Natural Products and Bioprospecting    2025, Vol. 15 Issue (3) : 22-22     DOI: 10.1007/s13659-025-00503-0
ORIGINAL ARTICLES |
Structurally diverse polyketides and alkaloids produced by a plant-derived fungus Penicillium canescens L1
Wei-Ye Wu1, Xun Wei1, Qiong Liao2, Yi-Fan Fu1, Lei-Ming Wu1, Lei Li1, Shu-Qi Wu1, Qing-Ren Lu1, Fang-Yu Yuan1, Dong Huang1, Zhang-Hua Sun3, Tao Yuan4, Gui-Hua Tang1
1. School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China;
2. Laboratory Animal Center, Sun Yat-sen University, Guangzhou, 510006, China;
3. Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China;
4. The Laboratory of Effective Substances of Jiangxi Genuine Medicinal Materials, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
Download: PDF(1709 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  A series of structurally diverse polyketides (1-3), sesterterpenoids (24 and 25), and alkaloids (26-34) were isolated from the fermentation of a plant-derived fungus Penicillium canescens L1 on solid rice medium. Among these secondary metabolites, penicanesols A-G (1-7) were new structures, which were elucidated by NMR, HR-ESI-MS, ECD calculation, and X-ray diffraction. Penicanesol A (1) represented a rare dimer derived from phthalan derivatives, characterized by a 5/6/6/6/5 heteropentacyclic core. The bioassay on the NCI-H1975 cell model showed that two compounds had good cytotoxic activities, and the most significant activate compound 13 had an IC50 value of 4.24±0.13 μM, more than the positive control drug (12.99±0.13 μM).
Keywords Endophytic fungus      Penicillium canescens      Polyketides      Alkaloids      Cytotoxic activity     
Fund:This work was supported by the Science and Technology Program of Guangzhou, China (No. 2024B03J1322), the Science and Technology Planning Project of Guangdong Province, China (No. 2023A1111120025), the National Natural Science Foundation of China (Nos. 82404454 and 22407144), and the Guangdong Basic and Applied Basic Research Foundation, China (No. 2021B1515140062).
Issue Date: 18 June 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei-Ye Wu
Xun Wei
Qiong Liao
Yi-Fan Fu
Lei-Ming Wu
Lei Li
Shu-Qi Wu
Qing-Ren Lu
Fang-Yu Yuan
Dong Huang
Zhang-Hua Sun
Tao Yuan
Gui-Hua Tang
Trendmd:   
Cite this article:   
Wei-Ye Wu,Xun Wei,Qiong Liao, et al. Structurally diverse polyketides and alkaloids produced by a plant-derived fungus Penicillium canescens L1[J]. Natural Products and Bioprospecting, 2025, 15(3): 22-22.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-025-00503-0     OR     http://npb.kib.ac.cn/EN/Y2025/V15/I3/22
1. Zhang X, Yin Q, Li X, Liu X, Lei H, Wu B. Structures and bioactivities of secondary metabolites from Penicillium genus since 2010. Fitoterapia. 2022;163: 105349.
2. Wang C, Lu H, Lan J, Zaman K, Cao S. A review: halogenated compounds from marine fungi. Molecules. 2021;26(2):458.
3. Sang M, Feng P, Chi L-P, Zhang W. The biosynthetic logic and enzymatic machinery of approved fungi-derived pharmaceuticals and agricultural biopesticides. Nat Prod Rep. 2024;41(4):565-603.
4. Lv F, Zeng Y. Novel bioactive natural products from marine-derived Penicillium fungi: a review (2021-2023). Mar Drugs. 2024;22(5):191.
5. Agrawal S, Chavan P, Badiger A. Marine fungi of the genera Aspergillus and Penicillium: a promising reservoir of chemical diversity for developing anti-viral drug candidates. The Microbe. 2024;3: 100081.
6. Zang Y, Gong Y, Gong J, Liu J, Chen C, Gu L, Zhou Y, Wang J, Zhu H, Zhang Y. Fungal polyketides with three distinctive ring skeletons from the fungus Penicillium canescens uncovered by OSMAC and molecular networking strategies. J Org Chem. 2020;85(7):4973-80.
7. Yaegashi J, Romsdahl J, Chiang YM, Wang CCC. Genome mining and molecular characterization of the biosynthetic gene cluster of a diterpenic meroterpenoid, 15-deoxyoxalicine B, in Penicillium canescens. Chem Sci. 2015;6(11):6537-44.
8. Wang JP, Shu Y, Zhang SQ, Yao LL, Li BX, Zhu L, Zhang X, Xiao H, Cai L, Ding ZT. Polyketides with antimicrobial activities from Penicillium canescens DJJ-1. Phytochemistry. 2023;206: 113554.
9. Nicoletti R, Lopez-Gresa MP, Manzo E, Carella A, Ciavatta ML. Production and fungitoxic activity of Sch 642305, a secondary metabolite of Penicillium canescens. Mycopathologia. 2007;163(5):295-301.
10. Malik A, Ardalani H, Anam S, McNair LM, Kromphardt KJK, Frandsen RJN, Franzyk H, Staerk D, Kongstad KT. Antidiabetic xanthones with α-glucosidase inhibitory activities from an endophytic Penicillium canescens. Fitoterapia. 2020;142: 104522.
11. Frank M, Hartmann R, Plenker M, Mandi A, Kurtan T, Oezkaya FC, Mueller WEG, Kassack MU, Hamacher A, Lin W, Liu Z, Proksch P. Brominated azaphilones from the sponge-associated fungus Penicillium canescens strain 4.14.6a. J Nat Prod. 2019;82(8):2159-66.
12. Dasanayaka SAHK, Nong XH, Liang X, Liang JQ, Amin M, Qi SH. New dibenzodioxocinone and pyran-3,5-dione derivatives from the deep-sea-derived fungus Penicillium canescens SCSIO z053. J Asian Nat Prod Res. 2020;22(4):338-45.
13. Bertinetti BV, Pena NI, Cabrera GM. An antifungal tetrapeptide from the culture of Penicillium canescens. Chem Biodivers. 2009;6(8):1178-84.
14. Zang Y, Gong YH, Li XW, Li XN, Liu JJ, Chen CM, Zhou Y, Gu LH, Luo ZW, Wang JP, Sun WG, Zhu HC, Zhang YH. Canescones A-E: aromatic polyketide dimers with PTP1B inhibitory activity from Penicillium canescens. Org Chem Front. 2019;6(18):3274-81.
15. Zang Y, Gong Y, Shi Z, Qi C, Chen C, Tong Q, Liu J, Wang J, Zhu H, Zhang Y. Multioxidized aromatic polyketides produced by a soil-derived fungus Penicillium canescens. Phytochemistry. 2022;193: 113012.
16. Wei X, Huang JL, Gao HH, Yuan FY, Tang GH, Yin S. New halimane and clerodane diterpenoids from Croton cnidophyllus. Nat Prod Bioprospect. 2023;13(1):21.
17. Chen JQ, Li S, Fan RZ, Sun ZH, Zhu XY, Yin AP, Tang GH, Yin S. Talaesthanes A-C, three new meroterpenoids from the endophytic fungus Talaromyces primulinus H21. Fitoterapia. 2024;177: 106085.
18. Wang Y, Song SH, Wu LM, Zhou X, Lu QR, Yin AP, Yin S, Tang GH. Chemical constituents of Penicillium ferraniaense GE-7 and their cytotoxicities. Nat Prod Res. 2024. https://doi.org/10.1080/14786419.2024.2324113.
19. Liu T, Li ZL, Wang Y, Zhang LM, Song JL, Tian L, Pei YH, Hua HM. Study on the secondary metabolites of marine-derived fungus Penicillium sacculum. Chin Pharm J. 2012;47(8):577-80.
20. Mullady EL, Millett WP, Yoo HD, Weiskopf AS, Chen J, DiTullio D, Knight-Connoni V, Hughes DE, Pierceall WE. A phthalide with in vitro growth inhibitory activity from an Oidiodendron strain. J Nat Prod. 2004;67(12):2086-9.
21. Liang Y, Zhang B, Li D, Chen X, Wang Q, Shu B, Li Q, Tong Q, Chen C, Zhu H, Zhang Y. Griseofulvin analogues from the fungus Penicillium griseofulvum and their anti-inflammatory activity. Bioorg Chem. 2023;139: 106736.
22. Chen W, Jiang J, Wang J. Asymmetric ruthenium-catalyzed C-H activation by a versatile chiral-amide-directing strategy. Angew Chem Int Ed. 2024;63(6): e202316741.
23. Zhao JH, Zhang YL, Wang LW, Wang JY, Zhang CL. Bioactive secondary metabolites from Nigrospora sp. LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera Lam. World J Microbiol Biotechnol. 2012;28(5):2107-12.
24. Levine SG, Hicks RE, Gottlieb HE, Wenkert E. Carbon-13 nuclear magnetic resonance spectroscopy of naturally occurring substances. XXX. Griseofulvin J Org Chem. 1975;40(17):2540-2.
25. Wen X, Zhang DW, Guo SX, Wang CL. Chemical constituents of an endophytic fungus Chaetosphaeronema sp. from Phlomis younghusbandii Mukerjee. Chin Med Biotechnol. 2014;9(6):453-6.
26. Ying YM, Zhang LW, Shan WG, Zhan ZJ. Secondary metabolites of Peyronellaea sp. XW-12, an endophytic fungus of Huperzia serrata. Chem Nat Comp. 2014;50(4):723-5.
27. Ichinose K, Ebizuka Y, Sankawa U. Mechanistic studies on the biomimetic reduction of tetrahydroxynaphthalene, a key intermediate in melanin biosynthesis. Chem Pharm Bull. 2001;49(2):192-6.
28. Beekman AM, Barrow RA. Stereochemical assignment of the fungal metabolites pestalotiopsones D and E through enantiopure synthesis. J Nat Prod. 2013;76(11):2054-9.
29. Kamal A, Qureshi AA, Ahmad A, Rickards RW. Biochemistry of microorganisms. V. Structure and synthesis of curvulic acid and curvin, metabolic products of Curvularia siddiqui. Tetrahedron. 1965;21(6):1411.
30. Gong T, Dong SH, Zhu P. Butyrolactone derivatives isolated from the marine fungus Aspergillus versicolor F62. Mycosystema. 2014;33(3):706-12.
31. Nagia MMS, El-Metwally MM, Shaaban M, El-Zalabani SM, Hanna AG. Four butyrolactones and diverse bioactive secondary metabolites from terrestrial Aspergillus flavipes MM2: isolation and structure determination. Org Med Chem Lett. 2012;2(1):9.
32. Matsuda Y, Iwabuchi T, Wakimoto T, Awakawa T, Abe I. Uncovering the unusual D-ring construction in terretonin biosynthesis by collaboration of a multifunctional cytochrome P450 and a unique isomerase. J Am Chem Soc. 2015;137(9):3393-401.
33. Li GY, Li BG, Yang T, Yin JH, Qi HY, Liu GY, Zhang GL. Sesterterpenoids, terretonins A-D, and an alkaloid, asterrelenin, from Aspergillus terreus. J Nat Prod. 2005;68(8):1243-6.
34. Li C, Gloer JB, Wicklow DT, Dowd PF. Antiinsectan decaturin and oxalicine analogues from Penicillium thiersii. J Nat Prod. 2005;68(3):319-22.
35. Wang PL, Li DY, Xie LR, Wu X, Hua HM, Li ZL. Novel decaturin alkaloids from the marine-derived fungus Penicillium oxalicum. Nat Prod Commun. 2013. https://doi.org/10.1177/1934578X1300801013.
36. Zhang Y, Li C, Swenson DC, Gloer JB, Wicklow DT, Dowd PF. Novel antiinsectan oxalicine alkaloids from two undescribed fungicolous Penicillium spp. Org Lett. 2003;5(5):773-6.
37. Liu H, Yan C, She Z. Study on the isolation, identification and anti-inflammatory activity of the secondary metabolites of alkaloids produced by S apetala-derived fungi Aspergillus sp ZJ-S4. J Guangdong Pharma Univ. 2021;37(3):1-6.
38. Koyama N, Inoue Y, Sekine M, Hayakawa Y, Homma H, Omura S, Tomoda H. Relative and absolute stereochemistry of quinadoline B, an inhibitor of lipid droplet synthesis in macrophages. Org Lett. 2008;10(22):5273-6.
39. Buttachon S, Chandrapatya A, Manoch L, Silva A, Gales L, Bruyère C, Kiss R, Kijjoa A. Sartorymensin, a new indole alkaloid, and new analogues of tryptoquivaline and fiscalins produced by Neosartorya siamensis (KUFC 6349). Tetrahedron. 2012;68(15):3253-62.
40. Xu N, Cao Y, Wang L, Chen G, Pei YH. New alkaloids from a marine-derived fungus Neosartorya sp. HN-M-3. J Asian Nat Prod Res. 2013;15(7):731-6.
41. Cui CB, Kakeya H, Osada H. Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus. II. Physico-chemical properties and structures. J Antibiot. 1996;49(6):534-40.
42. Zhang M, Wang WL, Fang YC, Zhu TJ, Gu QQ, Zhu WM. Cytotoxic alkaloids and antibiotic nordammarane triterpenoids from the marine-derived fungus Aspergillus sydowi. J Nat Prod. 2008;71(6):985-9.
[1] Yuwei Wu, Baihui Zhang, Wenxian Li, Lihua Peng, Weilin Qiao, Wei Li, De-an Guo. Asprecosides A-J, ten new pentacyclic triterpenoid glycosides with cytotoxic activity from the roots of Ilex asprella[J]. Natural Products and Bioprospecting, 2025, 15(2): 18-18.
[2] Phanruethai Pailee, Paratchata Batsomboon, Wiriya Yaosanit, Theerawat Thananthaisong, Chulabhorn Mahidol, Poonsakdi Ploypradith, Nanthawan Reuk-ngam, Panita Khlaychan, Supanna Techasakul, Somsak Ruchirawat, Vilailak Prachyawarakorn. Grewiifopenes A-K, bioactive clerodane diterpenoids from Casearia grewiifolia Vent.[J]. Natural Products and Bioprospecting, 2024, 14(6): 54-54.
[3] Yinling Wei, Hongyan Wen, Lian Yang, Bodou Zhang, Xiaoyu Li, Sheng Li, Jing Dong, Zhenzhen Liang, Yu Zhang. Hypecotumines A-D, new isoquinoline alkaloids with potential PCSK9 inhibition activity from Hypecoum erectum L.[J]. Natural Products and Bioprospecting, 2024, 14(6): 57-57.
[4] Ismail Ware, Katrin Franke, Andrej Frolov, Kseniia Bureiko, Elana Kysil, Maizatulakmal Yahayu, Hesham Ali El Enshasy, Ludger A. Wessjohann. Comparative metabolite analysis of Piper sarmentosum organs approached by LC-MS-based metabolic profiling[J]. Natural Products and Bioprospecting, 2024, 14(4): 30-30.
[5] Weiwei Peng, Qi Huang, Xin Ke, Wenxuan Wang, Yan Chen, Zihuan Sang, Chen Chen, Siyu Qin, Yuting Zheng, Haibo Tan, Zhenxing Zou. Koningipyridines A and B, two nitrogen-containing polyketides from the fungus Trichoderma koningiopsis SC-5[J]. Natural Products and Bioprospecting, 2024, 14(1): 8-8.
[6] Yin-Zhong Fan, Chun Tian, Shun-Yao Tong, Qing Liu, Fan Xu, Bao-Bao Shi, Hong-Lian Ai, Ji-Kai Liu. The antifungal properties of terpenoids from the endophytic fungus Bipolaris eleusines[J]. Natural Products and Bioprospecting, 2023, 13(6): 43-43.
[7] Cheng-Yong Tan, Bao-Bao Shi, Mei-Fen Bao, Xiang-Hai Cai. Anti-inflammatory maistemonine-class alkaloids of Stemona japonica[J]. Natural Products and Bioprospecting, 2023, 13(2): 8-8.
[8] Ke-Pu Huang, Li-Li Xu, Sheng Li, Yin-Ling Wei, Lian Yang, Xiao-Jiang Hao, Hong-Ping He, Yu Zhang. Uncarialines A-E, new alkaloids from Uncaria rhynchophylla and their anticoagulant activity[J]. Natural Products and Bioprospecting, 2023, 13(2): 13-13.
[9] Yue Zhao, Wen-Ke Gao, Xiang-Dong Wang, Li-Hua Zhang, Hai-Yang Yu, Hong-Hua Wu. Phytochemical and pharmacological studies on Solanum lyratum: a review[J]. Natural Products and Bioprospecting, 2022, 12(6): 39-39.
[10] Kyu Hwan Shim, Min Ju Kang, Niti Sharma, Seong Soo A.An. Beauty of the beast: anticholinergic tropane alkaloids in therapeutics[J]. Natural Products and Bioprospecting, 2022, 12(5): 33-33.
[11] Mei-Ling Xiang, Bin-Yuan Hu, Zi-Heng Qi, Xiao-Na Wang, Tian-Zhen Xie, Zhao-Jie Wang, Dan-Yu Ma, Qi Zeng, Xiao-Dong Luo. Chemistry and bioactivities of natural steroidal alkaloids[J]. Natural Products and Bioprospecting, 2022, 12(4): 23-23.
[12] Pan-Pan Wei, Jia-Cheng Ji, Xu-Jun Ma, Zheng-Hui Li, Hong-Lian Ai, Xin-Xiang Lei, Ji-Kai Liu. Three new pyrrole alkaloids from the endophytic fungus Albifimbria viridis[J]. Natural Products and Bioprospecting, 2022, 12(1): 1-5.
[13] Ghodsi Mohammadi Ziarani, Negar Jamasbi, Fatemeh Mohajer. Recent advances on the synthesis of natural pyrrolizidine alkaloids: alexine, and its stereoisomers[J]. Natural Products and Bioprospecting, 2022, 12(1): 1-15.
[14] Na Zhang, Fan Xia, Song-Yu Li, Yin Nian, Li-Xin Wei, Gang Xu. Diterpenoid Alkaloids from the Aerial Parts of Aconitum flavum Hand. -Mazz[J]. Natural Products and Bioprospecting, 2021, 11(4): 421-429.
[15] Qing-Yun Lu, Jia-Hui Zhang, Ying-Yao Li, Xue-Xue Pu, Cui-Shan Zhang, Shuai Liu, Jia-Jia Wan, Ying-Tong Di, Xiao-Jiang Hao. New Secodaphnane-Type Alkaloids with Cytotoxic Activities from Daphniphyllum angustifolium Hutch[J]. Natural Products and Bioprospecting, 2021, 11(4): 453-457.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed