Natural Products and Bioprospecting    2025, Vol. 15 Issue (3) : 29-29     DOI: 10.1007/s13659-025-00508-9
ORIGINAL ARTICLES |
New sesquiterpenoids with anti-inflammatory effects from phytopathogenic fungus Bipolaris sorokiniana 11134
Qiang Yin1, Jianying Han1,2,3, Guixiang Yang1, Zhijun Song4, Keke Zou1, Kangjie Lv1, Zexu Lin1, Lei Ma1, Miaomiao Liu2, Yunjiang Feng2, Ronald J. Quinn2, Tom Hsiang5, Lixin Zhang1, Xueting Liu1, Guoliang Zhu1, Jingyu Zhang1
1. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China;
2. Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia;
3. Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia;
4. Chinese Academy of Sciences, Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;
5. School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
Download: PDF(1790 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Sesquiterpenoids represent a structurally diverse class of natural products widely recognized for their ecological significance and pharmacological potential, including antimicrobial, anti-inflammatory, and anticancer properties. As part of our efforts to explore bioactive secondary metabolites from phytopathogenic fungi, we conducted a molecular networking-based analysis of Bipolaris sorokiniana isolate BS11134, which was fermented on a rice medium. This analysis led to the identification of three new seco-sativene-type sesquiterpenoids (1-3) and seven known analogues (4-10), with the NMR data of compound 4 being reported for the first time. The structures of these compounds were elucidated using HR-ESI-MS and extensive spectroscopic data analysis. Notably, compound 9 significantly inhibited nitrous oxide expression in lipopolysaccharide (LPS)-treated RAW264.7 cells in vitro (inhibition rate: 84.7±1.7% at 10 μM), while compound 1 (10 μM) showed a weak inhibitory effect (inhibition rate=28.0±2.4%). Additionally, we proposed a biosynthetic pathway for these compounds. This study not only expands the chemical space of the helminthoporene class of molecules but also underscores the untapped potential of phytopathogenic fungi as promising sources of structurally unique and biologically active natural products.
Keywords Phytopathogenic fungi      Bipolaris sorokiniana 11134      Sesquiterpenoid      Anti-inflammatory     
Fund:This study was funded by National Key Research and Development Program of China (2019YFA0906200, 2020YFA0907200); National Natural Science Foundation of China (31430002, 31720103901, 32121005, 21977029); Shanghai Rising-Star Program (20QA1402800); Open Project Funding of the State Key Laboratory of Bioreactor Engineering (B18022); Shanghai Science and Technology Commission (18 JC1411900); Shanghai Sci-Tech Inno Center for Infection & Immunity (SSIII-2024 A02).
Issue Date: 18 June 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiang Yin
Jianying Han
Guixiang Yang
Zhijun Song
Keke Zou
Kangjie Lv
Zexu Lin
Lei Ma
Miaomiao Liu
Yunjiang Feng
Ronald J. Quinn
Tom Hsiang
Lixin Zhang
Xueting Liu
Guoliang Zhu
Jingyu Zhang
Trendmd:   
Cite this article:   
Qiang Yin,Jianying Han,Guixiang Yang, et al. New sesquiterpenoids with anti-inflammatory effects from phytopathogenic fungus Bipolaris sorokiniana 11134[J]. Natural Products and Bioprospecting, 2025, 15(3): 29-29.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-025-00508-9     OR     http://npb.kib.ac.cn/EN/Y2025/V15/I3/29
1. Berenbaum F. Proinflammatory cytokines, prostaglandins, and the chondrocyte: mechanisms of intracellular activation. Joint Bone Spine. 2000;67(6):561-4. https://doi.org/10.1016/S1297-319X(00)00212-8.
2. Reddy DB, Reddanna P. Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-κB and MAPK activation in RAW 264.7 macrophages. Biochem Biophys Res Commun. 2009;381(1):112-7. https://doi.org/10.1016/j.bbrc.2009.02.022.
3. Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Inflammation in Alzheimer’s disease: amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol. 2009;87(3):181-94. https://doi.org/10.1016/j.pneurobio.2009.01.001.
4. Shah IM, Macrae IM, Di Napoli M. Neuroinflammation and neuroprotective strategies in acute ischaemic stroke—from bench to bedside. Curr Mol Med. 2009;9(3):336-54. https://doi.org/10.2174/156652409787847236.
5. J B. Dictionary of natural products on CD-ROM. Version 101; 2002.
6. Hana B, Veronika H, Lenka S, Martin A, Iva B. Antioxidant, pro-oxidant and other biological activities of sesquiterpenes. Curr Top Med Chem. 2014;14(22):2478-94. https://doi.org/10.2174/1568026614666141203120833.
7. Jesus Duran-Pena M, Botubol Ares JM, Hanson JR, Collado IG, Hernandez-Galan R. Biological activity of natural sesquiterpenoids containing a gem-dimethylcyclopropane unit. Nat Prod Rep. 2015;32(8):1236-48. https://doi.org/10.1039/c5np00024f.
8. Elissawy AM, El-Shazly M, Ebada SS, Singab AB, Proksch P. Bioactive terpenes from marine-derived fungi. Mar Drugs. 2015;13(4):1966-92. https://doi.org/10.3390/md13041966.
9. Gliszczynska A, Brodelius PE. Sesquiterpene coumarins. Phytochem Rev. 2012;11(1):77-96. https://doi.org/10.1007/s11101-011-9220-6.
10. Orofino Kreuger MR, Grootjans S, Biavatti MW, Vandenabeele P, Dherde K. Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anticancer Drugs. 2012;23(9):883-96. https://doi.org/10.1097/CAD.0b013e328356cad9.
11. Spivey AC, Weston M, Woodhead S. Celastraceae sesquiterpenoids: biological activity and synthesis. Chem Soc Rev. 2002;31(1):43-59. https://doi.org/10.1039/b000678p.
12. Tanasova M, Sturla SJ. Chemistry and biology of acylfulvenes: sesquiterpene-derived antitumor agents. Chem Rev. 2012;112(6):3578-610. https://doi.org/10.1021/cr2001367.
13. Yang X-L, Zhang J-Z, Luo D-Q. The taxonomy, biology and chemistry of the fungal Pestalotiopsis genus. Nat Prod Rep. 2012;29(6):622-41. https://doi.org/10.1039/c2np00073c.
14. Abraham WR. Bioactive sesquiterpenes produced by fungi: are they useful for humans as well? Curr Med Chem. 2001;8(6):583-606. https://doi.org/10.2174/0929867013373147.
15. Kramer R, Abraham W-R. Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev. 2012;11(1):15-37. https://doi.org/10.1007/s11101-011-9216-2.
16. Quinn RA, Nothias L-F, Vining O, Meehan M, Esquenazi E, Dorrestein PC. Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy. Trends Pharmacol Sci. 2017;38(2):143-54. https://doi.org/10.1016/j.tips.2016.10.011.
17. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34(8):828-37. https://doi.org/10.1038/nbt.3597.
18. Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, et al. Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci USA. 2012;109(26):E1743-52. https://doi.org/10.1073/pnas.1203689109.
19. Nothias L-F, Petras D, Schmid R, Duehrkop K, Rainer J, Sarvepalli A, et al. Feature-based molecular networking in the GNPS analysis environment. Nat Methods. 2020;17(9):905. https://doi.org/10.1038/s41592-020-0933-6.
20. Mayo PD, Spencer EY, White RW. Helminthosporal, the toxin from Helminthosporium sativum. I. Isolation and characterization. Can J Chem. 1961;39(8):1608-12. https://doi.org/10.1139/v61-205.
21. Gayed SK. Production of symptoms of barley leaf-spot disease by culture filtrate of Helminthosporium satirum. Nature. 1961;191(4789):725-6. https://doi.org/10.1038/191725b0.
22. Ludwig RA. Toxin production by Helminthosporium sativum P.K & B. and its significance in disease development. Can J Bot. 1957;35(3):291-303. https://doi.org/10.1139/b57-026.
23. Han J, Zhang J, Song Z, Liu M, Hu J, Hou C, et al. Genome- and MS-based mining of antibacterial chlorinated chromones and xanthones from the phytopathogenic fungus Bipolaris sorokiniana strain 11134. Appl Microbiol Biotechnol. 2019;103(13):5167-81. https://doi.org/10.1007/s00253-019-09821-z.
24. Wang J, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu S, et al. The conserved domain database in 2023. Nucleic Acids Res. 2023;51(D1):D384-8. https://doi.org/10.1093/nar/gkac1096.
25. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023;51(W1):W46-50. https://doi.org/10.1093/nar/gkad344.
26. Huaran Z, Haiyan Z, Yuqi H, Yi Z. Genome mining reveals the biosynthesis of sativene and its oxidative conversion to seco-sativene. Org Lett. 2024;26(1):338-43. https://doi.org/10.1021/acs.orglett.3c04005.
27. Abdel-Lateff A, Okino T, Alarif WM, Al-Lihaibi SS. Sesquiterpenes from the marine algicolous fungus Drechslera sp. J Saudi Chem Soc. 2013;17(2):161-5. https://doi.org/10.1016/j.jscs.2011.03.002.
28. Fan Y-Z, Tian C, Tong S-Y, Liu Q, Xu F, Shi B-B, et al. The antifungal properties of terpenoids from the endophytic fungus Bipolaris eleusines. Nat Prod Bioprospect. 2023;13(1):43. https://doi.org/10.1007/s13659-023-00407-x.
29. Osterhage C, König GM, Höller U, Wright AD. Rare sesquiterpenes from the algicolous fungus Drechslera dematioidea. J Nat Prod. 2002;65(3):306-13. https://doi.org/10.1021/np010092l.
30. Li Z-H, Ai H-L, Yang M-S, He J, Feng T. Bioactive sativene sesquiterpenoids from cultures of the endophytic fungus Bipolaris eleusines. Phytochem Lett. 2018;27:87-9. https://doi.org/10.1016/j.phytol.2018.07.007.
31. Grimblat N, Zanardi MM, Sarotti AM. Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J Org Chem. 2015;80(24):12526-34. https://doi.org/10.1021/acs.joc.5b02396.
32. Zhang L, Liu X, Zhang J, Jiang L, Zhu G, Han J, et al. Preparation method of helminthosporol type sesquiterpenoids and its preparation method thereof. ZL201910566725X; 2019.
33. Tamura S, Sakurai A. Syntheses of several compounds related to helminthosporol and their plant growth-regulating activities. Agric Biol Chem. 2014;28(5):337-8. https://doi.org/10.1080/00021369.1964.10858247.
34. Nakajima H, Isomi K, Hamasaki T, Ichinoe M. Sorokinianin—a novel phytotoxin produced by the phytopathogenic fungus Bipolaris-sorokiniana. Tetrahedron Lett. 1994;35(51):9597-600. https://doi.org/10.1016/0040-4039(94)88520-6.
35. Lodewyk MW, Gutta P, Tantillo DJ. Computational studies on biosynthetic carbocation rearrangements leading to sativene, cyclosativene, α-ylangene, and β-ylangene. J Org Chem. 2008;73(17):6570-9. https://doi.org/10.1021/jo800868r.
36. Phan C-S, Li H, Kessler S, Solomon PS, Piggott AM, Chooi Y-H. Bipolenins K-N: New sesquiterpenoids from the fungal plant pathogen Bipolaris sorokiniana. Beilstein J Org Chem. 2019;15:2020-8. https://doi.org/10.3762/bjoc.15.198.
37. Nakajima H, Toratsu Y, Fujii Y, Ichinoe M, Hamasaki T. Biosynthesis of sorokinianin a phytotoxin of Bipolaris sorokiniana: evidence of mixed origin from the sesquiterpene and TCA pathways. Tetrahedron Lett. 1998;39(9):1013-6. https://doi.org/10.1016/S0040-4039(97)10803-6.
38. Steele CL, Crock J, Bohlmann J, Croteau R. Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J Biol Chem. 1998;273(4):2078-89. https://doi.org/10.1074/jbc.273.4.2078.
39. Elisashvili V. Submerged cultivation of medicinal mushrooms: bioprocesses and products (review). Int J Med Mushrooms. 2012;14(3):211-39. https://doi.org/10.1615/IntJMedMushr.v14.i3.10.
40. Ulrike L, Niedermeyer THJ, Wolf-Dieter J. The pharmacological potential of mushrooms. Evid Based Complement Altern Med. 2005;2(3):285-99. https://doi.org/10.1093/ecam/neh107.
41. Li Y-Y, Tan X-M, Yang J, Guo L-P, Ding G. Naturally occurring seco-sativene sesquiterpenoid: chemistry and biology. J Agric Food Chem. 2020;68(37):9827-38. https://doi.org/10.1021/acs.jafc.0c04560.
42. Jiang L, Zhang X, Sato Y, Zhu G, Minami A, Zhang W, et al. Genome-based discovery of enantiomeric pentacyclic sesterterpenes catalyzed by fungal bifunctional terpene synthases. Org Lett. 2021;23(12):4645-50. https://doi.org/10.1021/acs.orglett.1c01361.
43. Jiang L, Zhu G, Han J, Hou C, Zhang X, Wang Z, et al. Genome-guided investigation of anti-inflammatory sesterterpenoids with 5-15 trans-fused ring system from phytopathogenic fungi. Appl Microbiol Biotechnol. 2021;105(13):5407-17. https://doi.org/10.1007/s00253-021-11192-3.
44. Ruggeri FM, Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, et al. Gaussian 03, Revision E01; 2004.
45. Cammi R, Tomasi J. Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J Comput Chem. 1995;16(12):1449-58. https://doi.org/10.1002/jcc.540161202.
46. Yang G-X, Ge S-L, Wu Y, Huang J, Li S-L, Wang R, et al. Design, synthesis and biological evaluation of 3-piperazinecarboxylate sarsasapogenin derivatives as potential multifunctional anti-Alzheimer agents. Eur J Med Chem. 2018;156:206-15. https://doi.org/10.1016/j.ejmech.2018.04.054.
[1] Hongyan Wen, Sheng Li, Yu Zhang. Phthalide mono- and dimers from the rhizomes of Angelica sinensis and their anti-inflammatory activities[J]. Natural Products and Bioprospecting, 2025, 15(3): 26-26.
[2] Lu Cao, Jun-Feng Tan, Zeng-Guang Zhang, Jun-Wei Yang, Yu Mu, Zhi-Long Zhao, Yi Jiang, Xue-Shi Huang, Li Han. Discovery of structurally diverse sesquiterpenoids from Streptomyces fulvorobeus isolated from Elephas maximus feces and their antifungal activities[J]. Natural Products and Bioprospecting, 2024, 14(6): 61-61.
[3] Yuru Shi, Xiaoqian Zhang, Shengji Pei, Yuhua Wang. Ethnopharmacological study on Adenosma buchneroides Bonati inhibiting inflammation via the regulation of TLR4/MyD88/NF-κB signaling pathway[J]. Natural Products and Bioprospecting, 2024, 14(5): 36-36.
[4] Shi-Yan Feng, Na Jiang, Jia-Ying Yang, Lin-Yao Yang, Jiang-Chao Du, Xuan-Qin Chen, Dan Liu, Rong-Tao Li, Jin-Dong Zhong. Antiviral and anti-inflammatory activities of chemical constituents from twigs of Mosla chinensis Maxim[J]. Natural Products and Bioprospecting, 2024, 14(3): 26-26.
[5] Jin-Ning Chu, Premanand Krishnan, Kuan-Hon Lim. A comprehensive review on the chemical constituents, sesquiterpenoid biosynthesis and biological activities of Sarcandra glabra[J]. Natural Products and Bioprospecting, 2023, 13(6): 53-53.
[6] Orawan Jongsomjainuk, Jutatip Boonsombat, Sanit Thongnest, Hunsa Prawat, Paratchata Batsomboon, Sitthivut Charoensutthivarakul, Saroj Ruchisansakun, Kittipong Chainok, Jitnapa Sirirak, Chulabhorn Mahidol, Somsak Ruchirawat. Kaemtakols A–D, highly oxidized pimarane diterpenoids with potent anti-inflammatory activity from Kaempferia takensis[J]. Natural Products and Bioprospecting, 2023, 13(6): 55-55.
[7] Yang Yu, Yang Wang, Gui-Chun Wang, Cheng-Yong Tan, Yi Wang, Jin-Song Liu, Guo-Kai Wang. Andropanilides A-C, the novel labdane-type diterpenoids from Andrographis paniculata and their anti-inflammation activity[J]. Natural Products and Bioprospecting, 2023, 13(5): 31-31.
[8] Xun Wei, Jia-Luo Huang, Hua-Hua Gao, Fang-Yu Yuan, Gui-Hua Tang, Sheng Yin. New halimane and clerodane diterpenoids from Croton cnidophyllus[J]. Natural Products and Bioprospecting, 2023, 13(3): 21-21.
[9] Cheng-Yong Tan, Bao-Bao Shi, Mei-Fen Bao, Xiang-Hai Cai. Anti-inflammatory maistemonine-class alkaloids of Stemona japonica[J]. Natural Products and Bioprospecting, 2023, 13(2): 8-8.
[10] Sitian Zhang, Shuyuan Mo, Fengli Li, Yaxin Zhang, Jianping Wang, Zhengxi Hu, Yonghui Zhang. Drimane sesquiterpenoids from a wetland soil-derived fungus Aspergillus calidoustus TJ403-EL05[J]. Natural Products and Bioprospecting, 2022, 12(4): 27-27.
[11] Xin Zhang, Yun-Bao Ma, Xiao-Feng He, Tian-Ze Li, Chang-An Geng, Li-Hua Su, Shuang Tang, Zhen Gao, Ji-Jun Chen. Artemyrianosins A–J, cytotoxic germacrane-type sesquiterpene lactones from Artemisia myriantha[J]. Natural Products and Bioprospecting, 2022, 12(3): 16-16.
[12] Shui-Mei Zhang, Kun Hu, Xiao-Nian Li, Han-Dong Sun, Pema-Tenzin Puno. Lignans and sesquiterpenoids from the stems of Schisandra bicolor var. tuberculata[J]. Natural Products and Bioprospecting, 2022, 12(3): 19-19.
[13] Lu Zhang, Ping Yi, Hui Yan, Xiao-Nian Li, Meng-Yuan Xia, Jun Yang, Ji-Feng Luo, Yue-Qiu He, Yue-Hu Wang. Five new 2-(2-phenylethyl)chromone derivatives and three new sesquiterpenoids from the heartwood of Aquilaria sinensis, an aromatic medicine in China[J]. Natural Products and Bioprospecting, 2022, 12(1): 1-14.
[14] Yue-Hu Wang. Traditional Uses and Pharmacologically Active Constituents of Dendrobium Plants for Dermatological Disorders: A Review[J]. Natural Products and Bioprospecting, 2021, 11(5): 465-487.
[15] Shu-Ya Wei, Dong-Bao Hu, Meng-Yuan Xia, Ji-Feng Luo, Hui Yan, Jing-Hua Yang, Yun-Song Wang, Yue-Hu Wang. Sesquiterpenoids and 2-(2-Phenylethyl) chromone Derivatives from the Resinous Heartwood of Aquilaria sinensis[J]. Natural Products and Bioprospecting, 2021, 11(5): 545-555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed