Natural Products and Bioprospecting    2024, Vol. 14 Issue (5) : 37-37     DOI: 10.1007/s13659-024-00457-9
REVIEW |
Recent advances in the application of [2+2] cycloaddition in the chemical synthesis of cyclobutane-containing natural products
Song-Yu Hou, Bing-Chao Yan, Han-Dong Sun, Pema-Tenzin Puno
Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
Download: PDF(2675 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Cyclobutanes are distributed widely in a large class of natural products featuring diverse pharmaceutical activities and intricate structural frameworks. The [2+2] cycloaddition is unequivocally the primary and most commonly used method for synthesizing cyclobutanes. In this review, we have summarized the application of the [2+2] cycloaddition with different reaction mechanisms in the chemical synthesis of selected cyclobutane-containing natural products over the past decade.
Keywords [2+2] Cycloaddition      Total synthesis      Natural products      Cyclobutane     
Fund:This work was financially supported by the National Science Fund for Distinguished Young Scholars (82325047), Second Tibetan Plateau Scientific Expedition and Research (STEP) program (2019QZKK0502), NSFC-Joint Foundation of Yunnan Province (U2002221).
Corresponding Authors: Pema-Tenzin Puno,E-mail:punopematenzin@mail.kib.ac.cn     E-mail: punopematenzin@mail.kib.ac.cn
Issue Date: 14 October 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Song-Yu Hou
Bing-Chao Yan
Han-Dong Sun
Pema-Tenzin Puno
Trendmd:   
Cite this article:   
Song-Yu Hou,Bing-Chao Yan,Han-Dong Sun, et al. Recent advances in the application of [2+2] cycloaddition in the chemical synthesis of cyclobutane-containing natural products[J]. Natural Products and Bioprospecting, 2024, 14(5): 37-37.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00457-9     OR     http://npb.kib.ac.cn/EN/Y2024/V14/I5/37
[1] Rotella DP. The discovery and development of boceprevir. Expert Opin Drug Discov. 2013;8:1439-47.
[2] Rizza SA, Talwani R, Nehra V, Temesgen Z. Boceprevir. Drugs Today Barc Spain. 2011;47:743-51.
[3] Wolleb H, Carreira EM. Total Synthesis of (+)-Dendrowardol C. Angew Chem Int Ed. 2017;56:10890-3.
[4] Zhao N, Xie S, Tian P, Tong R, Ning C, Xu J. Asymmetric total synthesis of (+)-astellatol and (-)-astellatene. Org Chem Front. 2019;6:2014-22.
[5] Chuang H-Y, Isobe M. Novel synthesis of right segment of solanoeclepin A org. Lett. 2014;16:4166-9.
[6] Komada T, Adachi M, Nishikawa T. A concise synthesis of a highly strained cyclobutane in solanoeclepin A by radical cyclization. Chem Lett. 2012;41:287-9.
[7] Gao M, Wang Y-C, Yang K-R, He W, Yang X-L, Yao Z-J. Enantioselective total synthesis of (++)-plumisclerin A. Angew Chem Int Ed. 2018;57:13313-8.
[8] Tsao K-W, Cheng C-Y, Isobe M. Cobalt-mediated synthesis of the tricyclo[5.2.1.01,6]decene framework in solanoeclepin A. Org Lett. 2012;14:5274-7.
[9] Zhang W. Discovery and development of cyclobutanone-based free radical ring expansion and annulation reactions. Curr Org Chem. 2002;6:1015-29.
[10] Zhao N, Yin S, Xie S, Yan H, Ren P, Chen G, Chen F, Xu J. Total synthesis of astellatol. Angew Chem Int Ed. 2018;57:3386-90.
[11] Nugent WA, RajanBabu TV. Transition-metal-centered radicals in organic synthesis. Titanium(III)-induced cyclization of epoxy olefins. J Am Chem Soc. 1988;110:8561-2.
[12] RajanBabu TV, Nugent WA. Intermolecular addition of epoxides to activated olefins: a new reaction. J Am Chem Soc. 1989;111:4525-7.
[13] RajanBabu TV, Nugent WA. Selective generation of free radicals from epoxides using a transition-metal radical. A powerful new tool for organic synthesis. J Am Chem Soc. 1994;116:986-97.
[14] Gansäuer A, Greb A, Huth I, Worgull D, Knebel K. Formal total synthesis of (±)-fragranol via template catalyzed 4-exo cyclization. Tetrahedron. 2009;65:10791-6.
[15] Knölker H-J, Schmitt O, Wanzl G, Baum G. Stereoselective total synthesis of (±)-fragranol by TiCl4 promoted [2+2] cycloaddition of allyl-tert-butyldiphenylsilane and methyl methacrylate. Chem Commun. 1999. https://doi.org/10.1039/A905019A.
[16] Lu P, Bach T. Total synthesis of (+)-lactiflorin by an intramolecular [2+2] photocycloaddition. Angew Chem Int Ed. 2012;51:1261-4.
[17] Sarkar D, Bera N, Ghosh S. [2+2] Photochemical cycloaddition in organic synthesis. Eur J Org Chem. 2020;2020:1310-26.
[18] Bell JD, Murphy JA. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem Soc Rev. 2021;50:9540-685.
[19] Guo R, Brown MK. Lewis acid-promoted [2+2] cycloadditions of allenes and ketenes: versatile methods for natural product synthesis. Acc Chem Res. 2023;56:2253-64.
[20] Alcaide B, Almendros P, Aragoncillo C. Exploiting [2+2] cycloaddition chemistry: achievements with allenes. Chem Soc Rev. 2010;39:783-816.
[21] Richardson AD, Vogel TR, Traficante EF, Glover KJ, Schindler CS. Total synthesis of (+)-cochlearol B by an approach based on a catellani reaction and visible-light-enabled [2+2] cycloaddition. Angew Chem Int Ed. 2022;134: e202201213.
[22] Liu R, Zhang M, Wyche TP, Winston-McPherson GN, Bugni TS, Tang W. Stereoselective preparation of cyclobutanes with four different substituents: total synthesis and structural revision of pipercyclobutanamide A and piperchabamide G. Angew Chem Int Ed. 2012;124:7621-4.
[23] Panish RA, Chintala SR, Fox JM. A Mixed-ligand chiral rhodium(II) catalyst enables the enantioselective total synthesis of piperarborenine B. Angew Chem Int Ed. 2016;128:5067-71.
[24] Fu C, Zhang Y, Xuan J, Zhu C, Wang B, Ding H. Diastereoselective total synthesis of salvileucalin C. Org Lett. 2014;16:3376-9.
[25] Drew SL, Lawrence AL, Sherburn MS. Total synthesis of kingianins A, D, and F. Angew Chem Int Ed. 2013;52:4221-4.
[26] Baran PS, Richter JM. Enantioselective total syntheses of welwitindolinone A and fischerindoles I and G. J Am Chem Soc. 2005;127:15394-6.
[27] Woodward RB, Hoffmann R. The conservation of orbital symmetry. Angew Chem Int Ed. 1969;8:781-853.
[28] Burke LA. Theoretical study of [2+2] cycloadditions. Ketene with ethylene. J Org Chem. 1985;50:3149-55.
[29] McCaleb KL, Halcomb RL. Intramolecular ketene-allene cycloadditions. Org Lett. 2000;2:2631-4.
[30] Wang Y, Wei D, Li Z, Zhu Y, Tang M. DFT study on the mechanisms and diastereoselectivities of Lewis acid-promoted ketene-alkene [2+2] cycloadditions: what is the role of lewis acid in the ketene and C=X (X = O, CH2, and NH) [2+2] cycloaddition reactions? J Phys Chem A. 2014;118:4288-300.
[31] Huang W, Tidwell TT. Allenylketenes: versatile substrates in nucleophilic, electrophilic, and cycloaddition reactions. Synthesis. 2000;2000:457-70.
[32] Fu N, Tidwell TT. Preparation of β-lactams by [2+2] cycloaddition of ketenes and imines. Tetrahedron. 2008;64:10465-96.
[33] Salzner U, Bachrach SM. Cycloaddition reactions between cyclopentadiene and ketene. Ab initio examination of [2+2] and [4+2] pathways. J Org Chem. 1996;61:237-42.
[34] Yamabe S, Kuwata K, Minato T. Frontier-orbital analyses of ketene [2+2] cycloadditions. Theor Chem Acc. 1999;102:139-46.
[35] Rasik CM, Brown MK. Total synthesis of Gracilioether F: development and application of lewis acid promoted ketene-alkene [2+2] cycloadditions and late-stage C-H oxidation. Angew Chem Int Ed. 2014;53:14522-6.
[36] Rullière P, Cannillo A, Grisel J, Cividino P, Carret S, Poisson JF. Total synthesis of proteasome inhibitor (-)-omuralide through asymmetric ketene [2+2]-cycloaddition. Org Lett. 2018;20:4558-61.
[37] Snider BB, Beal RB. Total synthesis of sesquiterpenes via intramolecular ketene cycloadditions: isocomene and α-cis- and α-trans-bergamotenes, an approach to seychellene. J Org Chem. 1988;53:4508-15.
[38] Boulton LT, Brick D, Fox ME, Jackson M, Lennon IC, McCague R, Parkin N, Rhodes D, Ruecroft G. Synthesis of the Potent Antiglaucoma Agent, Travoprost. Org Process Res Dev. 2002;6:138-45.
[39] Wang Q, Chen C. An approach to the core skeleton of lancifodilactone F. Org Lett. 2008;10:1223-6.
[40] Farcet JB, Himmelbauer M, Mulzer J. A non-photochemical approach to the bicyclo [3.2.0]heptane core of bielschowskysin. Org Lett. 2012;14:2195-7.
[41] Snider BB. Intramolecular cycloaddition reactions of ketenes and keteniminium salts with alkenes. Chem Rev. 1988;88:793-811.
[42] Kolleth A, Lumbroso A, Tanriver G, Catak S, Sulzer-Mossé S, De Mesmaeker A. Synthesis of amino-cyclobutanes via [2+2] cycloadditions involving keteniminium intermediates. Tetrahedron Lett. 2016;57:2697-702.
[43] Ramirez M, Li W, Lam Y, Ghosez L, Houk KN. Mechanisms and conformational control of (4+2) and (2+2) cycloadditions of dienes to keteniminium cations. J Org Chem. 2020;85:2597-606.
[44] Kolleth A, Lumbroso A, Tanriver G, Catak S, Sulzer-Mossé S, De Mesmaeker A. Synthesis of 4-membered ring alkaloid analogues via intramolecular [2+2] cycloaddition involving keteniminium salt intermediates. Tetrahedron Lett. 2017;58:2904-9.
[45] Evano G, Lecomte M, Thilmany P, Theunissen C. Keteniminium ions: unique and versatile reactive intermediates for chemical synthesis. Synthesis. 2017;49:3183-214.
[46] Chen L, Ghosez L. Study of chiral auxiliaries for the intramolecular [2+ 2] cycloaddition of a keteniminium salt to an olefinic double bond. A new asymmetric synthesis of cyclobutanones. Tetrahedron Lett. 1990;31:4467-70.
[47] Urch CJ, Walter GC. [2+2] Cycloadditions of keteniminium ions and alkenes: a stereoselective synthesis of substituted cyclobutylamines. Tetrahedron Lett. 1988;29:4309-12.
[48] Ghosez L, Marko I, Hesbain-Frisque A. Intramolecular cycloadditions of keteniminium salts. A novel approach toward prostaglandins. Tetrahedron Lett. 1986;27:5211-4.
[49] Maskeri MA, Fernandes AJ, Di Mauro G, Maulide N, Houk KN. Taming keteniminium reactivity by steering reaction pathways: computational predictions and experimental validations. J Am Chem Soc. 2022;144:23358-67.
[50] López-Carrillo V, Echavarren AM. Gold (I)-catalyzed intermolecular [2+2] cycloaddition of alkynes with alkenes. J Am Chem Soc. 2010;132:9292-4.
[51] Conner ML, Xu Y, Brown MK. Catalytic enantioselective allenoate-alkene [2+2] cycloadditions. J Am Chem Soc. 2015;137:3482-5.
[52] Wahl JM, Conner ML, Brown MK. Synthesis of (-)-Hebelophyllene E: an entry to geminal dimethyl-cyclobutanes by [2+2] cycloaddition of alkenes and allenoates. Angew Chem Int Ed. 2018;57:4647-51.
[53] Zheng W-F, Bora PP, Sun G-J, Kang Q. Rhodium-catalyzed regio-and stereoselective [2+2] cycloaddition of allenamides. Org Lett. 2016;18:3694-7.
[54] Ohno H, Mizutani T, Kadoh Y, Aso A, Miyamura K, Fujii N, Tanaka T. A highly regio-and stereoselective formation of bicyclo [4.2.0] oct-5-ene derivatives through thermal intramolecular [2+2] cycloaddition of allenes. J Org Chem. 2007;72:4378-89.
[55] Li X-X, Zhu L-L, Zhou W, Chen Z. Formal intermolecular [2+2] cycloaddition reaction of alleneamides with alkenes via gold catalysis. Org Lett. 2012;14:436-9.
[56] Conner ML, Brown MK. Synthesis of 1,3-substituted cyclobutanes by allenoate-alkene [2+2] cycloaddition. J Org Chem. 2016;81:8050-60.
[57] Yan B, Zhou M, Li J, Li X, He S, Zuo J, Sun H, Li A, Puno P. (-)-Isoscopariusin A, a naturally occurring immunosuppressive meroditerpenoid: structure elucidation and scalable chemical synthesis. Angew Chem Int Ed. 2021;60:12859-67.
[58] Marko I, Ronsmans B, Hesbain-Frisque AM, Dumas S, Ghosez L, Ernst B, Greuter H. Intramolecular [2+2] cycloadditions of ketenes and keteniminium salts to olefins. J Am Chem Soc. 1985;107:2192-4.
[59] Li X-L, Zhao B-X, Huang X-J, Zhang D-M, Jiang R-W, Li Y-J, Jian Y-Q, Wang Y, Li Y-L, Ye W-C. (+)-and (-)-Cajanusine, a pair of new enantiomeric stilbene dimers with a new skeleton from the leaves of Cajanus cajan. Org Lett. 2014;16:224-7.
[60] Guo R, Witherspoon BP, Brown MK. Evolution of a strategy for the enantioselective synthesis of (-)-cajanusine. J Am Chem Soc. 2020;142:5002-6.
[61] Wenkert E, Michelotti EL, Swindell CS, Tingoli M. Transformation of carbon-oxygen into carbon-carbon bonds mediated by low-valent nickel species. J Org Chem. 1984;49:4894-9.
[62] Line NJ, Witherspoon BP, Hancock EN, Brown MK. Synthesis of ent-[3]-ladderanol: development and application of intramolecular chirality transfer [2+2] cycloadditions of allenic ketones and alkenes. J Am Chem Soc. 2017;139:14392-5.
[63] Wichlacz M, Ayer WA, Trifonov LS, Chakravarty P, Khasa D. A caryophyllene-related sesquiterpene and two 6,7-seco-caryophyllenes from liquid cultures of Hebeloma longicaudum. J Nat Prod. 1999;62:484-6.
[64] Wu J, Ma Z. Metal-hydride hydrogen atom transfer (MHAT) reactions in natural product synthesis. Org Chem Front. 2021;8:7050-76.
[65] Jiao WH, Hong LL, Sun JB, Piao SJ, Chen GD, Deng H, Wang SP, Yang F, Lin HW. (±)-Hippolide J-a pair of unusual antifungal enantiomeric sesterterpenoids from the marine sponge Hippospongia lachne. Eur J Org Chem. 2017;24:3421-6.
[66] Guo R, Beattie SR, Krysan DJ, Brown MK. Enantioselective synthesis of (+)-hippolide J and reevaluation of antifungal activity. Org Lett. 2020;22:7743-6.
[67] Karakaya I, Primer DN, Molander GA. Photoredox cross-coupling: Ir/Ni dual catalysis for the synthesis of benzylic ethers. Org Lett. 2015;17:3294-7.
[68] Karimi-Nami R, Tellis JC, Molander GA. Single-electron transmetalation: protecting-group-independent synthesis of secondary benzylic alcohol derivatives via photoredox/nickel dual catalysis. Org Lett. 2016;18:2572-5.
[69] Corey EJ, Mitra RB, Uda H. Total synthesis of d, l-Caryophyllene and d, l-Isocaryophyllene1. J Am Chem Soc. 1964;86:485-92.
[70] Piao S-J, Song Y-L, Jiao W-H, Yang F, Liu X-F, Chen W-S, Han B-N, Lin H-W. Hippolachnin A, a new antifungal polyketide from the South China sea sponge Hippospongia lachne. Org Lett. 2013;15:3526-9.
[71] Ruider SA, Sandmeier T, Carreira EM. Total synthesis of (±)-Hippolachnin A. Angew Chem Int Ed. 2015;54:2378-82.
[72] Li Q, Zhao K, Peuronen A, Rissanen K, Enders D, Tang Y. Enantioselective total syntheses of (+)-hippolachnin A, (+)-gracilioether A, (-)-gracilioether E, and (-)-gracilioether F. J Am Chem Soc. 2018;140:1937-44.
[73] Winter N, Rupcic Z, Stadler M, Trauner D. Synthesis and biological evaluation of (±)-hippolachnin and analogs. J Antibiot (Tokyo). 2019;72:375-83.
[74] Li J, Gao K, Bian M, Ding H. Recent advances in the total synthesis of cyclobutane-containing natural products. Org Chem Front. 2020;7:136-54.
[75] Zhou M, Li X-R, Tang J-W, Liu Y, Li X-N, Wu B, Qin H-B, Du X, Li L-M, Wang W-G, Pu J-X, Sun H-D. Scopariusicides, novel unsymmetrical cyclobutanes: structural elucidation and concise synthesis by a combination of intermolecular [2+2] cycloaddition and C-H functionalization. Org Lett. 2015;17:6062-5.
[76] Zaitsev VG, Shabashov D, Daugulis O. Highly regioselective arylation of sp3 C-H bonds catalyzed by palladium acetate. J Am Chem Soc. 2005;127:13154-5.
[77] Shabashov D, Daugulis O. Auxiliary-assisted palladium-catalyzed arylation and alkylation of sp2 and sp3 carbon-hydrogen bonds. J Am Chem Soc. 2010;132:3965-72.
[78] Gutekunst WR, Baran PS. Total synthesis and structural revision of the piperarborenines via sequential cyclobutane C-H arylation. J Am Chem Soc. 2011;133:19076-9.
[79] Ting CP, Maimone TJ. C-H bond arylation in the synthesis of aryltetralin lignans: a short total synthesis of podophyllotoxin. Angew Chem Int Ed. 2014;53:3115-9.
[80] Feng Y, Chen G. Total synthesis of celogentin C by stereoselective C-H activation. Angew Chem Int Ed. 2010;49:958-61.
[81] San Feliciano A, Medarde M, Miguel del Corral JM, Aramburu A, Gordaliza M, Barrero AF. Aquatolide. A new type of humulane-related sesquiterpene lactone. Tetrahedron Lett. 1989;30:2851-4.
[82] Takao K, Kai H, Yamada A, Fukushima Y, Komatsu D, Ogura A, Yoshida K. Total syntheses of (+)-aquatolide and related humulanolides. Angew Chem Int Ed. 2019;58:9851-5.
[83] Lodewyk MW, Soldi C, Jones PB, Olmstead MM, Rita J, Shaw JT, Tantillo DJ. The correct structure of aquatolide—experimental validation of a theoretically-predicted structural revision. J Am Chem Soc. 2012;134:18550-3.
[84] Fedorov SN, Radchenko OS, Shubina LK, Kalinovsky AI, Gerasimenko AV, Popov DY, Stonik VA. Aplydactone, a new sesquiterpenoid with an unprecedented carbon skeleton from the sea hare aplysia dactylomela, and its cargill-like rearrangement. J Am Chem Soc. 2001;123:504-5.
[85] Liu C, Chen R, Shen Y, Liang Z, Hua Y, Zhang Y. Total synthesis of aplydactone by a conformationally controlled C-H functionalization. Angew Chem Int Ed. 2017;56:8187-90.
[86] Strieth-Kalthoff F, Glorius F. Triplet energy transfer photocatalysis: unlocking the next level. Chem. 2020;6:1888-903.
[87] Zhou Q-Q, Zou Y-Q, Lu L-Q, Xiao W-J. Visible-light-induced organic photochemical reactions through energy-transfer pathways. Angew Chem Int Ed. 2019;58:1586-604.
[88] Bach T, Hehn JP. Photochemical reactions as key steps in natural product synthesis. Angew Chem Int Ed. 2011;50:1000-45.
[89] Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem Soc Rev. 2018;47:7190-202.
[90] Daub ME, Jung H, Lee BJ, Won J, Baik M-H, Yoon TP. Enantioselective [2+2] cycloadditions of cinnamate esters: generalizing lewis acid catalysis of triplet energy transfer. J Am Chem Soc. 2019;141:9543-7.
[91] Li M-X, Yan B-C, Zhou M, Li X-R, Li X, He S-J, Sun H-D, Puno P-T. Cyclobutane-containing meroditerpenoids, (+)-isoscopariusins B and C: structure elucidation and biomimetic synthesis. Org Lett. 2023;25:2981-5.
[92] Wang YH, Hou AJ, Chen DF, Weiller M, Wendel A, Staples RJ. Prenylated stilbenes and their novel biogenetic derivatives from Artocarpus chama. EUR J Org Chem. 2006;15:3457-63.
[93] Lee F-P, Chen Y-C, Chen J-J, Tsai I-L, Chen I-S. Cyclobutanoid amides from Piper arborescens. Helv Chim Acta. 2004;87:463-8.
[94] Liu Y, Ni D, Brown MK. Boronic ester enabled [2+2]-cycloadditions by temporary coordination: synthesis of artochamin J and piperarborenine B. J Am Chem Soc. 2022;144:18790-6.
[95] Xi Y-F, Liu S-F, Hong W, Song X-Y, Lou L-L, Zhou L, Yao G-D, Lin B, Wang X-B, Huang X-X, Song S-J. Discovery of cycloneolignan enantiomers from Isatis indigotica fortune with neuroprotective effects against MPP+-induced SH-SY5Y cell injury. Bioorganic Chem. 2019;88:102926-32.
[96] Chai T, Zhang W-H, Jiao H, Qiang Y. Hydroxycinnamic acid amide dimers from goji berry and their potential anti-AD activity. Chem Biodivers. 2021;18: e2100436.
[97] Genzink MJ, Rossler MD, Recendiz H, Yoon TP. A general strategy for the synthesis of truxinate natural products enabled by enantioselective [2+2] photocycloadditions. J Am Chem Soc. 2023;145:19182-8.
[98] Walker RP, Faulkner DJ, Van Engen D, Clardy J. Sceptrin, an antimicrobial agent from the sponge Agelas sceptrum. J Am Chem Soc. 1981;103:6772-3.
[99] Kobayashi J, Ohizumi Y, Nakamura H, Hirata Y. A novel antagonist of serotonergic receptors, hymenidin, isolated from the Okinawan marine sponge Hymeniacidon sp.,. Experientia. 1986;42:1176-7.
[100] Nguyen LV, Jamison TF. Total synthesis of (±)-sceptrin. Org Lett. 2020;22:6698-702.
[101] Liu Y, Song R, Li J. The cycloaddition reaction using visible light photoredox catalysis. Sci China Chem. 2016;59:161-70.
[102] Narayanam JMR, Stephenson CRJ. Visible light photoredox catalysis: applications in organic synthesis. Chem Soc Rev. 2011;40:102-13.
[103] Zhang T, Zhang Y, Das S. Deal; photoredox catalysis for the cycloaddition reactions. ChemCatChem. 2020;12:6173-85.
[104] Shaw MH, Twilton J, MacMillan DWC. Photoredox catalysis in organic chemistry. J Org Chem. 2016;81:6898-926.
[105] Buzzetti L, Crisenza GEM, Melchiorre P. Mechanistic studies in photocatalysis. Angew Chem Int Ed. 2019;58:3730-47.
[106] Cismesia MA, Yoon TP. Characterizing chain processes in visible light photoredox catalysis. Chem Sci. 2015;6:5426-34.
[107] Marchini M, Bergamini G, Cozzi PG, Ceroni P, Balzani V. Photoredox catalysis: the need to elucidate the photochemical mechanism. Angew Chem. 2017;129:12996-7.
[108] Ischay MA, Anzovino ME, Du J, Yoon TP. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J Am Chem Soc. 2008;130:12886-7.
[109] Ischay MA, Ament MS, Yoon TP. Crossed intermolecular [2+2] cycloaddition of styrenes by visible light photocatalysis. Chem Sci. 2012;3:2807-11.
[110] Huang G-H, Hu Z, Lei C, Wang P-P, Yang J, Li J-Y, Li J, Hou A-J. Enantiomeric pairs of meroterpenoids with diverse heterocyclic systems from Rhododendron nyingchiense. J Nat Prod. 2018;81:1810-8.
[111] Hart JD, Burchill L, Day AJ, Newton CG, Sumby CJ, Huang DM, George JH. Visible-light photoredox catalysis enables the biomimetic synthesis of nyingchinoids A, B, and D, and rasumatranin D. Angew Chem Int Ed. 2019;58:2791-4.
[112] Davis RA, Carroll AR, Duffy S, Avery VM, Guymer GP, Forster PI, Quinn RJ. Endiandrin A, a potent glucocorticoid receptor binder isolated from the australian plant Endiandra anthropophagorum. J Nat Prod. 2007;70:1118-21.
[113] Li R, Ma BC, Huang W, Wang L, Wang D, Lu H, Landfester K, Zhang KAI. Photocatalytic regioselective and stereoselective [2+2] cycloaddition of styrene derivatives using a heterogeneous organic photocatalyst. ACS Catal. 2017;7:3097-101.
[114] Salomon RG, Kochi JK. Copper (I) triflate: a superior catalyst for olefin photodimerization. Tetrahedron Lett. 1973;14:2529-32.
[115] Hu J-L, Feng L-W, Wang L, Xie Z, Tang Y, Li X. Enantioselective construction of cyclobutanes: a new and concise approach to the total synthesis of (+)-piperarborenine B. J Am Chem Soc. 2016;138:13151-4.
[116] Gravatt CS, Melecio-Zambrano L, Yoon TP. Olefin-supported cationic copper catalysts for photochemical synthesis of structurally complex cyclobutanes. Angew Chem Int Ed. 2021;60:3989-93.
[117] Burchill L, Day AJ, Yahiaoui O, George JH. Biomimetic total synthesis of the rubiginosin meroterpenoids. Org Lett. 2021;23:578-82.
[118] Kleinmans R, Pinkert T, Dutta S, Paulisch TO, Keum H, Daniliuc CG, Glorius F. Intermolecular [2π+2σ]-photocycloaddition enabled by triplet energy transfer. Nature. 2022;605:477-82.
[119] Timmerman JC, Wood JL. Synthesis and biological evaluation of hippolachnin A analogues. Org Lett. 2018;20:3788-92.
[1] Chunsong Hu. Marine natural products and human immunity: novel biomedical resources for anti-infection of SARS-CoV-2 and related cardiovascular disease[J]. Natural Products and Bioprospecting, 2024, 14(2): 2-2.
[2] Shohreh Ariaeenejad, Javad Gharechahi, Mehdi Foroozandeh Shahraki, Fereshteh Fallah Atanaki, Jian-Lin Han, Xue-Zhi Ding, Falk Hildebrand, Mohammad Bahram, Kaveh Kavousi, Ghasem Hosseini Salekdeh. Precision enzyme discovery through targeted mining of metagenomic data[J]. Natural Products and Bioprospecting, 2024, 14(1): 7-7.
[3] Daniel W. Armstrong, Alain Berthod. Occurrence of D-amino acids in natural products[J]. Natural Products and Bioprospecting, 2023, 13(6): 47-47.
[4] Dalila Carbone, Carmela Gallo, Genoveffa Nuzzo, Giusi Barra, Mario Dell'Isola, Mario Affuso, Olimpia Follero, Federica Albiani, Clementina Sansone, Emiliano Manzo, Giuliana d'Ippolito, Angelo Fontana. Marine natural product lepadin A as a novel inducer of immunogenic cell death via CD91-dependent pathway[J]. Natural Products and Bioprospecting, 2023, 13(5): 34-34.
[5] Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Warren A. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Leveraging off higher plant phylogenetic insights for antiplasmodial drug discovery[J]. Natural Products and Bioprospecting, 2023, 13(5): 35-35.
[6] Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Andrew W. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Prioritised identification of structural classes of natural products from higher plants in the expedition of antimalarial drug discovery[J]. Natural Products and Bioprospecting, 2023, 13(5): 37-37.
[7] Ji-Kai Liu. Natural products in cosmetics[J]. Natural Products and Bioprospecting, 2022, 12(6): 40-40.
[8] Si-Yuan Luo, Jun-Yu Zhu, Ming-Feng Zou, Sheng Yin, Gui-Hua Tang. Mulberry Diels–Alder-type adducts: isolation, structure, bioactivity, and synthesis[J]. Natural Products and Bioprospecting, 2022, 12(5): 31-31.
[9] Yulian Lv, Tian Tian, Yong-Jiang Wang, Jian-Ping Huang, Sheng-Xiong Huang. Advances in chemistry and bioactivity of the genus Erythroxylum[J]. Natural Products and Bioprospecting, 2022, 12(3): 15-15.
[10] Ji-Kai Liu. Antiaging agents: safe interventions to slow aging and healthy life span extension[J]. Natural Products and Bioprospecting, 2022, 12(3): 18-18.
[11] Ding Lin, Senze Jiang, Ailian Zhang, Tong Wu, Yongchang Qian, Qingsong Shao. Structural derivatization strategies of natural phenols by semi-synthesis and total-synthesis[J]. Natural Products and Bioprospecting, 2022, 12(2): 8-8.
[12] Aluru Rammohan, Albert F. Khasanov, Dmitry S. Kopchuk, Duvvuru Gunasekar, Grigory V. Zyryanov, Oleg N. Chupakhin. Assessment on facile Diels–Alder approach of α-pyrone and terpenoquinone for the expedient synthesis of various natural scaffolds[J]. Natural Products and Bioprospecting, 2022, 12(2): 12-12.
[13] Ghodsi Mohammadi Ziarani, Negar Jamasbi, Fatemeh Mohajer. Recent advances on the synthesis of natural pyrrolizidine alkaloids: alexine, and its stereoisomers[J]. Natural Products and Bioprospecting, 2022, 12(1): 1-15.
[14] Oyere Tanyi Ebob, Smith B. Babiaka, Fidele Ntie-Kang. Natural Products as Potential Lead Compounds for Drug Discovery Against SARS-CoV-2[J]. Natural Products and Bioprospecting, 2021, 11(6): 611-628.
[15] Christian Bailly, Gérard Vergoten. Anticancer Properties and Mechanism of Action of Oblongifolin C, Guttiferone K and Related Polyprenylated Acylphloroglucinols[J]. Natural Products and Bioprospecting, 2021, 11(6): 629-641.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed