Natural Products and Bioprospecting    2025, Vol. 15 Issue (1) : 5-5     DOI: 10.1007/s13659-024-00483-7
ORIGINAL ARTICLES |
Euchrestifolines A-O, fifteen novel carbazole alkaloids with potent anti-ferroptotic activity from Murraya euchrestifolia
Yue-Mei Chen, Nan-Kai Cao, Si-Si Zhu, Meng Ding, Hai-Zhen Liang, Ming-Bo Zhao, Ke-Wu Zeng, Peng-Fei Tu, Yong Jiang
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People’s Republic of China
Download: PDF(3069 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Fifteen novel carbazole alkaloids, euchrestifolines A–O (115), were obtained from Murraya euchrestifolia. Their structures were elucidated by spectroscopic analysis, Mosher’s ester, calculated ECD, and transition metal complex ECD methods. Notably, euchrestifolines A–C (13) are the first naturally occurring pyrrolidone carbazoles to be identified, while euchrestifolines D–F (46) represent rare carbazole alkaloids containing a phenylpropanyl moiety; euchrestifoline G (7) features a unique benzopyranocarbazole skeleton. More importantly, these compounds exhibited significant anti-ferroptotic activity, along with inhibitory effects of nitric oxide (NO) production and notable cytotoxicity. This study marks the first disclosure of carbazole's inhibitory effects against ferroptosis, and the EC50 values of some carbazoles ranging from 0.04 to 1 μM, substantially lower than the positive control, ferrostatin-1. In sum, this research not only enhances our understanding of carbazole alkaloids but also opens new avenues for the discovery of ferroptosis-related leading compounds.
Keywords Murraya euchrestifolia      Carbazole      Benzopyranocarbazole      Anti-ferroptosis      NO inhibition      Cytotoxicity     
Fund:We express our gratitude to the National Natural Science Foundation of China (NSFC) for their financial support through grant numbers 81973199, 82173949, U23A20514, 81773864, and 81473106. Additionally, we acknowledge the funding provided by the Key Research and Development Project of Shandong Province (2021CXGC010507). Thanks to Mr. Cao Fei from Hebei University for his help in quantum chemical calculations.
Corresponding Authors: Yong JIANG,E-mail:yongjiang@bjmu.edu.cn     E-mail: yongjiang@bjmu.edu.cn
Issue Date: 15 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yue-Mei Chen
Nan-Kai Cao
Si-Si Zhu
Meng Ding
Hai-Zhen Liang
Ming-Bo Zhao
Ke-Wu Zeng
Peng-Fei Tu
Yong Jiang
Trendmd:   
Cite this article:   
Yue-Mei Chen,Nan-Kai Cao,Si-Si Zhu, et al. Euchrestifolines A-O, fifteen novel carbazole alkaloids with potent anti-ferroptotic activity from Murraya euchrestifolia[J]. Natural Products and Bioprospecting, 2025, 15(1): 5-5.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00483-7     OR     http://npb.kib.ac.cn/EN/Y2025/V15/I1/5
[1] Editorial Committee of Flora of China. Flora of China, Science Press. Beijing; 1997. p. 139-151.
[2] Ji XD, Pu QL, Yang GZ. The chemical constituents of essential oil from Murraya euchrestifolia Hayata. Acta Pharm Sin. 1983;18:626–9.
[3] Wu TS, Wang ML, Wu PL, Furukawa H. Carbazole alkaloids from the leaves of Murraya euchrestifolia. Phytochemistry. 1996;41:1433–5. https://doi.org/10.1016/0031-9422(95)00794-6.
[4] Wu TS, Wang ML, Wu PL, Jong TT. Two carbazole alkaloids from leaves of Murraya euchrestifolia. Phytochemistry. 1995;40:1817–9. https://doi.org/10.1016/0031-9422(95)00447-F.
[5] Furukawa H, Wu TS, Kuoh CS. Structures of murrafoline-B and -C, new binary carbazole alkaloids from Murraya euchrestifolia. Chem Pharm Bull. 1985;33:2611–3.
[6] Furukawa H, Ito C, Wu TS, Mcphail AT. Structural elucidation of murrafolines, six novel binary carbazole alkaloids isolated from Murraya euchrestifolia. Chem Pharm Bull. 1993;41:1249–54.
[7] Knölker HJ, Reddy KR. Isolation and synthesis of biologically active carbazole alkaloids. Chem Rev. 2002;102:4303–428. https://doi.org/10.1021/cr020059j.
[8] Lv HN, Wen R, Zhou Y, Zeng KW, Li J, Guo XY, et al. Nitrogen oxide inhibitory trimeric and dimeric carbazole alkaloids from Murraya tetramera. J Nat Prod. 2015;78(10):2432–9. https://doi.org/10.1021/acs.jnatprod.5b00527.
[9] Schmidt AW, Reddy KR, Knölker H. Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids. Chem Rev. 2012;112:3193–328. https://doi.org/10.1021/cr200447s.
[10] Nandy BC, Gupta AK, Mittal A, Vyas V. Carbazole: it's biological activity. J Pharm Biomed. 2014;3:42–8.
[11] Ma XL, Cao NK, Zhang C, Guo XY, Zhao MB, Tu PF, et al. Cytotoxic carbazole alkaloid derivatives from the leaves and stems of Murraya microphylla. Fitoterapia. 2018;127:334–40. https://doi.org/10.1016/j.fitote.2018.03.010.
[12] Lv HN, Wen R, Zhou Y, Shi ML, Zeng KW, Xia F, et al. Murradiate and murradiol, two structurally unique heterodimers of carbazole-monoterpene and carbazole-phenylethanol from Murraya tetramera. Phytochem Lett. 2016;15:113–5. https://doi.org/10.1016/j.phytol.2015.12.002.
[13] Zhou Y, Lv HN, Wang WG, Tu PF, Jiang Y. Flavonoids and anthraquinones from Murraya tetramera, C. C. Huang (Rutaceae). Biochem Syst Ecol. 2014;57:78–80. https://doi.org/10.1016/j.bse.2014.07.016.
[14] Uvarani C, Sankaran M, Jaivel N, Chandraprakash K, Ata A, Mohan PS. Palathurai, bioactive dimeric carbazole alkaloids from Murraya koenigii. J Nat Prod. 2013;76:993–1000. https://doi.org/10.1021/np300464t.
[15] Chakraborty DP. Progress in the chemistry of organic natural products. New York: Springer; 1977. p. 299.
[16] Ramsewak RS, Nair MG, Strasburg GM, DeWitt DL, Nitiss JL. Biologically active carbazole alkaloids from Murraya koenigii. J Agr Food Chem. 1999;47:444–7. https://doi.org/10.1021/jf9805808.
[17] Liu WY, Zhang WD, Chen HS, Gu ZB, Li TZ, Zhou Y. Pyrrole alkaloids from Bolbostemma Paniculatum. J Asian Nat Prod Res. 2003;5:159–63. https://doi.org/10.1080/1028602031000066861.
[18] Gruner KK, Hopfmann T, Matsumoto K, Jäger A, Katsuki T, Knölker H. Efficient iron-mediated approach to pyrano[3,2-a]carbazole alkaloids–first total syntheses of O-methylmurrayamine A and 7-methoxymurrayacine, first asymmetric synthesis and assignment of the absolute configuration of (–)-trans-dihydroxygirinimbine. Org Biomol Chem. 2011;9:2057–61. https://doi.org/10.1039/C0OB01088J.
[19] Knölker HJ, Hofmann C. Transition metal complexes in organic synthesis, part 33. Molybdenum-mediated total synthesis of girinimbine, murrayacine, and dihydroxygirinimbine. Tetrahedron Lett. 1996;37:7947–50. https://doi.org/10.1016/0040-4039(96)01830-8.
[20] Xia GY, Wang M, Chen LX, Ding LQ, Qiu F. Application of dirhodium reagent Rh2(OCOCF3)4 to the determination of the absolute configurations of secondary and tertiary alcohols. J Int Pharm Res. 2015;42:726–33. https://doi.org/10.13220/j.cnki.jipr.2015.06.006.
[21] Tachibana Y, Kikuzaki H, Lajis NH, Nakatani N. Antioxidative activity of carbazoles from Murraya koenigii leaves. J Agric Food Chem. 2001;49:5589–94. https://doi.org/10.1021/jf010621r.
[22] Hoye TR, Jeffrey CS, Shao F. Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons. Nat Protoc. 2007;2:2451–8. https://doi.org/10.1038/nprot.2007.354.
[23] Tao QQ, Ma K, Yang YL, Wang K, Chen BS, Huang Y, et al. Bioactive sesquiterpenes from the edible mushroom Flammulina velutipes and their biosynthetic pathway confirmed by genome analysis and chemical evidence. J Org Chem. 2016;81:9867–77. https://doi.org/10.1021/acs.joc.6b01971.
[24] Ito C, Nakagawa M, Wu TS, Furukawa H. New carbazole alkaloids from Murraya euchrestifolia. Chem Pharm Bull. 1991;39:2525–8. https://doi.org/10.1248/cpb.39.2525.
[25] Gassner C, Hesse R, Schmidt AW, Knölker H. Total synthesis of the cyclic monoterpenoid pyrano [3,2-a] carbazole alkaloids derived from 2-hydroxy-6-methylcarbazole. Org Biomol Chem. 2014;12:6490–9. https://doi.org/10.1039/C4OB01151A.
[26] Chen YM, Cao NK, Lv HN, Yuan JQ, Guo XY, et al. Anti-inflammatory and cytotoxic carbazole alkaloids from Murraya kwangsiensis. Phytochemistry. 2020;170: 112186. https://doi.org/10.1016/j.phytochem.2019.112186.
[27] Dhara K, Mandal T, Das J, Dash J. Synthesis of carbazole alkaloids by ring-closing metathesis and ring rearrangement–aromatization. Angew Chem Int Edit. 2015;54:15831–5. https://doi.org/10.1002/anie.201508746.
[28] Bringmann G, Tasler S, Endress H, Peters K, Peters E. Synthesis of mukonine and seven further 1-oxygenated carbazole alkaloids. Synthesis-Stuttgart. 1998;10:1501–5. https://doi.org/10.1055/s-1998-2184.
[29] Ito C, Itoigawa M, Nakao K, Murata T, Tsuboi M, Kaneda N, et al. Induction of apoptosis by carbazole alkaloids isolated from Murraya koenigii. Phytomedicine. 2006;13:359–65. https://doi.org/10.1016/j.phymed.2005.03.010.
[30] Li CH, Zhou Y, Tu PF, Zeng KW, Jiang Y. Natural carbazole alkaloid murrayafoline A displays potent anti-neuroinflammatory effect by directly targeting transcription factor Sp1 in LPS-induced microglial cells. Bioorg Chem. 2022;129: 106178. https://doi.org/10.1016/j.bioorg.2022.106178.
[31] Tan QY, Wu DY, Lin YT, Ai HP, Xu J, Zhou HB, et al. Identifying eleven new ferroptosis inhibitors as neuroprotective agents from FDA-approved drugs. Bioorg Chem. 2024;146: 107261. https://doi.org/10.1016/j.bioorg.2024.107261.
[32] Fan K, Zhang LC, Tan BY, Njateng GSS, Qin ML, Guo RR, et al. Antimicrobial indole alkaloids from Tabernaemontana corymbosa. Chin J Nat Med. 2023;21:146–53. https://doi.org/10.1016/S1875-5364(23)60393-0.
[33] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.
[34] Chen D, Xu ZR, Chai XY, Zeng KW, Jia YX, Bi D, et al. Nine 2-(2-phenylethyl) chromone derivatives from the resinous wood of Aquilaria sinensis and their inhibition of LPS-induced NO production in RAW 264.7 cells. Eur J Org Chem. 2012;2012:5389–97. https://doi.org/10.1002/ejoc.201200725.
[35] Ma K, Wang JS, Luo J, Yang MH, Kong LY. Tabercarpamines A-J, apoptosis-inducing indole alkaloids from the leaves of Tabernaemontana corymbosa. J Nat Prod. 2014;77:1156–63. https://doi.org/10.1021/np401098y.
[1] Alica Fischle, Mika Lutsch, Florian Hübner, Linda Sch?ker-Hübner, Lina Schürmann, Finn K. Hansen, Svetlana A. Kalinina. Micro-scale screening of genetically modified Fusarium fujikuroi strain extends the apicidin family[J]. Natural Products and Bioprospecting, 2024, 14(6): 51-51.
[2] Qi-Xiu Hai, Kun Hu, Su-Ping Chen, Yang-Yang Fu, Xiao-Nian Li, Han-Dong Sun, Hong-Ping He, Pema-Tenzin Puno. Silvaticusins A-D: ent-kaurane diterpenoids and a cyclobutane-containing ent-kaurane dimer from Isodon silvaticus[J]. Natural Products and Bioprospecting, 2024, 14(5): 45-45.
[3] Shuyuan Mo, Ziming Zhao, Zi Ye, Zhihong Huang, Yaxin Zhang, Wanqi Yang, Jianping Wang, Zhengxi Hu, Yonghui Zhang. New secondary metabolites with cytotoxicity from fungus Penicillium roqueforti[J]. Natural Products and Bioprospecting, 2023, 13(3): 17-17.
[4] Li Hou, Cui-Xuan Mei, Chun-Mao Yuan, Gui-Hua Tang, Duo-Zhi Chen, Qing Zhao, Hong-Ping He, Ming-Ming Cao, Xiao-Jiang Hao. Five new limonoids isolated from Walsura robusta[J]. Natural Products and Bioprospecting, 2023, 13(2): 7-7.
[5] Ya-Li Hu, Xing-Ren Li, Gang Xu. Carascynol A, a hybrid of caryophyllane-type terpenoid and a C6 unit degraded by polyprenylated acylphloroglucinols from Hypericum ascyron[J]. Natural Products and Bioprospecting, 2022, 12(6): 38-38.
[6] Xin Zhang, Yun-Bao Ma, Xiao-Feng He, Tian-Ze Li, Chang-An Geng, Li-Hua Su, Shuang Tang, Zhen Gao, Ji-Jun Chen. Artemyrianosins A–J, cytotoxic germacrane-type sesquiterpene lactones from Artemisia myriantha[J]. Natural Products and Bioprospecting, 2022, 12(3): 16-16.
[7] Natividad Herrera Cano, Sebastian A. Andujar, Cristina Theoduloz, Daniel A. Wunderlin, Ana N. Santiago, Guillermo Schmeda-Hirschmann, Ricardo D. Enriz, Gabriela E. Feresin. Arylated analogues of cypronazole: fungicidal effect and activity on human fibroblasts. Docking analysis and molecular dynamics simulations[J]. Natural Products and Bioprospecting, 2022, 12(2): 9-9.
[8] Ruo-Song Zhang, Yang-Yang Liu, Pei-Feng Zhu, Qiong Jin, Zhi Dai, Xiao-Dong Luo. Furostanol Saponins from Asparagus cochinchinensis and Their Cytotoxicity[J]. Natural Products and Bioprospecting, 2021, 11(6): 651-658.
[9] Patrick O. Sakyi, Richard K. Amewu, Robert N. O. A. Devine, Emahi Ismaila, Whelton A. Miller, Samuel K. Kwofie. The Search for Putative Hits in Combating Leishmaniasis: The Contributions of Natural Products Over the Last Decade[J]. Natural Products and Bioprospecting, 2021, 11(5): 489-544.
[10] Chen Shi, Yue-Ling Peng, Juan He, Zheng-Hui Li, Ji-Kai Liu, Tao Feng. Structures, Chemical Conversions, and Cytotoxicity of Tricholopardins C and D, Two Tricholoma Triterpenoids from the Wild Mushroom Tricholoma pardinum[J]. Natural Products and Bioprospecting, 2021, 11(2): 235-241.
[11] Yi Chen, Song-Wei Li, Fang-Zhou Yin, Min Yang, Xia-Juan Huan, Ze-Hong Miao, Xiao-Ming Wang, Yue-Wei Guo. Lagerindicine, a New Pyrrole Alkaloid Isolated from the Flowers of Lagerstroemia indica Linnaeus[J]. Natural Products and Bioprospecting, 2021, 11(1): 73-79.
[12] Mohammad Sanad Abu-Darwish, Célia Cabral, Zulfigar Ali, Mei Wang, Shabana I. Khan, Melissa R. Jacob, Surendra K. Jain, Babu L. Tekwani, Fazila Zulfiqar, Ikhlas A. Khan, Hatem Taifour, Lígia Salgueiro, Thomas Efferth. Salvia ceratophylla L. from South of Jordan: new insights on chemical composition and biological activities[J]. Natural Products and Bioprospecting, 2020, 10(5): 307-316.
[13] Cheng Shen, Xiao-Yan Huang, Chang-An Geng, Tian-Ze Li, Shuang Tang, Li-Hua Su, Zhen Gao, Xue-Mei Zhang, Jing Hu, Ji-Jun Chen. Artemlavanins A and B from Artemisia lavandulaefolia and Their Cytotoxicity Against Hepatic Stellate Cell Line LX2[J]. Natural Products and Bioprospecting, 2020, 10(4): 243-250.
[14] Shuang Tang, Yun-Bao Ma, Chang-An Geng, Cheng Shen, Tian-Ze Li, Xue-Mei Zhang, Li-Hua Su, Zhen Gao, Jing Hu, Ji-Jun Chen. Artemyrianins A-G from Artemisia myriantha and Their Cytotoxicity Against HepG2 Cells[J]. Natural Products and Bioprospecting, 2020, 10(4): 251-260.
[15] Jia-Huan Shang, Guo-Wei Xu, Hong-Tao Zhu, Dong Wang, Chong-Ren Yang, Ying-Jun Zhang. Anti-inflammatory and Cytotoxic Triterpenes from the Rot Roots of Panax notoginseng[J]. Natural Products and Bioprospecting, 2019, 9(4): 287-295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed