REVIEW |
|
|
|
|
|
Structure-function insights of natural Ganoderma polysaccharides: advances in biosynthesis and functional food applications |
Zhou-Wei Wu1,2, Xue-Fang Zhao1, Chen-Xi Quan1,2, Xiao-Cui Liu1,2, Xin-Yu Tao1,2, Yu-jie Li1, Xing-Rong Peng1,2, Ming-Hua Qiu1,2 |
1. State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China; 2. University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China |
|
|
Abstract Ganoderma polysaccharides (GPs), derived from various species of the Ganoderma genus, exhibit diverse bioactivities, including immune modulation, anti-tumor effects, and gut microbiota regulation. These properties position GPs as dual-purpose agents for medicinal and functional food development. This review comprehensively explores the structural complexity of six key GPs and their specific mechanisms of action, such as TLR signaling in immune modulation, apoptosis pathways in anti-tumor activity, and their prebiotic effects on gut microbiota. Additionally, the structure-activity relationships (SARs) of GPs are highlighted to elucidate their biological efficacy. Advances in green extraction techniques, including ultrasonic-assisted and enzymatic methods, are discussed for their roles in enhancing yield and aligning with sustainable production principles. Furthermore, the review addresses biotechnological innovations in polysaccharide biosynthesis, improving production efficiency and making large-scale production feasible. These insights, combined with ongoing research into their bioactivity, provide a solid foundation for developing health-promoting functional food products that incorporate GPs. Furthermore, future research directions are suggested to optimize biosynthesis pathways and fully harness the health benefits of these polysaccharides.
|
Keywords
Ganoderma polysaccharides
extraction techniques
structural characteristics
Bioactivity
biosynthetic pathways
Functional food applications
|
Fund:This work was financially supported by the National Natural Science Foundation of China (Nos. 82373762, 31872675), Major Special Programe of science and technology of Yunnan (202402AA310032, 202305AH340005), and the Cooperation Project with DR PLANT Company (2023), and the Foundation of the State Key Laboratory of Phytochemistry and Plant Resources in West China (Nos. P2020-KF02, P2022-KF10). |
Corresponding Authors:
Ming-Hua Qiu, E-mail:mhchiu@mail.kib.ac.cn
E-mail: mhchiu@mail.kib.ac.cn
|
Issue Date: 17 May 2025
|
|
|
[1] Wu S, Zhang S, Peng B, Tan D, Wu M, Wei J, et al. Ganoderma lucidum: a comprehensive review of phytochemistry, efficacy, safety and clinical study. Food Sci Hum Wellness. 2024;13(2):568-96. https://doi.org/10.26599/FSHW.2022.9250051. [2] Zeng P, Guo Z, Zeng X, Hao C, Zhang Y, Zhang M, et al. Ganoderma lucidum polysaccharide: chemical, biochemical, preclinical and clinical studies as an approved drug for treating myopathy and other diseases in China. J Cell Mol Med. 2018;22(7):3278-97. https://doi.org/10.1111/jcmm.13613. [3] Zhang J, Liu Y, Tang Q, Zhou S, Feng J, Chen H. Polysaccharide of Ganoderma and its bioactivities. In: Lin Z, Yang B, editors. Ganoderma and Health: Biology, Chemistry and Industry. 2019. pp. 107-134. [4] Hsu K, Cheng K. From nutraceutical to clinical trial: frontiers in Ganoderma development. Appl Microbiol Biotechnol. 2018;102(21):9037-51. https://doi.org/10.1007/s00253-018-9326-5. [5] Seweryn E, Ziala A, Gamian A. Health-promoting of polysaccharides extracted from Ganoderma lucidum. Nutrients. 2021. https://doi.org/10.3390/nu13082725. [6] Sulkowska-Ziaja K, Balik M, Szczepkowski A, Trepa M, Zengin G, Kala K, et al. A review of chemical composition and bioactivity studies of the most promising species of Ganoderma spp. Diversity. 2023. https://doi.org/10.3390/d15080882. [7] Leong YK, Yang F-C, Chang J-S. Extraction of polysaccharides from edible mushrooms: emerging technologies and recent advances. Carbohydr Polym. 2021;251: 117006. https://doi.org/10.1016/j.carbpol.2020.117006. [8] Liu Y, Tang Q, Zhang J, Xia Y, Yang Y, Wu D, et al. Triple helix conformation of β-d-glucan from Ganoderma lucidum and effect of molecular weight on its immunostimulatory activity. Int J Biol Macromol. 2018;114:1064-70. https://doi.org/10.1016/j.ijbiomac.2018.03.054. [9] Lu J, He R, Sun P, Zhang F, Linhardt RJ, Zhang A. Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. Int J Biol Macromol. 2020;150:765-74. https://doi.org/10.1016/j.ijbiomac.2020.02.035. [10] Zhang Z, Cui F, Sun L, Zan X, Sun W. Recent advances in Ganoderma lucidum polysaccharides: structures/bioactivities, biosynthesis and regulation. Food Biosci. 2023;56: 103281. https://doi.org/10.1016/j.fbio.2023.103281. [11] Zheng M, Pi X, Li H, Cheng S, Su Y, Zhang Y, et al. Ganoderma spp. polysaccharides are potential prebiotics: a review. Crit Rev Food Sci Nutr. 2024;64(4):909-27. https://doi.org/10.1080/10408398.2022.2110035. [12] Qin X, Fang Z, Zhang J, Zhao W, Zheng N, Wang X. Regulatory effect of Ganoderma lucidum and its active components on gut flora in diseases. Front Microbiol. 2024;15:1362479. https://doi.org/10.3389/fmicb.2024.1362479. [13] Zhang H, Zhang J, Liu Y, Tang C. Recent advances in the preparation, structure, and biological activities of β-glucan from Ganoderma species: a review. Foods. 2023;12(15):12975. https://doi.org/10.3390/foods12152975. [14] Ye T, Ge Y, Jiang X, Song H, Peng C, Liu B. A review of anti-tumour effects of Ganoderma lucidum in gastrointestinal cancer. Chin Med. 2023;18(1):811. https://doi.org/10.1186/s13020-023-00811-y. [15] Ahmad MF, Ahmad FA, Zeyaullah M, Alsayegh AA, Mahmood SE, AlShahrani AM, et al. Ganoderma lucidum: novel insight into hepatoprotective potential with mechanisms of action. Nutrients. 2023;15(8):1874. https://doi.org/10.3390/nu15081874. [16] Andrejc DC, Knez Z, Marevci MK. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and neuro-protective activity of Ganoderma lucidum: an overview. Front Pharmacol. 2022;13: 934982. https://doi.org/10.3389/fphar.2022.934982. [17] Liu Y, Wu J, Hao H. Antitumor immunostimulatory activity of the traditional Chinese medicine polysaccharide on hepatocellular carcinoma. Front Immunol. 2024;15:1369110. https://doi.org/10.3389/fimmu.2024.1369110. [18] Ahmad MF, Ahmad FA, Hasan N, Alsayegh AA, Hakami O, Bantun F, et al. Ganoderma lucidum: multifaceted mechanisms to combat diabetes through polysaccharides and triterpenoids: a comprehensive review. Int J Biol Macromol. 2024;268: 131644. https://doi.org/10.1016/j.ijbiomac.2024.131644. [19] Peng H, Zhong L, Cheng L, Chen L, Tong R, Shi J, et al. Ganoderma lucidum: current advancements of characteristic components and experimental progress in anti-liver fibrosis. Front Pharmacol. 2022;13:1094405. https://doi.org/10.3389/fphar.2022.1094405. [20] El Sheikha AF. Nutritional profile and health benefits of Ganoderma lucidum “Lingzhi, Reishi, or Mannentake” as functional foods: current scenario and future perspectives. Foods. 2022;11(7):1030. https://doi.org/10.3390/foods11071030. [21] Ma Y, He H, Wu J, Wang C, Chao K, Huang Q. Assessment of polysaccharides from mycelia of genus Ganoderma by mid-infrared and near-infrared spectroscopy. Sci Rep. 2018. https://doi.org/10.1038/s41598-017-18422-7. [22] Skalicka-Woźniak K, Szypowski J, Łoś R, Siwulski M, Sobieralski K, Głowniak K, et al. Evaluation of polysaccharides content in fruit bodies and their antimicrobial activity of four Ganoderma lucidum (W Curt.: Fr.) P. Karst. strains culitvated on different wooden substrates. Acta Soc Bot Pol. 2012;81:17-21. [23] Nakagawa T, Zhu Q, Tamrakar S, Amen Y, Mori Y, Suhara H, et al. Changes in content of triterpenoids and polysaccharides in Ganoderma lingzhi at different growth stages. J Nat Med. 2018;72(3):734-44. https://doi.org/10.1007/s11418-018-1213-y. [24] Xu A, Yang X, Li Y, Jacob MS, Zhang B, Li X. Fresh-eating Lingzhi becomes possible: comparative evaluation of nutritional and taste profile of Ganoderma tsugae at different fruiting body morphogenesis stages. LWT. 2024;201: 116234. https://doi.org/10.1016/j.lwt.2024.116234. [25] Zheng W, Lan S, Zhang W, Nie B, Zhu K, Ye X, et al. Polysaccharide structure evaluation of Ganoderma lucidum from different regions in China based on an innovative extraction strategy. Carbohydr Polym. 2024;335: 122079. https://doi.org/10.1016/j.carbpol.2024.122079. [26] Liu Y, Long Y, Liu H, Lan Y, Long T, Kuang R, et al. Polysaccharide prediction in Ganoderma lucidum fruiting body by hyperspectral imaging. Food Chem X. 2022;13: 100199. https://doi.org/10.1016/j.fochx.2021.100199. [27] Guo Q, Liang S, Ge C, Xiao Z. Research progress on extraction technology and biological activity of polysaccharides from edible fungi: a review. Food Rev Int. 2023;39(8):4909-40. https://doi.org/10.1080/87559129.2022.2039182. [28] Nguyen T, Ngo T, Do Dat T, Nguyen D, Hoang M, Mai P, et al. Effects of extraction technology on bioactivities from polysaccharide-rich Ganoderma lucidum. Minist Sci Technol Vietnam. 2022;64:32-7. https://doi.org/10.31276/VJST.64(11).32-37. [29] Feng J, Feng N, Tang Q, Liu Y, Yang Y, Liu F, et al. Optimization of Ganoderma lucidum polysaccharides fermentation process for large-scale production. Appl Biochem Biotechnol. 2019;189:972-86. https://doi.org/10.1007/s12010-019-02968-5. [30] Lyu F, Xu X, Zhang L. Natural polysaccharides with different conformations: extraction, structure and anti-tumor activity. J Mater Chem B. 2020;8(42):9652-67. https://doi.org/10.1039/d0tb01713b. [31] Wiater A, Paduch R, Choma A, Pleszczynska M, Siwulski M, Dominik J, et al. Biological study on carboxymethylated (1→3)-α-D-glucans from fruiting bodies of Ganoderma lucidum. Int J Biol Macromol. 2012;51(5):1014-23. https://doi.org/10.1016/j.ijbiomac.2012.08.017. [32] Sood G, Sharma S, Kapoor S, Khanna P. Optimization of extraction and characterization of polysaccharides from medicinal mushroom Ganoderma lucidum using response surface methodology. J Med Plant Res. 2013;7(31):2323-9. https://doi.org/10.5897/JMPR2013.5115. [33] Peng Y, Zhang L. Chain conformation of an alkali-soluble polysaccharide from mycelium of Ganoderma tsugae. J Macromol Sci Phys. 2005;B44(4):445-53. https://doi.org/10.1081/mb-200061621. [34] Huang S, Li J, Wang Z, Pan H, Chen J, Ning Z. Optimization of alkaline extraction of polysaccharides from Ganoderma lucidum and their effect on immune function in mice. Molecules. 2010;15(5):3694-708. https://doi.org/10.3390/molecules15053694. [35] Chen X, Wang W, Li S, Xue J, Fan L, Sheng Z, et al. Optimization of ultrasound-assisted extraction of Lingzhi polysaccharides using response surface methodology and its inhibitory effect on cervical cancer cells. Carbohydr Polym. 2010;80(3):944-8. https://doi.org/10.1016/j.carbpol.2010.01.010. [36] Alzorqi I, Singh A, Manickam S, Al-Qrimli HF. Optimization of ultrasound-assisted extraction (UAE) of β-D-glucan polysaccharides from Ganoderma lucidum for prospective scale-up. Resour Eff Technol. 2017;3(1):46-54. https://doi.org/10.18799/24056529/2017/1/104. [37] Alzorqi I, Sudheer S, Lu T-J, Manickam S. Ultrasonically extracted β-d-glucan from artificially cultivated mushroom: characteristic properties and antioxidant activity. Ultrason Sonochem. 2017;35:531-40. https://doi.org/10.1016/j.ultsonch.2016.04.017. [38] Ma C, Feng M, Zhai X, Hu M, You L, Luo W, et al. Optimization for the extraction of polysaccharides from Ganoderma lucidum and their antioxidant and antiproliferative activities. J Taiwan Inst Chem Eng. 2013;44(6):886-94. https://doi.org/10.1016/j.jtice.2013.03.003. [39] Zheng S, Zhang W, Liu S. Optimization of ultrasonic-assisted extraction of polysaccharides and triterpenoids from the medicinal mushroom Ganoderma lucidum and evaluation of their in vitro antioxidant capacities. PLoS ONE. 2021;15(12): e0244749. https://doi.org/10.1371/journal.pone.0244749. [40] Do DT, Lam DH, Nguyen T, Mai TTP, Vuong HT, Nguyen DV, et al. Utilization of response surface methodology in optimization of polysaccharides extraction from Vietnamese red Ganoderma lucidum by ultrasound-assisted enzymatic method and examination of bioactivities of the extract. Sci World J. 2021;2021:7594092. https://doi.org/10.1155/2021/7594092. [41] Chen T, Wu Y, Wu J, Ma L, Dong Z, Wu J. Efficient extraction technology of antioxidant crude polysaccharides from Ganoderma lucidum (Lingzhi), ultrasonic-circulating extraction integrating with superfine-pulverization. J Taiwan Inst Chem Eng. 2014;45(1):57-62. https://doi.org/10.1016/j.jtice.2013.05.010. [42] Papinutti L. Effects of nutrients, pH and water potential on exopolysaccharides production by a fungal strain belonging to Ganoderma lucidum complex. Bioresour Technol. 2010;101(6):1941-6. https://doi.org/10.1016/j.biortech.2009.09.076. [43] Zhu X, Chen X, Xie J, Wang P, Su W. Mechanochemical-assisted extraction and antioxidant activity of polysaccharides from Ganoderma lucidum spores. Int J Food Sci Technol. 2012;47(5):927-32. https://doi.org/10.1111/j.1365-2621.2011.02923.x. [44] Liu G, Zhang J, Hou T, An S, Guo B, Liu C, et al. Extraction kinetics, physicochemical properties and immunomodulatory activity of the novel continuous phase transition extraction of polysaccharides from Ganoderma lucidum. Food Funct. 2021;12(20):9708-18. https://doi.org/10.1039/D1FO02185K. [45] Smiderle FR, Morales D, Gil-Ramírez A, de Jesus LI, Gilbert-López B, Iacomini M, et al. Evaluation of microwave-assisted and pressurized liquid extractions to obtain β-d-glucans from mushrooms. Carbohydr Polym. 2017;156:165-74. https://doi.org/10.1016/j.carbpol.2016.09.029. [46] Li R, Shi G, Chen L, Liu Y. Polysaccharides extraction from Ganoderma lucidum using a ternary deep eutectic solvents of choline chloride/guaiacol/lactic acid. Int J Biol Macromol. 2024;263: 130263. https://doi.org/10.1016/j.ijbiomac.2024.130263. [47] Kan Y, Chen T, Wu Y, Wu J. Antioxidant activity of polysaccharide extracted from Ganoderma lucidum using response surface methodology. Int J Biol Macromol. 2015;72:151-7. https://doi.org/10.1016/j.ijbiomac.2014.07.056. [48] Pan K, Jiang Q, Liu G, Miao X, Zhong D. Optimization extraction of Ganoderma lucidum polysaccharides and its immunity and antioxidant activities. Int J Biol Macromol. 2013;55:301-6. https://doi.org/10.1016/j.ijbiomac.2013.01.022. [49] Matsunaga Y, Machmudah S, Wahyudiono KH, Sasaki M, Goto M. Subcritical water extraction and direct formation of microparticulate polysaccharide powders from Ganoderma lucidum. Int J Technol. 2014;5(1):40-50. https://doi.org/10.14716/ijtech.v5i1.152. [50] Matsunaga Y, Wahyudiono, Machmudah S, Sasaki M, Goto M. Hot compressed water extraction of polysaccharides from Ganoderma lucidum using a semibatch reactor. Asia-Pac J Chem Eng. 2014;9(1):125-33. https://doi.org/10.1002/apj.1752 [51] Gong T, Yan R, Kang J, Chen R. Chemical components of Ganoderma. In: Lin Z, Yang B, editors. Ganoderma and health: biology, chemistry and industry. 1st ed. 2019. pp. 59-106. [52] Ding L, Shangguan H, Wang X, Liu J, Shi Y, Xu X, et al. Extraction, purification, structural characterization, biological activity, mechanism of action and application of polysaccharides from Ganoderma lucidum: a review. Int J Biol Macromol. 2025;288: 138575. https://doi.org/10.1016/j.ijbiomac.2024.138575. [53] Kou F, Ge Y, Wang W, Mei Y, Cao L, Wei X, et al. A review of Ganoderma lucidum polysaccharides: health benefit, structure-activity relationship, modification, and nanoparticle encapsulation. Int J Biol Macromol. 2023;243: 125199. https://doi.org/10.1016/j.ijbiomac.2023.125199. [54] Lin S, Wang S, Wang L, Lin D. Research progress on chemistry of Ganoderma polysaccharides. J Fungal Res. 2024;22(1):9-21. https://doi.org/10.13341/j.jfr.2023.1674. [55] Yang L, Huang J, Huang N, Qin S, Chen Z, Xiao G, et al. Structure-activity relationship of synthesized glucans from Ganoderma lucidum with in vitro hypoglycemic activity. Int J Biol Macromol. 2025;288: 138586. https://doi.org/10.1016/j.ijbiomac.2024.138586. [56] Luo H, Zhang Y, Wang S, Lin S, Wang L, Lin Z, et al. Structural characterization and anti-oxidative activity for a glycopeptide from Ganoderma lucidum fruiting body. Int J Biol Macromol. 2024;261: 129793. https://doi.org/10.1016/j.ijbiomac.2024.129793. [57] Gao X, Qi J, Ho C, Li B, Mu J, Zhang Y, et al. Structural characterization and immunomodulatory activity of a water-soluble polysaccharide from Ganoderma leucocontextum fruiting bodies. Carbohydr Polym. 2020;249: 116874. https://doi.org/10.1016/j.carbpol.2020.116874. [58] Wen L, Sheng Z, Wang J, Jiang Y, Yang B. Structure of water-soluble polysaccharides in spore of Ganoderma lucidum and their anti-inflammatory activity. Food Chem. 2022;373(Pt A): 131374. https://doi.org/10.1016/j.foodchem.2021.131374. [59] Li J, Gu F, Cai C, Hu M, Fan L, Hao J, et al. Purification, structural characterization, and immunomodulatory activity of the polysaccharides from Ganoderma lucidum. Int J Biol Macromol. 2020;143:806-13. https://doi.org/10.1016/j.ijbiomac.2019.09.141. [60] Zhang H, Nie S, Cui SW, Xu M, Ding H, Xie M. Characterization of a bioactive polysaccharide from Ganoderma atrum: Re-elucidation of the fine structure. Carbohydr Polym. 2017;158:58-67. https://doi.org/10.1016/j.carbpol.2016.11.088. [61] Sheng Z, Wen L, Yang B. Structure identification of a polysaccharide in mushroom Lingzhi spore and its immunomodulatory activity. Carbohydr Polym. 2022;278: 118939. https://doi.org/10.1016/j.carbpol.2021.118939. [62] Liu Y, Zhang J, Tang Q, Yang Y, Guo Q, Wang Q, et al. Physicochemical characterization of a high molecular weight bioactive β-d-glucan from the fruiting bodies of Ganoderma lucidum. Carbohydr Polym. 2014;101:968-74. https://doi.org/10.1016/j.carbpol.2013.10.024. [63] Wang Y, Liu Y, Yu H, Zhou S, Zhang Z, Wu D, et al. Structural characterization and immuno-enhancing activity of a highly branched water-soluble β-glucan from the spores of Ganoderma lucidum. Carbohydr Polym. 2017;167:337-44. https://doi.org/10.1016/j.carbpol.2017.03.016. [64] Dong Q, Wang Y, Shi L, Yao J, Li J, Ma F, et al. A novel water-soluble β-d-glucan isolated from the spores of Ganoderma lucidum. Carbohydr Res. 2012;353:100-5. https://doi.org/10.1016/j.carres.2012.02.029. [65] Gong Z, Liu M, Liu H, Deng Z, Qin X, Nie J, et al. Structural features and in vitro antitumor activity of a water-extracted polysaccharide from Ganoderma applanatum. New J Chem. 2023;47:13205-17. https://doi.org/10.1039/d3nj01903a. [66] Gao X, Qi J, Ho CT, Li B, Xie Y, Chen S, et al. Purification, physicochemical properties, and antioxidant activities of two low-molecular-weight polysaccharides from Ganoderma leucocontextum fruiting bodies. Antioxidants. 2021;10:1145. https://doi.org/10.3390/antiox10071145. [67] Zhou Y, Li L, Sun Z, Liu R, Zhu Y, Yi J, et al. Structural characterization and osteogenic differentiation-promoting activity of polysaccharide purified from Chroogomphus rutilus. Carbohydr Polym. 2024;328: 121709. https://doi.org/10.1016/j.carbpol.2023.121709. [68] Qu Y, Yan J, Zhang X, Song C, Zhang M, Mayo KH, et al. Structure and antioxidant activity of six mushroom-derived heterogalactans. Int J Biol Macromol. 2022;209:1439-49. https://doi.org/10.1016/j.ijbiomac.2022.04.135. [69] Ye L, Zhang J, Zhou K, Yang Y, Zhou S, Jia W, et al. Purification, NMR study and immunostimulating property of a fucogalactan from the fruiting bodies of Ganoderma lucidum. Planta Med. 2008;74:1730-4. https://doi.org/10.1055/s-2008-1081354. [70] Ye L, Zhang J, Yang Y, Zhou S, Liu Y, Tang Q, et al. Structural characterisation of a heteropolysaccharide by NMR spectra. Food Chem. 2009;112:962-6. https://doi.org/10.1016/j.foodchem.2008.07.017. [71] Ye L, Zhang J, Ye X, Tang Q, Liu Y, Gong C, et al. Structural elucidation of the polysaccharide moiety of a glycopeptide (GLPCW-II) from Ganoderma lucidum fruiting bodies. Carbohydr Res. 2008;343:746-52. https://doi.org/10.1016/j.carres.2007.12.004. [72] Su D, Lei A, Nie C, Chen Y. The protective effect of Ganoderma atrum polysaccharide on intestinal barrier function damage induced by acrylamide in mice through TLR4/MyD88/NF-κB based on the iTRAQ analysis. Food Chem Toxicol. 2023;171: 113548. https://doi.org/10.1016/j.fct.2022.113548. [73] da Silva MS, de Lima BD, Zavadinack M, Simas FF, Smiderle FR, de Santana-Filho AP, et al. Antimelanoma effect of a fucoxylomannan isolated from Ganoderma lucidum fruiting bodies. Carbohydr Polym. 2022;294: 119823. https://doi.org/10.1016/j.carbpol.2022.119823. [74] Chen Y, Ou X, Yang J, Bi S, Peng B, Wen Y, et al. Structural characterization and biological activities of a novel polysaccharide containing N-acetylglucosamine from Ganoderma sinense. Int J Biol Macromol. 2020;158:1204-15. https://doi.org/10.1016/j.ijbiomac.2020.05.028. [75] da Silva Milhorini S, Zavadinack M, Dos Santos JF, de Lara EL, Smiderle FR, Iacomini M. Structural variety of glucans from Ganoderma lucidum fruiting bodies. Carbohydr Res. 2024;538: 109099. https://doi.org/10.1016/j.carres.2024.109099. [76] Cao C, Liao Y, Yu Q, Zhang D, Huang J, Su Y, et al. Structural characterization of a galactoglucomannan with anti-neuroinflammatory activity from Ganoderma lucidum. Carbohydr Polym. 2024;334: 122030. https://doi.org/10.1016/j.carbpol.2024.122030. [77] Wang J, Yuan Y, Yue T. Immunostimulatory activities of β-d-glucan from Ganoderma lucidum. Carbohydr Polym. 2014;102:47-54. https://doi.org/10.1016/j.carbpol.2013.10.087. [78] Liu H, Cheng J, Wang X, Jiang Y, Ni J, Zhang Y, et al. Structure identification of Ganoderma lucidum spore polysaccharides and their antitumor activity in vivo. Molecules. 2024;29(10):2348. https://doi.org/10.3390/molecules29102348. [79] Liu Y, Wang Y, Zhou S, Yan M, Tang Q, Zhang J. Structure and chain conformation of bioactive β-D-glucan purified from water extracts of Ganoderma lucidum unbroken spores. Int J Biol Macromol. 2021;180:484-93. https://doi.org/10.1016/j.ijbiomac.2021.03.003. [80] Fu Y, Shi L, Ding K. Structure elucidation and anti-tumor activity in vivo of a polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Int J Biol Macromol. 2019;141:693-9. https://doi.org/10.1016/j.ijbiomac.2019.09.046. [81] Li Y, Fang L, Zhang K. Structure and bioactivities of a galactose rich extracellular polysaccharide from submergedly cultured Ganoderma lucidum. Carbohydr Polym. 2007;68:323-8. https://doi.org/10.1016/j.carbpol.2006.12.001. [82] Xie Y, Su Y, Wang Y, Zhang D, Yu Q, Yan C. Structural clarification of mannoglucan GSBP-2 from Ganoderma sinense and its effects on triple-negative breast cancer migration and invasion. Int J Biol Macromol. 2024;269: 131903. https://doi.org/10.1016/j.ijbiomac.2024.131903. [83] Han X, Yue G, Yue R-Q, Dong C, Chan C, Ko C, et al. Structure elucidation and immunomodulatory activity of a beta glucan from the fruiting bodies of Ganoderma sinense. PLoS ONE. 2014;9: 100380. https://doi.org/10.1371/journal.pone.0100380. [84] Li W, Tang X, Shuai X, Jiang C, Liu X, Wang L, et al. Mannose receptor mediates the immune response to Ganoderma atrum polysaccharides in macrophages. J Agric Food Chem. 2017;65:348-57. https://doi.org/10.1021/acs.jafc.6b04888. [85] Ying Y, Hao W. Immunomodulatory function and anti-tumor mechanism of natural polysaccharides: a review. Front Immunol. 2023;14:1147641. https://doi.org/10.3389/fimmu.2023.1147641. [86] Jaynes JM, Sable R, Ronzetti M, Bautista W, Knotts Z, Abisoye-Ogunniyan A, et al.·Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses.·Sci Transl Med.·2020;12(530):eaax6337. https://doi.org/10.1126/scitranslmed.aax6337 [87] Lemieszek MK, Nunes FM, Rzeski W. Branched mannans from the mushroom Cantharellus cibarius enhance the anticancer activity of natural killer cells against human cancers of lung and colon. Food Funct. 2019;10:5816-26. https://doi.org/10.1039/c9fo00510b. [88] Wu L, Zhao J, Zhang X, Liu S, Zhao C. Antitumor effect of soluble β-glucan as an immune stimulant. Int J Biol Macromol. 2021;179:116-24. https://doi.org/10.1016/j.ijbiomac.2021.02.207. [89] Gao X, Homayoonfal M. Exploring the anti-cancer potential of Ganoderma lucidum polysaccharides (GLPs) and their versatile role in enhancing drug delivery systems: a multifaceted approach to combat cancer. Cancer Cell Int. 2023;23:31. https://doi.org/10.1186/s12935-023-03146-8. [90] Bae IY, Kim H, Yoo HJ, Kim ES, Lee S, Park DY, et al. Correlation of branching structure of mushroom β-glucan with its physiological activities. Food Res Int. 2013;51:195-200. https://doi.org/10.1016/j.foodres.2012.12.008. [91] Cadar E, Negreanu-Pirjol T, Pascale C, Sirbu R, Prasacu I, Negreanu-Pirjol B-S, et al. Natural bio-compounds from Ganoderma lucidum and their beneficial biological actions for anticancer application: a review. Antioxidants. 2023;12:11907. https://doi.org/10.3390/antiox12111907. [92] Xue H, Wang W, Bian J, Gao Y, Hao Z, Tan J. Recent advances in medicinal and edible homologous polysaccharides: extraction, purification, structure, modification, and biological activities. Int J Biol Macromol. 2022;222:1110-26. https://doi.org/10.1016/j.ijbiomac.2022.09.227. [93] Zhang H, Li Y, Fu Y, Jiao H, Wang X, Wang Q, et al. A structure-functionality insight into the bioactivity of microbial polysaccharides toward biomedical applications: a review. Carbohydr Polym. 2024;335: 122078. https://doi.org/10.1016/j.carbpol.2024.122078. [94] Stothers CL, Burelbach KR, Owen AM, Patil NK, McBride MA, Bohannon JK, et al. β-Glucan induces distinct and protective innate immune memory in differentiated macrophages. J Immunol. 2021;207:2785-98. https://doi.org/10.4049/jimmunol.2100107. [95] Kono H, Kondo N, Isono T, Ogata M, Hirabayashi K. Characterization of the secondary structure and order-disorder transition of a β-(1→3, 1→6)-glucan from Aureobasidium pullulans. Int J Biol Macromol. 2019;28: 104993. https://doi.org/10.1016/j.dib.2019.104993. [96] Okobira T, Miyoshi K, Uezu K, Sakurai K, Shinkai S. Molecular dynamics studies of side chain effect on the beta-1,3-D-glucan triple helix in aqueous solution. Biomacromol. 2008;9:783-8. https://doi.org/10.1021/bm700511d. [97] Chen H, Liu N, He F, Liu Q, Xu X. Specific β-glucans in chain conformations and their biological functions. Polym J. 2022;54:427-53. https://doi.org/10.1038/s41428-021-00587-8. [98] Cao Y, Xu X, Liu S, Huang L, Gu J. Ganoderma: a cancer immunotherapy review. Front Pharmacol. 2018;9:1217. https://doi.org/10.3389/fphar.2018.01217. [99] Sohretoglu D, Huang S. Ganoderma lucidum polysaccharides as an anti-cancer agent. Anti-Cancer Agents Med Chem. 2018;18:667-74. https://doi.org/10.2174/1871520617666171113121246. [100] Falch BH, Espevik T, Ryan L, Stokke BT. The cytokine stimulating activity of (1→3)-beta-D-glucans is dependent on the triple helix conformation. Carbohydr Res. 2000;329:587-96. https://doi.org/10.1016/s0008-6215(00)00222-6. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|