REVIEW |
|
|
|
|
|
Recent advances in the application of [2+2] cycloaddition in the chemical synthesis of cyclobutane-containing natural products |
Song-Yu Hou, Bing-Chao Yan, Han-Dong Sun, Pema-Tenzin Puno |
Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China |
|
|
Abstract Cyclobutanes are distributed widely in a large class of natural products featuring diverse pharmaceutical activities and intricate structural frameworks. The [2+2] cycloaddition is unequivocally the primary and most commonly used method for synthesizing cyclobutanes. In this review, we have summarized the application of the [2+2] cycloaddition with different reaction mechanisms in the chemical synthesis of selected cyclobutane-containing natural products over the past decade.
|
Keywords
[2+2] Cycloaddition
Total synthesis
Natural products
Cyclobutane
|
Fund:This work was financially supported by the National Science Fund for Distinguished Young Scholars (82325047), Second Tibetan Plateau Scientific Expedition and Research (STEP) program (2019QZKK0502), NSFC-Joint Foundation of Yunnan Province (U2002221). |
Corresponding Authors:
Pema-Tenzin Puno,E-mail:punopematenzin@mail.kib.ac.cn
E-mail: punopematenzin@mail.kib.ac.cn
|
Issue Date: 14 October 2024
|
|
|
[1] Rotella DP. The discovery and development of boceprevir. Expert Opin Drug Discov. 2013;8:1439-47. [2] Rizza SA, Talwani R, Nehra V, Temesgen Z. Boceprevir. Drugs Today Barc Spain. 2011;47:743-51. [3] Wolleb H, Carreira EM. Total Synthesis of (+)-Dendrowardol C. Angew Chem Int Ed. 2017;56:10890-3. [4] Zhao N, Xie S, Tian P, Tong R, Ning C, Xu J. Asymmetric total synthesis of (+)-astellatol and (-)-astellatene. Org Chem Front. 2019;6:2014-22. [5] Chuang H-Y, Isobe M. Novel synthesis of right segment of solanoeclepin A org. Lett. 2014;16:4166-9. [6] Komada T, Adachi M, Nishikawa T. A concise synthesis of a highly strained cyclobutane in solanoeclepin A by radical cyclization. Chem Lett. 2012;41:287-9. [7] Gao M, Wang Y-C, Yang K-R, He W, Yang X-L, Yao Z-J. Enantioselective total synthesis of (++)-plumisclerin A. Angew Chem Int Ed. 2018;57:13313-8. [8] Tsao K-W, Cheng C-Y, Isobe M. Cobalt-mediated synthesis of the tricyclo[5.2.1.01,6]decene framework in solanoeclepin A. Org Lett. 2012;14:5274-7. [9] Zhang W. Discovery and development of cyclobutanone-based free radical ring expansion and annulation reactions. Curr Org Chem. 2002;6:1015-29. [10] Zhao N, Yin S, Xie S, Yan H, Ren P, Chen G, Chen F, Xu J. Total synthesis of astellatol. Angew Chem Int Ed. 2018;57:3386-90. [11] Nugent WA, RajanBabu TV. Transition-metal-centered radicals in organic synthesis. Titanium(III)-induced cyclization of epoxy olefins. J Am Chem Soc. 1988;110:8561-2. [12] RajanBabu TV, Nugent WA. Intermolecular addition of epoxides to activated olefins: a new reaction. J Am Chem Soc. 1989;111:4525-7. [13] RajanBabu TV, Nugent WA. Selective generation of free radicals from epoxides using a transition-metal radical. A powerful new tool for organic synthesis. J Am Chem Soc. 1994;116:986-97. [14] Gansäuer A, Greb A, Huth I, Worgull D, Knebel K. Formal total synthesis of (±)-fragranol via template catalyzed 4-exo cyclization. Tetrahedron. 2009;65:10791-6. [15] Knölker H-J, Schmitt O, Wanzl G, Baum G. Stereoselective total synthesis of (±)-fragranol by TiCl4 promoted [2+2] cycloaddition of allyl-tert-butyldiphenylsilane and methyl methacrylate. Chem Commun. 1999. https://doi.org/10.1039/A905019A. [16] Lu P, Bach T. Total synthesis of (+)-lactiflorin by an intramolecular [2+2] photocycloaddition. Angew Chem Int Ed. 2012;51:1261-4. [17] Sarkar D, Bera N, Ghosh S. [2+2] Photochemical cycloaddition in organic synthesis. Eur J Org Chem. 2020;2020:1310-26. [18] Bell JD, Murphy JA. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem Soc Rev. 2021;50:9540-685. [19] Guo R, Brown MK. Lewis acid-promoted [2+2] cycloadditions of allenes and ketenes: versatile methods for natural product synthesis. Acc Chem Res. 2023;56:2253-64. [20] Alcaide B, Almendros P, Aragoncillo C. Exploiting [2+2] cycloaddition chemistry: achievements with allenes. Chem Soc Rev. 2010;39:783-816. [21] Richardson AD, Vogel TR, Traficante EF, Glover KJ, Schindler CS. Total synthesis of (+)-cochlearol B by an approach based on a catellani reaction and visible-light-enabled [2+2] cycloaddition. Angew Chem Int Ed. 2022;134: e202201213. [22] Liu R, Zhang M, Wyche TP, Winston-McPherson GN, Bugni TS, Tang W. Stereoselective preparation of cyclobutanes with four different substituents: total synthesis and structural revision of pipercyclobutanamide A and piperchabamide G. Angew Chem Int Ed. 2012;124:7621-4. [23] Panish RA, Chintala SR, Fox JM. A Mixed-ligand chiral rhodium(II) catalyst enables the enantioselective total synthesis of piperarborenine B. Angew Chem Int Ed. 2016;128:5067-71. [24] Fu C, Zhang Y, Xuan J, Zhu C, Wang B, Ding H. Diastereoselective total synthesis of salvileucalin C. Org Lett. 2014;16:3376-9. [25] Drew SL, Lawrence AL, Sherburn MS. Total synthesis of kingianins A, D, and F. Angew Chem Int Ed. 2013;52:4221-4. [26] Baran PS, Richter JM. Enantioselective total syntheses of welwitindolinone A and fischerindoles I and G. J Am Chem Soc. 2005;127:15394-6. [27] Woodward RB, Hoffmann R. The conservation of orbital symmetry. Angew Chem Int Ed. 1969;8:781-853. [28] Burke LA. Theoretical study of [2+2] cycloadditions. Ketene with ethylene. J Org Chem. 1985;50:3149-55. [29] McCaleb KL, Halcomb RL. Intramolecular ketene-allene cycloadditions. Org Lett. 2000;2:2631-4. [30] Wang Y, Wei D, Li Z, Zhu Y, Tang M. DFT study on the mechanisms and diastereoselectivities of Lewis acid-promoted ketene-alkene [2+2] cycloadditions: what is the role of lewis acid in the ketene and C=X (X = O, CH2, and NH) [2+2] cycloaddition reactions? J Phys Chem A. 2014;118:4288-300. [31] Huang W, Tidwell TT. Allenylketenes: versatile substrates in nucleophilic, electrophilic, and cycloaddition reactions. Synthesis. 2000;2000:457-70. [32] Fu N, Tidwell TT. Preparation of β-lactams by [2+2] cycloaddition of ketenes and imines. Tetrahedron. 2008;64:10465-96. [33] Salzner U, Bachrach SM. Cycloaddition reactions between cyclopentadiene and ketene. Ab initio examination of [2+2] and [4+2] pathways. J Org Chem. 1996;61:237-42. [34] Yamabe S, Kuwata K, Minato T. Frontier-orbital analyses of ketene [2+2] cycloadditions. Theor Chem Acc. 1999;102:139-46. [35] Rasik CM, Brown MK. Total synthesis of Gracilioether F: development and application of lewis acid promoted ketene-alkene [2+2] cycloadditions and late-stage C-H oxidation. Angew Chem Int Ed. 2014;53:14522-6. [36] Rullière P, Cannillo A, Grisel J, Cividino P, Carret S, Poisson JF. Total synthesis of proteasome inhibitor (-)-omuralide through asymmetric ketene [2+2]-cycloaddition. Org Lett. 2018;20:4558-61. [37] Snider BB, Beal RB. Total synthesis of sesquiterpenes via intramolecular ketene cycloadditions: isocomene and α-cis- and α-trans-bergamotenes, an approach to seychellene. J Org Chem. 1988;53:4508-15. [38] Boulton LT, Brick D, Fox ME, Jackson M, Lennon IC, McCague R, Parkin N, Rhodes D, Ruecroft G. Synthesis of the Potent Antiglaucoma Agent, Travoprost. Org Process Res Dev. 2002;6:138-45. [39] Wang Q, Chen C. An approach to the core skeleton of lancifodilactone F. Org Lett. 2008;10:1223-6. [40] Farcet JB, Himmelbauer M, Mulzer J. A non-photochemical approach to the bicyclo [3.2.0]heptane core of bielschowskysin. Org Lett. 2012;14:2195-7. [41] Snider BB. Intramolecular cycloaddition reactions of ketenes and keteniminium salts with alkenes. Chem Rev. 1988;88:793-811. [42] Kolleth A, Lumbroso A, Tanriver G, Catak S, Sulzer-Mossé S, De Mesmaeker A. Synthesis of amino-cyclobutanes via [2+2] cycloadditions involving keteniminium intermediates. Tetrahedron Lett. 2016;57:2697-702. [43] Ramirez M, Li W, Lam Y, Ghosez L, Houk KN. Mechanisms and conformational control of (4+2) and (2+2) cycloadditions of dienes to keteniminium cations. J Org Chem. 2020;85:2597-606. [44] Kolleth A, Lumbroso A, Tanriver G, Catak S, Sulzer-Mossé S, De Mesmaeker A. Synthesis of 4-membered ring alkaloid analogues via intramolecular [2+2] cycloaddition involving keteniminium salt intermediates. Tetrahedron Lett. 2017;58:2904-9. [45] Evano G, Lecomte M, Thilmany P, Theunissen C. Keteniminium ions: unique and versatile reactive intermediates for chemical synthesis. Synthesis. 2017;49:3183-214. [46] Chen L, Ghosez L. Study of chiral auxiliaries for the intramolecular [2+ 2] cycloaddition of a keteniminium salt to an olefinic double bond. A new asymmetric synthesis of cyclobutanones. Tetrahedron Lett. 1990;31:4467-70. [47] Urch CJ, Walter GC. [2+2] Cycloadditions of keteniminium ions and alkenes: a stereoselective synthesis of substituted cyclobutylamines. Tetrahedron Lett. 1988;29:4309-12. [48] Ghosez L, Marko I, Hesbain-Frisque A. Intramolecular cycloadditions of keteniminium salts. A novel approach toward prostaglandins. Tetrahedron Lett. 1986;27:5211-4. [49] Maskeri MA, Fernandes AJ, Di Mauro G, Maulide N, Houk KN. Taming keteniminium reactivity by steering reaction pathways: computational predictions and experimental validations. J Am Chem Soc. 2022;144:23358-67. [50] López-Carrillo V, Echavarren AM. Gold (I)-catalyzed intermolecular [2+2] cycloaddition of alkynes with alkenes. J Am Chem Soc. 2010;132:9292-4. [51] Conner ML, Xu Y, Brown MK. Catalytic enantioselective allenoate-alkene [2+2] cycloadditions. J Am Chem Soc. 2015;137:3482-5. [52] Wahl JM, Conner ML, Brown MK. Synthesis of (-)-Hebelophyllene E: an entry to geminal dimethyl-cyclobutanes by [2+2] cycloaddition of alkenes and allenoates. Angew Chem Int Ed. 2018;57:4647-51. [53] Zheng W-F, Bora PP, Sun G-J, Kang Q. Rhodium-catalyzed regio-and stereoselective [2+2] cycloaddition of allenamides. Org Lett. 2016;18:3694-7. [54] Ohno H, Mizutani T, Kadoh Y, Aso A, Miyamura K, Fujii N, Tanaka T. A highly regio-and stereoselective formation of bicyclo [4.2.0] oct-5-ene derivatives through thermal intramolecular [2+2] cycloaddition of allenes. J Org Chem. 2007;72:4378-89. [55] Li X-X, Zhu L-L, Zhou W, Chen Z. Formal intermolecular [2+2] cycloaddition reaction of alleneamides with alkenes via gold catalysis. Org Lett. 2012;14:436-9. [56] Conner ML, Brown MK. Synthesis of 1,3-substituted cyclobutanes by allenoate-alkene [2+2] cycloaddition. J Org Chem. 2016;81:8050-60. [57] Yan B, Zhou M, Li J, Li X, He S, Zuo J, Sun H, Li A, Puno P. (-)-Isoscopariusin A, a naturally occurring immunosuppressive meroditerpenoid: structure elucidation and scalable chemical synthesis. Angew Chem Int Ed. 2021;60:12859-67. [58] Marko I, Ronsmans B, Hesbain-Frisque AM, Dumas S, Ghosez L, Ernst B, Greuter H. Intramolecular [2+2] cycloadditions of ketenes and keteniminium salts to olefins. J Am Chem Soc. 1985;107:2192-4. [59] Li X-L, Zhao B-X, Huang X-J, Zhang D-M, Jiang R-W, Li Y-J, Jian Y-Q, Wang Y, Li Y-L, Ye W-C. (+)-and (-)-Cajanusine, a pair of new enantiomeric stilbene dimers with a new skeleton from the leaves of Cajanus cajan. Org Lett. 2014;16:224-7. [60] Guo R, Witherspoon BP, Brown MK. Evolution of a strategy for the enantioselective synthesis of (-)-cajanusine. J Am Chem Soc. 2020;142:5002-6. [61] Wenkert E, Michelotti EL, Swindell CS, Tingoli M. Transformation of carbon-oxygen into carbon-carbon bonds mediated by low-valent nickel species. J Org Chem. 1984;49:4894-9. [62] Line NJ, Witherspoon BP, Hancock EN, Brown MK. Synthesis of ent-[3]-ladderanol: development and application of intramolecular chirality transfer [2+2] cycloadditions of allenic ketones and alkenes. J Am Chem Soc. 2017;139:14392-5. [63] Wichlacz M, Ayer WA, Trifonov LS, Chakravarty P, Khasa D. A caryophyllene-related sesquiterpene and two 6,7-seco-caryophyllenes from liquid cultures of Hebeloma longicaudum. J Nat Prod. 1999;62:484-6. [64] Wu J, Ma Z. Metal-hydride hydrogen atom transfer (MHAT) reactions in natural product synthesis. Org Chem Front. 2021;8:7050-76. [65] Jiao WH, Hong LL, Sun JB, Piao SJ, Chen GD, Deng H, Wang SP, Yang F, Lin HW. (±)-Hippolide J-a pair of unusual antifungal enantiomeric sesterterpenoids from the marine sponge Hippospongia lachne. Eur J Org Chem. 2017;24:3421-6. [66] Guo R, Beattie SR, Krysan DJ, Brown MK. Enantioselective synthesis of (+)-hippolide J and reevaluation of antifungal activity. Org Lett. 2020;22:7743-6. [67] Karakaya I, Primer DN, Molander GA. Photoredox cross-coupling: Ir/Ni dual catalysis for the synthesis of benzylic ethers. Org Lett. 2015;17:3294-7. [68] Karimi-Nami R, Tellis JC, Molander GA. Single-electron transmetalation: protecting-group-independent synthesis of secondary benzylic alcohol derivatives via photoredox/nickel dual catalysis. Org Lett. 2016;18:2572-5. [69] Corey EJ, Mitra RB, Uda H. Total synthesis of d, l-Caryophyllene and d, l-Isocaryophyllene1. J Am Chem Soc. 1964;86:485-92. [70] Piao S-J, Song Y-L, Jiao W-H, Yang F, Liu X-F, Chen W-S, Han B-N, Lin H-W. Hippolachnin A, a new antifungal polyketide from the South China sea sponge Hippospongia lachne. Org Lett. 2013;15:3526-9. [71] Ruider SA, Sandmeier T, Carreira EM. Total synthesis of (±)-Hippolachnin A. Angew Chem Int Ed. 2015;54:2378-82. [72] Li Q, Zhao K, Peuronen A, Rissanen K, Enders D, Tang Y. Enantioselective total syntheses of (+)-hippolachnin A, (+)-gracilioether A, (-)-gracilioether E, and (-)-gracilioether F. J Am Chem Soc. 2018;140:1937-44. [73] Winter N, Rupcic Z, Stadler M, Trauner D. Synthesis and biological evaluation of (±)-hippolachnin and analogs. J Antibiot (Tokyo). 2019;72:375-83. [74] Li J, Gao K, Bian M, Ding H. Recent advances in the total synthesis of cyclobutane-containing natural products. Org Chem Front. 2020;7:136-54. [75] Zhou M, Li X-R, Tang J-W, Liu Y, Li X-N, Wu B, Qin H-B, Du X, Li L-M, Wang W-G, Pu J-X, Sun H-D. Scopariusicides, novel unsymmetrical cyclobutanes: structural elucidation and concise synthesis by a combination of intermolecular [2+2] cycloaddition and C-H functionalization. Org Lett. 2015;17:6062-5. [76] Zaitsev VG, Shabashov D, Daugulis O. Highly regioselective arylation of sp3 C-H bonds catalyzed by palladium acetate. J Am Chem Soc. 2005;127:13154-5. [77] Shabashov D, Daugulis O. Auxiliary-assisted palladium-catalyzed arylation and alkylation of sp2 and sp3 carbon-hydrogen bonds. J Am Chem Soc. 2010;132:3965-72. [78] Gutekunst WR, Baran PS. Total synthesis and structural revision of the piperarborenines via sequential cyclobutane C-H arylation. J Am Chem Soc. 2011;133:19076-9. [79] Ting CP, Maimone TJ. C-H bond arylation in the synthesis of aryltetralin lignans: a short total synthesis of podophyllotoxin. Angew Chem Int Ed. 2014;53:3115-9. [80] Feng Y, Chen G. Total synthesis of celogentin C by stereoselective C-H activation. Angew Chem Int Ed. 2010;49:958-61. [81] San Feliciano A, Medarde M, Miguel del Corral JM, Aramburu A, Gordaliza M, Barrero AF. Aquatolide. A new type of humulane-related sesquiterpene lactone. Tetrahedron Lett. 1989;30:2851-4. [82] Takao K, Kai H, Yamada A, Fukushima Y, Komatsu D, Ogura A, Yoshida K. Total syntheses of (+)-aquatolide and related humulanolides. Angew Chem Int Ed. 2019;58:9851-5. [83] Lodewyk MW, Soldi C, Jones PB, Olmstead MM, Rita J, Shaw JT, Tantillo DJ. The correct structure of aquatolide—experimental validation of a theoretically-predicted structural revision. J Am Chem Soc. 2012;134:18550-3. [84] Fedorov SN, Radchenko OS, Shubina LK, Kalinovsky AI, Gerasimenko AV, Popov DY, Stonik VA. Aplydactone, a new sesquiterpenoid with an unprecedented carbon skeleton from the sea hare aplysia dactylomela, and its cargill-like rearrangement. J Am Chem Soc. 2001;123:504-5. [85] Liu C, Chen R, Shen Y, Liang Z, Hua Y, Zhang Y. Total synthesis of aplydactone by a conformationally controlled C-H functionalization. Angew Chem Int Ed. 2017;56:8187-90. [86] Strieth-Kalthoff F, Glorius F. Triplet energy transfer photocatalysis: unlocking the next level. Chem. 2020;6:1888-903. [87] Zhou Q-Q, Zou Y-Q, Lu L-Q, Xiao W-J. Visible-light-induced organic photochemical reactions through energy-transfer pathways. Angew Chem Int Ed. 2019;58:1586-604. [88] Bach T, Hehn JP. Photochemical reactions as key steps in natural product synthesis. Angew Chem Int Ed. 2011;50:1000-45. [89] Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem Soc Rev. 2018;47:7190-202. [90] Daub ME, Jung H, Lee BJ, Won J, Baik M-H, Yoon TP. Enantioselective [2+2] cycloadditions of cinnamate esters: generalizing lewis acid catalysis of triplet energy transfer. J Am Chem Soc. 2019;141:9543-7. [91] Li M-X, Yan B-C, Zhou M, Li X-R, Li X, He S-J, Sun H-D, Puno P-T. Cyclobutane-containing meroditerpenoids, (+)-isoscopariusins B and C: structure elucidation and biomimetic synthesis. Org Lett. 2023;25:2981-5. [92] Wang YH, Hou AJ, Chen DF, Weiller M, Wendel A, Staples RJ. Prenylated stilbenes and their novel biogenetic derivatives from Artocarpus chama. EUR J Org Chem. 2006;15:3457-63. [93] Lee F-P, Chen Y-C, Chen J-J, Tsai I-L, Chen I-S. Cyclobutanoid amides from Piper arborescens. Helv Chim Acta. 2004;87:463-8. [94] Liu Y, Ni D, Brown MK. Boronic ester enabled [2+2]-cycloadditions by temporary coordination: synthesis of artochamin J and piperarborenine B. J Am Chem Soc. 2022;144:18790-6. [95] Xi Y-F, Liu S-F, Hong W, Song X-Y, Lou L-L, Zhou L, Yao G-D, Lin B, Wang X-B, Huang X-X, Song S-J. Discovery of cycloneolignan enantiomers from Isatis indigotica fortune with neuroprotective effects against MPP+-induced SH-SY5Y cell injury. Bioorganic Chem. 2019;88:102926-32. [96] Chai T, Zhang W-H, Jiao H, Qiang Y. Hydroxycinnamic acid amide dimers from goji berry and their potential anti-AD activity. Chem Biodivers. 2021;18: e2100436. [97] Genzink MJ, Rossler MD, Recendiz H, Yoon TP. A general strategy for the synthesis of truxinate natural products enabled by enantioselective [2+2] photocycloadditions. J Am Chem Soc. 2023;145:19182-8. [98] Walker RP, Faulkner DJ, Van Engen D, Clardy J. Sceptrin, an antimicrobial agent from the sponge Agelas sceptrum. J Am Chem Soc. 1981;103:6772-3. [99] Kobayashi J, Ohizumi Y, Nakamura H, Hirata Y. A novel antagonist of serotonergic receptors, hymenidin, isolated from the Okinawan marine sponge Hymeniacidon sp.,. Experientia. 1986;42:1176-7. [100] Nguyen LV, Jamison TF. Total synthesis of (±)-sceptrin. Org Lett. 2020;22:6698-702. [101] Liu Y, Song R, Li J. The cycloaddition reaction using visible light photoredox catalysis. Sci China Chem. 2016;59:161-70. [102] Narayanam JMR, Stephenson CRJ. Visible light photoredox catalysis: applications in organic synthesis. Chem Soc Rev. 2011;40:102-13. [103] Zhang T, Zhang Y, Das S. Deal; photoredox catalysis for the cycloaddition reactions. ChemCatChem. 2020;12:6173-85. [104] Shaw MH, Twilton J, MacMillan DWC. Photoredox catalysis in organic chemistry. J Org Chem. 2016;81:6898-926. [105] Buzzetti L, Crisenza GEM, Melchiorre P. Mechanistic studies in photocatalysis. Angew Chem Int Ed. 2019;58:3730-47. [106] Cismesia MA, Yoon TP. Characterizing chain processes in visible light photoredox catalysis. Chem Sci. 2015;6:5426-34. [107] Marchini M, Bergamini G, Cozzi PG, Ceroni P, Balzani V. Photoredox catalysis: the need to elucidate the photochemical mechanism. Angew Chem. 2017;129:12996-7. [108] Ischay MA, Anzovino ME, Du J, Yoon TP. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J Am Chem Soc. 2008;130:12886-7. [109] Ischay MA, Ament MS, Yoon TP. Crossed intermolecular [2+2] cycloaddition of styrenes by visible light photocatalysis. Chem Sci. 2012;3:2807-11. [110] Huang G-H, Hu Z, Lei C, Wang P-P, Yang J, Li J-Y, Li J, Hou A-J. Enantiomeric pairs of meroterpenoids with diverse heterocyclic systems from Rhododendron nyingchiense. J Nat Prod. 2018;81:1810-8. [111] Hart JD, Burchill L, Day AJ, Newton CG, Sumby CJ, Huang DM, George JH. Visible-light photoredox catalysis enables the biomimetic synthesis of nyingchinoids A, B, and D, and rasumatranin D. Angew Chem Int Ed. 2019;58:2791-4. [112] Davis RA, Carroll AR, Duffy S, Avery VM, Guymer GP, Forster PI, Quinn RJ. Endiandrin A, a potent glucocorticoid receptor binder isolated from the australian plant Endiandra anthropophagorum. J Nat Prod. 2007;70:1118-21. [113] Li R, Ma BC, Huang W, Wang L, Wang D, Lu H, Landfester K, Zhang KAI. Photocatalytic regioselective and stereoselective [2+2] cycloaddition of styrene derivatives using a heterogeneous organic photocatalyst. ACS Catal. 2017;7:3097-101. [114] Salomon RG, Kochi JK. Copper (I) triflate: a superior catalyst for olefin photodimerization. Tetrahedron Lett. 1973;14:2529-32. [115] Hu J-L, Feng L-W, Wang L, Xie Z, Tang Y, Li X. Enantioselective construction of cyclobutanes: a new and concise approach to the total synthesis of (+)-piperarborenine B. J Am Chem Soc. 2016;138:13151-4. [116] Gravatt CS, Melecio-Zambrano L, Yoon TP. Olefin-supported cationic copper catalysts for photochemical synthesis of structurally complex cyclobutanes. Angew Chem Int Ed. 2021;60:3989-93. [117] Burchill L, Day AJ, Yahiaoui O, George JH. Biomimetic total synthesis of the rubiginosin meroterpenoids. Org Lett. 2021;23:578-82. [118] Kleinmans R, Pinkert T, Dutta S, Paulisch TO, Keum H, Daniliuc CG, Glorius F. Intermolecular [2π+2σ]-photocycloaddition enabled by triplet energy transfer. Nature. 2022;605:477-82. [119] Timmerman JC, Wood JL. Synthesis and biological evaluation of hippolachnin A analogues. Org Lett. 2018;20:3788-92. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|