Natural Products and Bioprospecting    2024, Vol. 14 Issue (4) : 28-28     DOI: 10.1007/s13659-024-00447-x
REVIEWS |
Natural-derived acetophenones: chemistry and pharmacological activities
Hamid Ahmadpourmir1, Homayoun Attar1, Javad Asili1, Vahid Soheili2, Seyedeh Faezeh Taghizadeh1, Abolfazl Shakeri1
1. Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran;
2. Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
Download: PDF(2461 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Acetophenones are naturally occurring phenolic compounds which have found in over 24 plant families and also fungi strains. They are exist in both free or glycosides form in nature. The biological activities of these compounds have been assayed and reported including cytotoxicity, antimicrobial, antimalarial, antioxidant and antityrosinase activities. Herein, we review the chemistry and biological activity of natural acetophenone derivatives that have been isolated and identified until January 2024. Taken together, it was reported 252 acetophenone derivatives in which the genera Melicope (69) and Acronychia (44) were the principal species as producers of acetophenones.
Keywords Acetophenones      Bioactivity      Melicope      Phytochemicals     
Corresponding Authors: Abolfazl Shakeri,E-mail:plantchem87@gmail.com,shakeria@mums.ac.ir     E-mail: plantchem87@gmail.com,shakeria@mums.ac.ir
Issue Date: 01 August 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hamid Ahmadpourmir
Homayoun Attar
Javad Asili
Vahid Soheili
Seyedeh Faezeh Taghizadeh
Abolfazl Shakeri
Trendmd:   
Cite this article:   
Hamid Ahmadpourmir,Homayoun Attar,Javad Asili, et al. Natural-derived acetophenones: chemistry and pharmacological activities[J]. Natural Products and Bioprospecting, 2024, 14(4): 28-28.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00447-x     OR     http://npb.kib.ac.cn/EN/Y2024/V14/I4/28
[1] Negrel J, Javelle F. The biosynthesis of acetovanillone in tobacco cell-suspension cultures. Phytochemistry. 2010;71(7):751-9.
[2] Zubkov FI, Kouznetsov VV. Traveling across life sciences with acetophenone—a simple ketone that has special multipurpose missions. Molecules. 2023;28(1):370-87.
[3] Miyazawa M, Shimamura H, Nakamura S-I, Kameoka H. Antimutagenic activity of (+)-β-eudesmol and paeonol from Dioscorea japonica. J Agric Food Chem. 1996;44(7):1647-50.
[4] Adki KM, Kulkarni YA. Chemistry, pharmacokinetics, pharmacology and recent novel drug delivery systems of paeonol. Life Sci. 2020;250:11754461-78.
[5] Soucy NV. Acetophenone. In: Wexler P, editor. Encyclopedia of toxicology. 3rd ed. Oxford: Academic Press; 2014. p. 43-5.
[6] Wejnerowska G, Narloch I. Determination of benzophenones in water and cosmetics samples: a comparison of solid-phase extraction and microextraction by packed sorbent methods. Molecules. 2021;26(22):6896-909.
[7] Ahadi EM, Hajipour F, Firoozpour L. Review of toxicology acetophenone. In: Wexler P, editor. Encyclopedia of Toxicology. 4th ed. Oxford: Academic Press; 2024. p. 275-9.
[8] Mohammadi Ziarani G, Kheilkordi Z, Mohajer F. Recent advances in the application of acetophenone in heterocyclic compounds synthesis. J Iran Chem Soc. 2020;17(2):247-82.
[9] Zbancioc AM, Sathyamurthy B, Tataringa GJTM-SJ. Design and in silico studies on different dengue viral proteins of some compounds based on acetophenone skeleton. Rev Med Chir Iasi. 2023;127(1):133-48.
[10] Supabphol R, Tangjitjareonkun J. Chemical constituents and biological activities of Zanthoxylum limonella (Rutaceae): a review. Trop J Pharm Res. 2015;13(12):2130-41.
[11] Morton CM, Telmer C. New subfamily classification for the Rutaceae. Ann Mo Bot Gard. 2014;99(4):620-41.
[12] Simonsen HT. Four novel geminally dialkylated, non-aromatic acetophenone derivatives from Melicope coodeana. Phytochem Lett. 2012;5(2):371-5.
[13] Johnson AJ, Kumar A, Rasheed SA, et al. Antipyretic, analgesic, anti-inflammatory and antioxidant activities of two major chromenes from Melicope lunu-ankenda. J ethnopharmacol. 2010;130(2):267-71.
[14] Chen J-J, Cho J-Y, Hwang T-L, Chen I-S. Benzoic acid derivatives, acetophenones, and anti-inflammatory constituents from Melicope semecarpifolia. J Nat Prod. 2008;71(1):71-5.
[15] Adsersen A, Smitt UW, Simonsen HT, Christensen SB, Jaroszewski JW. Prenylated acetophenones from Melicope obscura and Melicope obtusifolia ssp. obtusifolia var. arborea and their distribution in Rutaceae. Biochem Syst Ecol. 2007;35(7):447-53.
[16] Niu QW, Chen NH, Wu ZN, et al. Isolation and identification of new prenylated acetophenone derivatives from Acronychia oligophlebia. Nat Prod Res. 2019;33(15):2230-5.
[17] Xu QQ, Chen XL, Xu JF, Wang SB, Luo JG, Kong LY. Acetophenone derivatives from the roots of Melicope ptelefolia. Fitoterapia. 2019;132:40-5.
[18] Xu JF, Zhao HJ, Wang XB, et al. (+/-)-Melicolones A and B, rearranged prenylated acetophenone stereoisomers with an unusual 9-oxatricyclo[3.2.1.1(3,8)]nonane core from the leaves of Melicope ptelefolia. Org Lett. 2015;17(1):146-9.
[19] Xu J-F, Han C, Xue G-M, et al. Novel rearranged acetophenone derivatives possessing diverse architectures from the leaves of Melicope ptelefolia. Tetrahedron. 2019;75(52):130784-91.
[20] Xu JF, Han C, Xu QQ, et al. Isolation, chiral-phase resolution, and determination of the absolute configurations of a complete series of stereoisomers of a rearranged acetophenone with three stereocenters. J Nat Prod. 2019;82(6):1399-404.
[21] Shaari K, Suppaiah V, Wai LK, et al. Bioassay-guided identification of an anti-inflammatory prenylated acylphloroglucinol from Melicope ptelefolia and molecular insights into its interaction with 5-lipoxygenase. Bioorg Med Chem. 2011;19(21):6340-7.
[22] Nakashima KI, Abe N, Chang FR, Inoue M, Oyama M. Pteleifolols A-E, acetophenone di-C-glycosides and a benzopyran dimer from the leaves of Melicope pteleifolia. J Nat Med. 2017;71(1):299-304.
[23] Nguyen NH, Ha TK, Choi S, et al. Chemical constituents from Melicope pteleifolia leaves. Phytochem. 2016;130:291-300.
[24] Parsons IC, Gray AI, Hartley TG, Waterman PG. Acetophenones and coumarins from stem bark and leaves of Melicope stipitata. Phytochem. 1994;37(2):565-70.
[25] Simonsen HT, Adsersen A, Bremner P, Heinrich M, Wagner Smitt U, Jaroszewski JW. Antifungal constituents of Melicope borbonica. Phytother Res. 2004;18(7):542-5.
[26] Wen Q, Luo K, Huang H, Liao W, Yang H. Xanthoxyletin inhibits proliferation of human oral squamous carcinoma cells and induces apoptosis, autophagy, and cell cycle arrest by modulation of the MEK/ERK signaling pathway. Med Sci Monit. 2019;26(25):8025-33.
[27] Liu M, Yin H, Qian X, Dong J, Qian Z, Miao J. Xanthohumol, a prenylated chalcone from hops, inhibits the viability and stemness of doxorubicin-resistant MCF-7/ADR Cells. Molecules. 2016;22(1):36-47.
[28] Saputri RD, Tjahjandarie TS, Tanjung M. Two novel coumarins bearing an acetophenone derivative from the leaves of Melicope Quercifolia. Nat Prod Res. 2021;35(8):1256-61.
[29] Manandhar MD, Hussaini FA, Kapil RS, Shoeb A. Bacteriostatic heterocycles from Euodia lunu-ankenda. Phytochem. 1985;24(1):199-200.
[30] Kumar V, Karunaratne V, Sanath M, Meegalle K, MacLeod JK. Two fungicidal phenylethanones from Euodia lunu-ankenda root bark. Phytochem. 1990;29(1):243-5.
[31] Le KT, Bandolik JJ, Kassack MU, et al. New acetophenones and chromenes from the leaves of Melicope barbigera A. Gray Molecules. 2021;26(3):688-701.
[32] Vu VT, Nguyen MT, Khoi NM, Xu XJ, Kong LY, Luo JG. New lignans and acetophenone derivatives with alpha-glucosidase inhibitory activity from the leaves of Melicope patulinervia. Fitoterapia. 2021;148:104805-10.
[33] Muyard F, Bissoue AN, Bevalot F, Tillequin F, Cabalion P, Vaquette J. Acetophenones and other constituents from the roots of Melicope erromangensis. Phytochem. 1996;42(4):1175-9.
[34] Ritchie E, Taylor W, Vautin T. The constituents of Melicope broadbentiana FM Bail. The structures of melibentin. melicopol, and methylmelicopol. Aust. J. Chem. 1965;18(12):2021-34.
[35] Epifano F, Fiorito S, Genovese S. Phytochemistry and pharmacognosy of the genus Acronychia. Phytochem. 2013;95:12-8.
[36] Rahmani M, Taufiq-Yap Y, Sukari M, Ismail Hm. Constituents of Acronychia laurifolia. Fitoterapia. 1996;67(2):9
[37] Chen NH, Li W, Zhong YL, et al. New acetophenone derivatives from Acronychia oligophlebia and Their anti-inflammatory and antioxidant activities. Chem Biodivers. 2018;15(5):e18000080-7.
[38] Yang X, Zhang YB, Wu ZN, et al. Six new prenylated acetophenone derivatives from the leaves of Acronychia oligophlebia. Fitoterapia. 2015;105:156-9.
[39] Wu T-S, Wang M-L, Jong T-T, McPhail AT, McPhail DR, Lee K-H. X-ray crystal structure of acrovestone, a cytotoxic principle from Acronychia pedunculata. J Nat Prod. 1989;52(6):1284-9.
[40] Kumar V, Karunaratne V, Sanath M, Meeegalle K. 1-[2', 4'-Dihydroxy-3', 5'-di-(3 ″-methylbut-2 ″-enyl)-6'-methoxy] phenylethanone from Acronychia pedunculata root bark. Phytochem. 1989;28(4):1278-9.
[41] Ito C, Matsui T, Ban Y, Wu T-S, Itoigawa M. Acetophenones isolated from Acronychia Pedunculata and their anti-proliferative activities. Nat Prod Commun. 2016;11(1):83-6.
[42] Ito C, Hosono M, Tokuda H, Wu T-S, Itoigawa M. Acetophenones from Acronychia pedunculata and their cancer chemopreventive activity. Nat Prod Commun. 2016;11(9):1299-302.
[43] Kouloura E, Halabalaki M, Lallemand MC, et al. Cytotoxic prenylated acetophenone dimers from Acronychia pedunculata. J Nat Prod. 2012;75(7):1270-6.
[44] Su CR, Kuo PC, Wang ML, Liou MJ, Damu AG, Wu TS. Acetophenone derivatives from Acronychia pedunculata. J Nat Prod. 2003;66(7):990-3.
[45] Tanjung M, Nurmalasari I, Wilujeng A, Saputri R, Rachmadiarti F, Tjahjandarie T, Acronyculatin P. A New Isoprenylated Acetophenone from the Stem Bark of Acronychia pedunculata. Nat Prod Sci. 2018;24:284-7.
[46] Panyasawat P, Wisetsai A, Lekphrom R, Senawong T, Schevenels FT. Acroquinolones A and B, two polyphenolic isoprenylated acetophenone-quinolone hybrids with anti-proliferative activities from Acronychia pedunculata (L.) Miq. Nat Prod Res. 2022;36(11):2743-52.
[47] Nathabumroong S, Wisetsai A, Lekphrom R, Suebrasri T, Schevenels FT. A new polyphenolic isoprenylated acetophenone dimer from the stem bark of Acronychia pedunculata (L.) Miq. Nat Prod Res. 2021;11:1-8.
[48] Miyake K, Suzuki A, Morita C, et al. Acetophenone Monomers from Acronychia trifoliolata. J Nat Prod. 2016;79(11):2883-9.
[49] Tran TD, Olsson MA, McMillan DJ, et al. Potent antibacterial prenylated acetophenones from the australian endemic plant Acronychia crassipetala. Antibiotics. 2020;9(8):487-95.
[50] Goh S, Chung V, Sha C, Mak T. Monoterpenoid phloroacetophenones from Euodia latifolia. Phytochem. 1990;29(5):1704-6.
[51] Croft JA, Ritchie E, Taylor WC. Constituents of Bosistoa euodiformis (Rutaceae). Structure and synthesis of bosistoin, a triterpene with a C33 skeleton. Aust J Chem. 1975;28(9):2019-33.
[52] Chou C-J, Lin L-C, Chen K-T, Chen C-F. novel acetophenones from fruits of Evodia merrillii. J Nat Prod. 1992;55(6):795-9.
[53] Hartmann G, Nienhaus F. The isolation of xanthoxylin from the bark of Pbytophthora- and Hendersonula-infected citrus limon and its fungitoxic effect. J Phytopathol. 1974;81(2):97-113.
[54] Auzi AA, Hartley TG, Waigh RD, Waterman PG. Novel prenylated acetophenones from Bosistoa selwynii. Nat prod lett. 1998;11(2):137-44.
[55] Quader A, Armstrong JA, Gray AI, Hartley TG, Waterman PG. Chemosystematics of Acradenia and general significance of acetophenones in the Rutaceae. Biochem Syst Ecol. 1991;19(2):171-6.
[56] Rolnik A, Olas B. The plants of the asteraceae family as agents in the protection of human health. Int J Mol Sci. 2021;22(6):3009-18.
[57] Achika JI, Arthur DE, Gerald I, Adedayo A. A review on the phytoconstituents and related medicinal properties of plants in the Asteraceae family. J Appl Chem. 2014;7(8):1-8.
[58] Koc S, Isgor BS, Isgor YG, Shomali Moghaddam N, Yildirim O. The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets. Pharm Biol. 2015;53(5):746-51.
[59] Chang CH, Wu S, Hsu KC, Huang WJ, Chen JJ. Dibenzofuran, 4-chromanone, acetophenone, and dithiecine derivatives: cytotoxic constituents from Eupatorium fortunei. Int J Mol Sci. 2021 12;22(14).
[60] Trang ND, Wanner MJ, Koomen G-J, Xuan DN. New acetophenone and thymol derivatives from Eupatorium stoechadosmum. Planta Med. 1993;59(05):480-1.
[61] Huang S, Zhou C, Zeng T, et al. P-Hydroxyacetophenone ameliorates alcohol-induced steatosis and oxidative stress via the nf-κb signaling pathway in zebrafish and hepatocytes. Front Pharmacol. 2020;10:1594-605.
[62] do Nascimento AM, Salvador MJ, Candido RC, de Albuquerque S, de Oliveira DC. Trypanocidal and antifungal activities of p-hydroxyacetophenone derivatives from Calea uniflora (Heliantheae, Asteraceae). J Pharm Pharmacol. 2004;56(5):663-9.
[63] Sigstad E, Catalán CA, Diaz JG, Herz W. Diprenylated derivatives of p-hydroxyacetophenone from Ophryosporus macrodon. Phytochem. 1993;33(1):165-9.
[64] Bohlmann F, Grenz M. Über Inhaltsstoffe der Gattung Flourensia. Chem Ber. 1977;110(1):295-300.
[65] Takasugi M, Masuda T. Three 4'-hydroxyacetophenone-related phytoalexins from Polymnia sonchifolia. Phytochem. 1996;43(5):1019-21.
[66] Tomás-Barberán F, Iniesta-Sanmartín E, Tomás-Lorente F, Rumbero A. Antimicrobial phenolic compounds from three Spanish Helichrysum species. Phytochem. 1990;29(4):1093-5.
[67] Rigano D, Formisano C, Pagano E, et al. A new acetophenone derivative from flowers of Helichrysum italicum (Roth) Don ssp. italicum. Fitoterapia. 2014;99:198-203.
[68] Urzúa A, Torres R, Andrade L, et al. Benzodihydrofurans in the resinous exudate from Diplostephium cinereum. Bol Soc Chil Quim. 2001;46:77-80.
[69] Sahakitpichan P, Disadee W, Ruchirawat S, Kanchanapoom T. 3-Hydroxydihydrobenzofuran glucosides from Gnaphalium polycaulon. Chem Pharm Bull. 2011;59(9):1160-2.
[70] Rigano D, Formisano C, Senatore F, et al. Intestinal antispasmodic effects of Helichrysum italicum (Roth) Don ssp. italicum and chemical identification of the active ingredients. J Ethnopharmacol. 2013;150(3):901-6.
[71] Sala A, Recio MDC, Giner RM, Máñez S, Ríos J-L. New Acetophenone glucosides isolated from extracts of Helichrysum italicum with antiinflammatory activity. J Nat Prod. 2001;64(10):1360-2.
[72] Loyola LA, Pedreros S, Morales G. p-Hydroxyacetophenone derivatives from Senecio graveolens. Phytochem. 1985;24(7):1600-2.
[73] Bai J, Piao X, Wang Y, et al. Seven undescribed compounds from the flower heads of Helianthus annuus L. Phytochem. 2023;211: 113712.
[74] Han L, Zhou X, Yang M, et al. Ethnobotany, Phytochemistry and pharmacological effects of plants in genus Cynanchum Linn. (Asclepiadaceae). Molecules. 2018;23(5):1194.
[75] Wu Y, Zhou H. Research advances on chemical constituents of Cynanchum Linn. Central South Pharm. 2006;4:371-5.
[76] Hwang BY, Kim YH, Ro JS, Lee KS, Lee JJ. Acetophenones from the roots of Cynanchum wilfordii Hemsley. Arch Pharm Res. 1999;22(1):72-4.
[77] Jiang HW, Gu SS, Cao L, et al. Potential hypoglycemic effect of acetophenones from the root bark of Cynanchum wilfordii. Nat Prod Res. 2019;33(16):2314-21.
[78] Huang PL, Lu CM, Yen MH, Wu RR, Lin CN. Acetophenones from Cynanchum taiwanianum. Phytochem. 1995;40(2):537-41.
[79] Huang PL, Won SJ, Day SH, Lin CN. A Cytotoxic acetophenone with a novel skeleton, isolated from Cynanchum taiwanianum. Helv Chim Acta. 1999;82(10):1716-20.
[80] Li J, Kadota S, Kawata Y, Hattori M, Xu GJ, Namba T. Constituents of the roots of Cynanchum bungei Decne Isolation and structures of four new glucosides, bungeiside-A, -B, -C, and -D. Chem Pharm Bull. 1992;40(12):3133-7.
[81] Sun Y, Liu Z, Wang J, Yang S, Li B, Xu N. Aqueous ionic liquid based ultrasonic assisted extraction of four acetophenones from the Chinese medicinal plant Cynanchum bungei Decne. Ultrason Sonochem. 2013;20(1):180-6.
[82] Song J, Ding W, Liu B, et al. Anticancer effect of caudatin in diethylnitrosamine-induced hepatocarcinogenesis in rats. Mol Med Rep. 2020;22(2):697-706.
[83] Li Y, Piao D, Zhang H, et al. Quality assessment and discrimination of the roots of Cynanchum auriculatum and Cynanchum wilfordii by HPLC-UV analysis. Arch Pharmacal Res. 2013;36:335-44.
[84] Wu H, Chen L, Bian Q, Wang J. Determination of acetophenone in baishouwu by one assay and multiple evaluation method. Chin Med Mat. 2015;38:2339-41.
[85] Webster GL. Classification of the Euphorbiaceae. annals of the missouri botanical garden. 1994;81(1):3-32.
[86] Webster GL. Euphorbiaceae. In: Kubitzki K, editor. Flowering plants eudicots: Malpighiales. Berlin: Springer, Berlin Heidelberg; 2014. p. 51-216.
[87] Seigler DS. Phytochemistry and systematics of the Euphorbiaceae. Ann Mo Bot Gard. 1994;81(2):380-401.
[88] Du K, Yang X, Li J, Meng D. Antiproliferative diterpenoids and acetophenone glycoside from the roots of Euphorbia fischeriana. Phytochem. 2020;177:112437-42.
[89] Huang SS, Li P, Zhang BJ, et al. Acetophenone glycosides from the roots of Euphorbia fischeriana and their inhibitory effects against Mycobacterium smegmatis. Phytochem Lett. 2017;19:151-5.
[90] Wang A, Gao X, Huo X, et al. Antioxidant acetophenone glycosides from the roots of Euphorbia ebracteolata Hayata. Nat Prod Res. 2018;32(18):2187-92.
[91] Yin ZQ, Fan CL, Ye WC, et al. Acetophenone derivatives and sesquiterpene from Euphorbia ebracteolata. Planta Med. 2005;71(10):979-82.
[92] Zhang N, Cai H, Cai B, Yang H, Li J, Yang G. Two new cytotoxic acetophenone derivatives from Euphorbia ebracteolata Hayata. Fitoterapia. 2010;81(5):385-8.
[93] Du K, Zhang Z, Jing D, Wang Y, Li X, Meng D. Diterpene glycosides, acetophenone glycosides and tannins from polar extracts of the root of Euphorbia fischeriana with cytotoxicity and antibacterial activities. Phytochem. 2022;203: 113382.
[94] Sun YX, Liu JC. Chemical constituents and biological activities of Euphorbia fischeriana Steud. Chem Biodiv. 2011;8(7):1205-14.
[95] Che CT, Zhou TX, Ma QG, et al. Diterpenes and aromatic compounds from Euphorbia fischeriana. Phytochem. 1999;52(1):117-21.
[96] Liu W, He F, Ruan Z, Gu X, Wu X, Qin G. Studies on chemical constituents from Euphorbia fischeriana Steud. Zhongguo Zhong Yao Za Zhi. 2001;26(3):180-2.
[97] Arisawa M, Fujita A, Hayashi T, Hayashi K, Ochiai H, Morita N. Cytotoxic and antiherpetic activity of phloroglucinol derivatives from Mallotus japonicus (Euphorbiaceae). Chem Pharm Bull. 1990;38(6):1624-6.
[98] Arisawa M, Fujita A, Suzuki R, et al. Studies on cytotoxic constituents in pericarps of Mallotus japonicus. J Nat Prod. 1985;48(3):455-9.
[99] Ding YL, Jia ZJ. Two phenolic derivatives from Euphorbia kansui. Phytochem. 1992;31(4):1435-6.
[100] Geng D, Ma X, Weng L, Yi L, Han Y, Yang X. A new acetophenone trimer from roots of Euphorbia ebracteolata. Open Chem Eng J. 2015;9(1):67-70.
[101] Landrum LR. The myrtle family (Myrtaceae) in Chile. Proceedings of the California Academy of Sciences (USA). 1988.
[102] Wilson PG. Myrtaceae. Flowering Plants Eudicots: Springer; 2010. 212-71.
[103] Al-Sayed E, Martiskainen O, Bobrowska-Hägerstrand M, et al. Phenolic compounds from Eucalyptus Gomphocephala with potential cytotoxic and antioxidant activities. Nat Prod Commun. 2010;5(10):1639-42.
[104] Ha TK, Dao TT, Nguyen NH, et al. Antiviral phenolics from the leaves of Cleistocalyx operculatus. Fitoterapia. 2016;110:135-41.
[105] Han AR. Identification and pep inhibitory activity of acetophenone glucosides from the clove buds (Syzygium aromaticum). J Korean Soc Appl Biol Chem. 2010;53(6):847-51.
[106] Ryu B, Kim HM, Woo JH, Choi JH, Jang DS. A new acetophenone glycoside from the flower buds of Syzygium aromaticum (cloves). Fitoterapia. 2016;115:46-51.
[107] Ryu B, Kim HM, Lee JS, et al. New flavonol glucuronides from the flower buds of Syzygium aromaticum (Clove). J Agric Food Chem. 2016;64(15):3048-53.
[108] Shi GR, Wang X, Liu YF, et al. Aromatic glycosides from the whole plants of Iris japonica. J Asian Nat Prod Res. 2016;18(10):921-7.
[109] Hoang L, Benes F, Fenclova M, et al. Phytochemical composition and in vitro biological activity of Iris spp. (Iridaceae): a new source of bioactive constituents for the inhibition of oral bacterial biofilms. Antibiotics. 2020;9(7):403-22.
[110] Savla SR, Laddha AP, Kulkarni YA. Pharmacology of apocynin: a natural acetophenone. Drug Metab Rev. 2021;53(4):542-62.
[111] Park YJ, Gil TY, Jin BR, Cha YY, An HJ. Apocynin alleviates weight gain and obesity-induced adipose tissue inflammation in high-fat diet-fed C57BL/6 mice. Phytother Res. 2023;37(8):3481-94.
[112] Mahmoud NA, Hassanein EHM, Bakhite EA, Shaltout ES, Sayed AM. Apocynin and its chitosan nanoparticles attenuated cisplatin-induced multiorgan failure: synthesis, characterization, and biological evaluation. Life Sci. 2023;314: 121313.
[113] Sánchez-Duarte S, Montoya-Pérez R, Márquez-Gamiño S, et al. Apocynin attenuates diabetes-induced skeletal muscle dysfunction by mitigating ros generation and boosting antioxidant defenses in fast-twitch and slow-twitch muscles. Life. 2022;12:674-88.
[114] Savla S, Laddha A, Kulkarni Y. Pharmacology of apocynin: a natural acetophenone. Drug Metab Rev. 2021;53:1-21.
[115] Anter HM, Abu H II, Awadin W, Meshali MM. Novel anti-inflammatory film as a delivery system for the external medication with bioactive phytochemical “Apocynin.” Drug Des Devel Ther. 2018;12:2981-3001.
[116] Ali Z, Ito T, Tanaka T, et al. Acetophenone C-glucosides and stilbene O-glucosides in Upuna borneensis. Phytochem. 2004;65(14):2141-6.
[117] Lendl A, Werner I, Glasl S, et al. Phenolic and terpenoid compounds from Chione venosa (sw) urban var venosa (Bois Bande). Phytochem. 2005;66(19):2381-7.
[118] Youssef DT, Ramadan M, Khalifa A. Acetophenones, a chalcone, a chromone and flavonoids from Pancratium maritimum. Phytochem. 1998;49(8):2579-83.
[119] Ghosal S, Mittal P, Kumar Y, Singh SK. Free and glucosyloxy acetophenones from Pancratium biflorum. Phytochemistry. 1989;28(11):3193-6.
[120] Miyazawa M, Kawata J. Composition of the essential oil of rootstock from Cimicifuga simplex. Nat Prod Res. 2006;20(6):542-7.
[121] Ba Vinh L, Thi Minh Nguyet N, Young Yang S, et al. A new rearranged abietane diterpene from Clerodendrum inerme with antioxidant and cytotoxic activities. Nat Prod Res. 2018;32(17):2001-7.
[122] Yu W, Ilyas I, Aktar N, Xu S. A review on therapeutical potential of paeonol in atherosclerosis. Front Pharmacol. 2022;13:950337-57.
[123] Shang P, Liu Y, Jia J. Paeonol inhibits inflammatory response and protects chondrocytes by upregulating sirtuin 1. Can J Physiol Pharmacol. 2022;100(4):283-90.
[124] Wang W, Li Q, Zhao Z, et al. Paeonol ameliorates chronic itch and spinal astrocytic activation via CXCR3 in an experimental dry skin model in mice. Front Pharmacol. 2022;12:805222-36.
[125] Huang S, Zhai B, Fan Y, et al. Development of paeonol liposomes: design, optimization, in vitro and in vivo evaluation. Int J Nanomedicine. 2022;17:5027-46.
[126] Li Q, Zhao Y, Xie Y. Paeonol Disrupts the Integrity of Aspergillus flavus Cell walls via releasing surface proteins, inhibiting the biosynthesis of β-1,3-glucan and promoting the degradation of chitin, and an identification of cell surface proteins. Foods. 2021;10(12):2951-63.
[127] Wang Y, Wang Z, Wu X, et al. Paeonol promotes reendothelialization after vascular injury through activation of c-Myc/VEGFR2 signaling pathway. Drug Des Devel Ther. 2023;17:1567-82.
[128] Sancin P. The phenolic compounds of underground parts of Apocynum venetum. Planta Med. 1971;20(2):153-5.
[129] Yoshizaki M, Fujino H, Arise A, Ohmura K, Arisawa M, Morita N. Polygoacetophenoside, A New acetophenone glucoside from Polygonum multiflorum1. Planta Med. 1987;53(3):273-5.
[130] Yoon H, Park J, Oh M, Kim K, Han J, Whang W. A new acetophenone of aerial parts from Rumex aquatica. Nat Prod Sci. 2005;11:75-8.
[131] Kokubun T, Harborne JB, Eagles J. 2',6'-Dihydroxy-4'-methoxyacetophenone, a phytoalexin from the roots of Sanguisorba minor. Phytochem. 1994;35(2):331-3.
[132] Prasad D. A new aromatic glycoside from the roots of Prunus armeniaca. Fitoterapia. 1999;70(3):266-8.
[133] Giap TH, Thoa HT, Oanh VTK, et al. New acetophenone and cardanol derivatives from Knema pachycarpa. Nat Prod Commun. 2019;14(6):1-5.
[134] Kanchanapoom T, Noiarsa P, Tiengtham P, Otsuka H, Ruchirawat S. Acetophenone diglycosides from Erythroxylum cambodianum. Chem Pharm Bull. 2005;53(5):579-81.
[135] Sanghi R, Srivastava P, Singh J. ChemInform Abstract: Triterpenoid and acetophenone glycosides from Cassia sophera. ChemInform. 2010;11/12:33.
[136] Edayadulla N, Ramesh P. A new prenylated acetophenone from the root bark of Derris indica. Nat Prod Commun. 2012;7(10):1325-6.
[137] Kuang H, Zhang Y, Li G, Zeng W, Wang H, Song Q. A new phenolic glycoside from the aerial parts of Dryopteris fragrans. Fitoterapia. 2008;79(4):319-20.
[138] Aladesanmi AJ, Kelley CJ, Leary JD. Two diterpenes and acetophenone from Dysoxylum lenticellare. Planta Med. 1986;1:76.
[139] Feng W-S, Li Z, Zheng X-K, Li Y-J, Su F-Y, Zhang Y-L. Chemical constituents of Saxifraga stolonifera (L.) Meeb. Acta Pharm Sin B. 2010;45:742-6.
[140] Quispe C, Viveros-Valdez E, Schmeda-Hirschmann G. Phenolic constituents of the Chilean herbal tea Fabiana imbricata R et P. Plant Foods Hum Nutr. 2012;67(3):242-6.
[141] Kuwajima H, Shibano N, Baba T, Takaishi K, Inoue K, Shingu T. An acetophenone glycoside from Exacum affine. Phytochem. 1996;41(1):289-92.
[142] Reshma MV, Jacob J, Syamnath VL, Habeeba VP, Dileep Kumar BS, Lankalapalli RS. First report on isolation of 2,3,4-trihydroxy-5-methylacetophenone from palmyra palm (Borassus flabellifer Linn.) syrup, its antioxidant and antimicrobial properties. Food Chem. 2017;228:491-6.
[143] Ishida H, Takamatsu M, Tsuji K, Kosuge T. Studies on active substances in herbs used for oketsu (“stagnant blood”) in Chinese medicine. V. On the anticoagulative principle in moutan cortex. Chem Pharm Bull. 1987;35(2):846-8.
[144] Sun L, Kong C, Zhao H, Wu D, Xu F. Two new disaccharide glycosides from the root cortex of Paeonia ostii. Rec Nat Prod. 2023;17(1):151-6.
[145] Osswald W, Zieboll S, Schütz W, Firl J, Elstner E. p-Hydroxyacetophenone a fungitoxic compound in spruce needles/p-Hydroxyacetophenon eine fungitoxische Verbindung in Fichtennadeln. J Plant Dis Protect. 1987:572-7.
[146] Inatomi Y, Murata H, Inada A, et al. New glycosides of acetophenone derivatives and phenylpropanoids from Juniperus occidentalis. J Nat Med. 2013;67(2):359-68.
[147] Blackwell M. The Fungi: 1, 2, 3… 5.1 million species? American journal of botany. 2011;98(3):426-38.
[148] Aly AH, Debbab A, Proksch P. Fifty years of drug discovery from fungi. Fungal Divers. 2011;50:3-19.
[149] Chen C, Wang J, Liu J, et al. Armochaetoglobins A-J: Cytochalasan alkaloids from Chaetomium globosum TW1-1, a fungus derived from the terrestrial arthropod Armadillidium vulgare. J Nat Prod. 2015;78(6):1193-201.
[150] Zhu X, Chen J, Zhu S, He Y, Ding W, Li C. Two new compounds from Nigrospora sphaerica ZMT05, a fungus derivated from Oxya chinensis Thunber. Nat Prod Res. 2018;32(20):2375-81.
[151] Zhao WT, Liu QP, Chen HY, Zhao W, Gao Y, Yang XL. Two novel eremophylane acetophenone conjugates from Colletotrichum gloeosporioides, an endophytic fungus in Salvia miltiorrhiza. Fitoterapia. 2020;141: 104474.
[152] Tan Q, Yang W, Zhu G, et al. A pair of chromone epimers and an acetophenone glucoside from the mangrove endophytic fungus Mycosphaerella sp L3A1. Chem Biodiv. 2022;19(12): e202200998.
[153] Blunt JW, Copp BR, Hu W-P, Munro MH, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep. 2009;26(2):170-244.
[154] Amedei A, Niccolai E. Plant and Marine Sources: Biological activity of natural products and therapeutic use. natural products analysis: instrumentation, methods, and applications. 2014:43-113.
[1] Yin-Ping Song, Nai-Yun Ji. Chemistry and biology of marine-derived Trichoderma metabolites[J]. Natural Products and Bioprospecting, 2024, 14(3): 14-14.
[2] Ji-shuang Qi, Yingce Duan, Zhao-chen Li, Jin-ming Gao, Jianzhao Qi, Chengwei Liu. The alkynyl-containing compounds from mushrooms and their biological activities[J]. Natural Products and Bioprospecting, 2023, 13(6): 50-50.
[3] Shuruq Alsuhaymi, Upendra Singh, Inas Al-Younis, Najeh M. Kharbatia, Ali Haneef, Kousik Chandra, Manel Dhahri, Mohammed A. Assiri, Abdul-Hamid Emwas, Mariusz Jaremko. Untargeted metabolomics analysis of four date palm (Phoenix dactylifera L.) cultivars using MS and NMR[J]. Natural Products and Bioprospecting, 2023, 13(6): 44-44.
[4] Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Andrew W. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Prioritised identification of structural classes of natural products from higher plants in the expedition of antimalarial drug discovery[J]. Natural Products and Bioprospecting, 2023, 13(5): 37-37.
[5] Shah Faisal, Syed Lal Badshah, Bibi Kubra, Abdul, Hamid Emwas, and Mariusz Jaremko. Alkaloids as potential antivirals. A comprehensive review[J]. Natural Products and Bioprospecting, 2023, 13(1): 4-4.
[6] Si-Yuan Luo, Jun-Yu Zhu, Ming-Feng Zou, Sheng Yin, Gui-Hua Tang. Mulberry Diels–Alder-type adducts: isolation, structure, bioactivity, and synthesis[J]. Natural Products and Bioprospecting, 2022, 12(5): 31-31.
[7] Yulian Lv, Tian Tian, Yong-Jiang Wang, Jian-Ping Huang, Sheng-Xiong Huang. Advances in chemistry and bioactivity of the genus Erythroxylum[J]. Natural Products and Bioprospecting, 2022, 12(3): 15-15.
[8] Na Zhang, Fan Xia, Song-Yu Li, Yin Nian, Li-Xin Wei, Gang Xu. Diterpenoid Alkaloids from the Aerial Parts of Aconitum flavum Hand. -Mazz[J]. Natural Products and Bioprospecting, 2021, 11(4): 421-429.
[9] Pinaki Dey, Joginder Singh, Jagadish Kumar Suluvoy, Kevin Joseph Dilip, Jayato Nayak. Utilization of Swertia chirayita Plant Extracts for Management of Diabetes and Associated Disorders: Present Status, Future Prospects and Limitations[J]. Natural Products and Bioprospecting, 2020, 10(6): 431-443.
[10] Qi Zhao, Jia-Le Zhang, Fei Li. Application of Metabolomics in the Study of Natural Products[J]. Natural Products and Bioprospecting, 2018, 8(4): 321-334.
[11] Kai Liu, Ya-Bin Yang, Jin-Lian Chen, Cui-Ping Miao, Qiang Wang, Hao Zhou, You-Wei Chen, Yi-Qing Li, Zhong-Tao Ding, Li-Xing Zhao. Koninginins N-Q, Polyketides from the Endophytic Fungus Trichoderma koningiopsis Harbored in Panax notoginseng[J]. Natural Products and Bioprospecting, 2016, 6(1): 49-55.
[12] Jun-Zeng Ma, Li-Xin Yang, Xiao-Ling Shen, Ji-Huan Qin, Li-Lan Deng, Selena Ahmed, Hong-Xi Xu, Da-Yuan Xue, Jiang-Xia Ye, Gang Xu. Effects of Traditional Chinese Medicinal Plants on Antiinsulin Resistance Bioactivity of DXMS-Induced Insulin Resistant HepG2 Cells[J]. Natural Products and Bioprospecting, 2014, 4(4): 197-206.
[13] Lydia L. Lifongo, Conrad V. Simoben, Fidele Ntie-Kang, Smith B. Babiaka, Philip N. Judson. A Bioactivity Versus Ethnobotanical Survey of Medicinal Plants from Nigeria,West Africa[J]. Natural Products and Bioprospecting, 2014, 4(1): 1-19.
[14] Steffen WÖLL, Sun Hee KIM, Henry Johannes GRETEN, Thomas EFFERTH. Animal plant warfare and secondary metabolite evolution[J]. Natural Products and Bioprospecting, 2013, 3(1): 1-7.
[15] Yan-Ming WANG, Min XU, Dong WANG, Hong-Tao ZHU, Chong-Ren YANG, Ying-Jun ZHANG. Review on “Long-Dan”, one of the traditional Chinese medicinal herbs recorded in Chinese Pharmacopoeia[J]. Natural Products and Bioprospecting, 2012, 2(1): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed