Eco-friendly approaches to phytochemical production: elicitation and beyond[J]. Natural Products and Bioprospecting, 2024, 14(1): 5-5.
[6] Weiwei Peng, Qi Huang, Xin Ke, Wenxuan Wang, Yan Chen, Zihuan Sang, Chen Chen, Siyu Qin, Yuting Zheng, Haibo Tan, Zhenxing Zou. Koningipyridines A and B, two nitrogen-containing polyketides from the fungus Trichoderma koningiopsis SC-5[J]. Natural Products and Bioprospecting, 2024, 14(1): 8-8.
[7] Li Wu, Ning Yang, Meng Guo, Didi Zhang, Reza A. Ghiladi, Hasan Bayram, Jun Wang. The role of sound stimulation in production of plant secondary metabolites[J]. Natural Products and Bioprospecting, 2023, 13(6): 40-40.
[8] Fengli Li, Saisai Gu, Sitian Zhang, Shuyuan Mo, Jieru Guo, Zhengxi Hu, Yonghui Zhang. Three new amide derivatives from the fungus Alternaria brassicicola[J]. Natural Products and Bioprospecting, 2023, 13(4): 28-28.
[9] Shuyuan Mo, Ziming Zhao, Zi Ye, Zhihong Huang, Yaxin Zhang, Wanqi Yang, Jianping Wang, Zhengxi Hu, Yonghui Zhang. New secondary metabolites with cytotoxicity from fungus Penicillium roqueforti[J]. Natural Products and Bioprospecting, 2023, 13(3): 17-17.
[10] Li Hou, Cui-Xuan Mei, Chun-Mao Yuan, Gui-Hua Tang, Duo-Zhi Chen, Qing Zhao, Hong-Ping He, Ming-Ming Cao, Xiao-Jiang Hao. Five new limonoids isolated from Walsura robusta[J]. Natural Products and Bioprospecting, 2023, 13(2): 7-7.
[11] Ya-Li Hu, Xing-Ren Li, Gang Xu. Carascynol A, a hybrid of caryophyllane-type terpenoid and a C6 unit degraded by polyprenylated acylphloroglucinols from Hypericum ascyron[J]. Natural Products and Bioprospecting, 2022, 12(6): 38-38.
[12] Xin Zhang, Yun-Bao Ma, Xiao-Feng He, Tian-Ze Li, Chang-An Geng, Li-Hua Su, Shuang Tang, Zhen Gao, Ji-Jun Chen. Artemyrianosins A–J, cytotoxic germacrane-type sesquiterpene lactones from Artemisia myriantha[J]. Natural Products and Bioprospecting, 2022, 12(3): 16-16.
[13] Natividad Herrera Cano, Sebastian A. Andujar, Cristina Theoduloz, Daniel A. Wunderlin, Ana N. Santiago, Guillermo Schmeda-Hirschmann, Ricardo D. Enriz, Gabriela E. Feresin. Arylated analogues of cypronazole: fungicidal effect and activity on human fibroblasts. Docking analysis and molecular dynamics simulations[J]. Natural Products and Bioprospecting, 2022, 12(2): 9-9.
[14] Ruo-Song Zhang, Yang-Yang Liu, Pei-Feng Zhu, Qiong Jin, Zhi Dai, Xiao-Dong Luo. Furostanol Saponins from Asparagus cochinchinensis and Their Cytotoxicity[J]. Natural Products and Bioprospecting, 2021, 11(6): 651-658.
[15] Patrick O. Sakyi, Richard K. Amewu, Robert N. O. A. Devine, Emahi Ismaila, Whelton A. Miller, Samuel K. Kwofie. The Search for Putative Hits in Combating Leishmaniasis: The Contributions of Natural Products Over the Last Decade[J]. Natural Products and Bioprospecting, 2021, 11(5): 489-544.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed