ORIGINAL ARTICLE |
|
|
|
|
|
Grewiifopenes A-K, bioactive clerodane diterpenoids from Casearia grewiifolia Vent. |
Phanruethai Pailee1, Paratchata Batsomboon1, Wiriya Yaosanit1, Theerawat Thananthaisong2, Chulabhorn Mahidol1,3, Poonsakdi Ploypradith1,3,4, Nanthawan Reuk-ngam1, Panita Khlaychan1, Supanna Techasakul1, Somsak Ruchirawat1,3,4, Vilailak Prachyawarakorn1 |
1. Laboratory of Natural Products, Medicinal Chemistry and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand; 2. Department of National Parks, Wildlife and Plant Conservation, Forest Herbarium, Bangkok, 10900, Thailand; 3. Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand; 4. Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, 10400, Thailand |
|
|
Abstract Eleven novel clerodane-type diterpenoids, grewiifopenes A-K (1-4 and 12-18), along with nine known compounds (5-11, 19, and 20) were purified from the dichloromethane extract of the twigs and stems of Casearia grewiifolia Vent. (Salicaceae). Their spectroscopic data, including the NMR, HRESIMS, and electronic circular dichroism calculations were employed to completely characterize and elucidate the chemical structures and absolute configurations. The clerodane diterpenoids possessing a 6-OH group and no substitution at C-7 exhibited greater cytotoxic activity than others, with their IC50 values ranging from 0.3 to 2.9 μM. Isocaseamembrin E (7) exhibited antibacterial activity against Staphylococcus aureus, while isocaseamembrin E (7), corymbulosin X (8), caseargrewiin A (9), kurzipene A (10), and balanspene F (11) exhibited antibacterial activity against Bacillus cereus.
|
Keywords
Casearia grewiifolia Vent.
Salicaceae
Clerodane diterpenoids
Cytotoxic activity
Antibacterial activity
|
Fund:The grants from Thailand Science Research and Innovation (TSRI) and Chulabhorn Research Institute (grant numbers 48296/4691995) and Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation were supported the research funding. |
Corresponding Authors:
Vilailak Prachyawarakorn,E-mail:vilailak@cri.or.th
E-mail: vilailak@cri.or.th
|
Issue Date: 13 December 2024
|
|
|
[1] Chuakul W, Saralamp P, Paonil W, Temsiririrkkul R, Clayton T. Medicinal plants in Thailand, vol. II. Bangkok: Amarin Printing and Publishing Public Co., Ltd.; 1997. p. 52-3. [2] Xia L, Guo Q, Tu P, Chai X. The genus Casearia: a phytochemical and pharmacological overview. Phytochem Rev. 2015;14:99-135. https://doi.org/10.1007/s11101-014-9336-6. [3] Kanokmedhakul S, Kanokmedhakul K, Kanarsa T, Buayairaksa M. New bioactive clerodane diterpenoids from the bark of Casearia grewiifolia. J Nat Prod. 2005;68:183-8. https://doi.org/10.1021/np049757k. [4] Kanokmedhakul S, Kanokmedhakul K, Buayairaksa M. Cytotoxic clerodane diterpenoids fruits of Casearia grewiifolia. J Nat Prod. 2007;70:1122-6. https://doi.org/10.1021/acs.jnatprod.5b00677. [5] Nguyen HTT, Truong NB, Doan HTM, Litaudon M, Retailleau P, Do TT, Nguyen HV, Chau MV, Pham CV. Cytotoxic clerodane diterpenoids from the leaves of Casearia grewiifolia. J Nat Prod. 2015;78:2726-30. https://doi.org/10.1021/acs.jnatprod.5b00677. [6] Nhoek P, An C-Y, Son M-G, Chae H-S, Pel P, Kim Y-M, Khiev P, Choi WJ, Choi YH, Chin Y-W. Stereochemical assignment of clerodane-type diterpenes from the fruits of Casearia grewiifolia and their ability to inhibit PCSK9 expression. Phytochemistry. 2023;216: 113864. https://doi.org/10.1016/j.phytochem.2023.113864. [7] Shen Y-C, Wang C-H, Cheng Y-B, Wang L-T, Guh J-H, Chien C-T, Khalil AT. New cytotoxic clerodane diterpenoids from the leaves and twigs of Casearia membranacea. J Nat Prod. 2004;67:316-21. https://doi.org/10.1021/np0303658. [8] Bou DD, Tempone AG, Pinto ÉG, Lago JHG, Sartorelli P. Antiparasitic activity and effect of casearins isolated from Casearia sylvestris on Leishmania and Trypanosoma cruzi plasma membrane. Phytomedicine. 2014;21:676-81. https://doi.org/10.1016/j.phymed.2014.01.004. [9] Williams RB, Norris A, Miller JS, Birkinshaw C, Ratovoson F, Andriantsiferana R, Rasamison VE, Kingston DGI. Cytotoxic clerodane diterpenoids and their hydrolysis products from Casearia nigrescens from the rainforest of Madagascar. J Nat Prod. 2007;70(2):206-9. https://doi.org/10.1021/np0605034. [10] Aimaiti S, Suzuki A, Saito Y, Fukuyoshi S, Goto M, Miyake K, Newman DJ, O’Keefe BR, Lee K-H, Nakagawa-Goto K. Corymbulosins I-W, cytotoxic clerodane diterpenes from the bark of Laetia corymbulosa. J Org Chem. 2018;83:951-63. https://doi.org/10.1021/acs.joc.7b02951. [11] Ledoux A, Hamann C, Bonnet O, Jullien K, Quetin-Leclercq J, Tchinda A, Smadja J, Gauvin-Bialecki A, Maquoi E, Frédérich M. Bioactive clerodane diterpenoids from the leaves of Casearia coriacea Vent. Molecules. 2023;28:1197. https://doi.org/10.3390/molecules28031197. [12] Cai S, Risinger AL, Petersen CL, Grkovic T, O’Keefe BR, Mooberry SL, Cichewicz RH. Anacolosins A-F and corymbulosins X and Y, clerodane diterpenes from Anacolosa clarkii exhibiting cytotoxicity toward pediatric cancer cell lines. J Nat Prod. 2019;82:928-36. https://doi.org/10.1021/acs.jnatprod.8b01015. [13] Ma J, Yang X, Zhang Q, Zhang X, Xie C, Tuerhong M, Zhang J, Jin DQ, Lee D, Xu J, Ohizumi Y, Guo Y. Cytotoxic clerodane diterpenoids from the leaves of Casearia kurzii. Bioorg Chem. 2019;85:558-67. https://doi.org/10.1016/j.bioorg.2019.01.048. [14] Xu J, Zhang Q, Wang M, Ren Q, Sun Y, Jin D-Q, Xie C, Chen H, Ohizumi Y, Guo Y. Bioactive clerodane diterpenoids from the twigs of Casearia balansae. J Nat Prod. 2014;77:2182-9. https://doi.org/10.1021/np5003516. [15] Yamauchi S, Ichikawa H, Nishiwaki H, Shuto Y. Evaluation of plant growth regulatory activity of furofuran lignan bearing a 7,9':7',9-diepoxy structure using optically pure (+)- and (-)-enantiomers. J Agric Food Chem. 2015;63:5224-8. https://doi.org/10.1021/acs.jafc.5b01099. [16] Ito A, Kasai R, Yamasaki K, Duc NM, Nham NT. Lignan glycosides from bark of Albizzia myriophylla. Phytochemistry. 1994;37(5):1455-8. https://doi.org/10.1016/s0031-9422(00)90432-1. [17] Luo JR, Jiang HE, Zhao YX, Zhou J, Qian JF. Components of the heartwood of Populus euphratica from an ancient tomb. Chem Nat Compd. 2008;44:6-9. https://doi.org/10.1007/s10600-008-0003-2. [18] Itokawa H, Totsuka N, Morita H, Takeya K, Iitaka Y, Schenkel EP, Motidome M. New antitumor principles, casearins A-F, for Casearia sylvestris Sw. (Flacourtiaceae). Chem Pharm Bull. 1990;38(12):3384-8. https://doi.org/10.1248/cpb.38.3384. [19] Santos AG, Ferreira PMP, Vieira-Junior GM, Perez CC, Tininis AG, Silva GH, Bolzani VS, Costa-Lotufo LV, Pessoa C, Cavalheiro AJ. Casearin X, its degradation product and other clerodane diterpenes from leaves of Casearia sylvestris: evaluation of cytotoxicity against normal and tumor human cells. Chem Biodivers. 2010;7:205-15. https://doi.org/10.1002/cbdv.200800342. [20] Guittet E, Stoven V, Lallemand J-Y. Pitumbin, a novel kolavene acylal from Casearia pitumba pleumer. Tetrahedron. 1988;44:2893-901. https://doi.org/10.1016/S0040-4020(88)90026-9. [21] Liu F, Ma J, Shi Z, Zhang Q, Wang H, Li D, Song Z, Wang C, Jin J, Xu J, Tuerhong M, Abudukeremu M, Shuai L, Lee D, Guo Y. Clerodane diterpenoids isolated from the leaves of Casearia graveolens. J Nat Prod. 2020;83:36-44. https://doi.org/10.1021/acs.jnatprod.9b00515. [22] Prakash CVS, Hoch JM, Kingston DGI. Structure and stereochemistry of new cytotoxic clerodane diterpenoids from the bark of Casearia lucida from the Madagascar Rainforest. J Nat Prod. 2002;65:100-7. https://doi.org/10.1021/np010405c. [23] Morita H, Nakayama M, Kojima H, Takeya K, Itokawa H, Schenkel EP, Motidome M. Structures and cytotoxic activity relationship of casearins, new clerodane diterpenes from Casearia sylvestris Sw. Chem Pharm Bull. 1991;39(3):693-7. https://doi.org/10.1248/cpb.39.693. [24] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR; Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, revision C.01. Wallingford: Gaussian, Inc.; 2016. https://gaussian.com/gaussian16/. [25] Dennington R, Keith TA, Millam JM. GaussView, version 6. Shawnee Mission: Semichem Inc.; 2016. https://gaussian.com/gaussview6/. [26] Yanai T, Tew D, Handy NA. New hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett. 2004;393:51-7. https://doi.org/10.1016/j.cplett.2004.06.011. [27] Bruhn T, Schaumlöffel A, Hemberger Y, Bringmann G. SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality. 2013;25:243-9. https://doi.org/10.1002/chir.22138. [28] Bruhn T, Schaumlöffel A, Hemberger Y, Pescitelli G. SpecDis, Ver. 1.71 Berlin, Germany; 2017. http://specdis-software.jimdo.com. [29] Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 1987;47:936-42. [30] Doyle A, Griffiths JB, editors. Mammalian cell culture: essential techniques. New York: Wiley; 1997. [31] Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 11th edition. CLSI standard M07, Wayne; 2018. [32] Stresser DM, Turner SD, McNamara J, Stocker P, Miller VP, Crespi CL, Patten CJ. A high-throughput screen to identify inhibitors of aromatase (CYP19). Anal Biochem. 2000;284:427-f30. https://doi.org/10.1006/abio.2000.4729. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|