Natural Products and Bioprospecting    2025, Vol. 15 Issue (1) : 8-8     DOI: 10.1007/s13659-024-00489-1
ORIGINAL ARTICLES |
Novel neo-clerodane diterpenoids from Teucrium quadrifarium and their anti-ferroptosis effect
Huan Wang1,2, Han-Fei Liu1,2, Xiao-Qiao Yang1,2, Yu-Qiong Liao1,2, Fen-Cong Pan1,2, Jin-Yu Li1,2, Hua-Yong Lou1,2, Wei-Dong Pan1
1. State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People’s Republic of China;
2. Natural Products Research Center of Guizhou Province, Guiyang, 550014, People’s Republic of China
Download: PDF(2008 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Teucrifarides A–D (14), four previously unreported neo-clerodane-type diterpenoids, combined with sixteen known analogs (5–20), were purified from Teucrium quadrifarium. The absolute forma of compounds 14 were determined via spectroscopic and ECD calculation methods, together with X-ray crystallography experiments. Among them, compound 1 possessed a 5,20-epoxy ring featuring a unique cage-like 12-oxatricyclo [5.3.2.01,6]undecane skeleton. Meanwhile, 2 incorporated a 6,20-epoxy ring with a novel 12-oxatricyclo [6.2.2.02,7]undecane skeleton. Compounds 1 and 12 exhibited significant inhibitory effects against HT-22 cells ferroptosis induced by RSL3, with EC50 values of 11.8±1.0 μM, and 4.52±1.24 μM, respectively. Moreover, ROS accumulation in HT22 cells treated with compound 1 was also observed.
Keywords Teucrium quadrifarium      Lamiaceae      Neo-clerodane      Ferroptosis inhibitory activity      ROS     
Fund:This work was financially supported by the National Natural Science Foundation of China (32100322, 32460112, 32060100); and the Science and Technology Department of Guizhou Province (QKHZC[2022]019).
Corresponding Authors: Jin-Yu LI,E-mail:lijinyu20080@126.com;Hua-Yong LOU,E-mail:loouhy@126.com;Wei-Dong PAN,E-mail:wdpan@163.com     E-mail: lijinyu20080@126.com;loouhy@126.com;wdpan@163.com
Issue Date: 15 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Huan Wang
Han-Fei Liu
Xiao-Qiao Yang
Yu-Qiong Liao
Fen-Cong Pan
Jin-Yu Li
Hua-Yong Lou
Wei-Dong Pan
Trendmd:   
Cite this article:   
Huan Wang,Han-Fei Liu,Xiao-Qiao Yang, et al. Novel neo-clerodane diterpenoids from Teucrium quadrifarium and their anti-ferroptosis effect[J]. Natural Products and Bioprospecting, 2025, 15(1): 8-8.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00489-1     OR     http://npb.kib.ac.cn/EN/Y2025/V15/I1/8
[1] Flora of China Editorial Committee of Chinese Academy of Sciences. Flora of China. Beijing: Science Press; 1990.
[2] Zhang K, Wang XL, Li YK, Li J, Xv KP, Tan GS. Chemical constituents and pharmacological activities of genus Teucrium. Central South Pharm. 2016;14(7):735–41.
[3] Aydogan F, Boga M, Khan SI, Zulfiqar F, Khan IA, Ali Z. Phytochemical investigation of Teucrium pruinosum and biological potential assessment of the isolated diterpenoids. Biochem Syst Ecol. 2022;105: 104545.
[4] Kurimoto S, Wakabayashi K, Sasaki YF, Nakamura T, Kubota T. Teuchamaedol A, a new neo-clerodane diterpenoid from the aerial parts of Teucrium chamaedrys. Tetrahedron Lett. 2022;100: 153890.
[5] Lv HW, Luo JG, Zhu MD, Zhao HJ, Kong LY. neo-Clerodane diterpenoids from the aerial parts of Teucrium fruticans cultivated in China. Phytochemistry. 2015;119:26–31.
[6] Tan Q, Fang Y, Peng X, Zhou H, Xu J, Gu Q. A new ferroptosis inhibitor, isolated from Ajuga nipponensis, protects neuronal cells via activating NRF2-antioxidant response elements (AREs) pathway. Bioorg Chem. 2021;115: 105177.
[7] Li S, Xu D, Jia J, Zou W, Liu J, Wang Y, Zhang K, Zheng X, Ma YY, Zhang X, Zhao DG. Structure and anti-inflammatory activity of neo-clerodane diterpenoids from Scutellaria barbata. Phytochemistry. 2023;213: 113771.
[8] Peng X, Tan Q, Zhang Z, Wu D, Xu J, Zhou H, Gu Q. Discovery of neo-clerodane diterpenoids from Ajuga campylantha as neuroprotective agents against ferroptosis and neuroinflammation. J Nat Prod. 2023;86(8):2006–21.
[9] Krishna Kumari GN, Aravind S, Balachandran J, Ganesh MR, Soundarya Devi S, Rajan SS, Malathi R, Ravikumar K. Antifeedant neo-clerodanes from Teucrium tomentosum Heyne (Labiatae). Phytochemistry. 2003. https://doi.org/10.1016/S0031-9422(03)00510-7.
[10] Kheawchaum S, Mahidol C, Thongnest S, Boonsombat J, Batsomboon P, Sitthimonchai S, Ruchirawat S, Prawat H. Ent-abietane diterpenoid lactone glycosides and a phenolic glycoside from Phlogacanthus pulcherrimus T Anderson with cytotoxic and cancer chemopreventive activities. Phytochemistry. 2022;201:113261.
[11] Hunan Academy of Chinese Medicine. Pharmaceutical Records of Hunan. Changsha: Hunan People’s Publishing House; 1979.
[12] National Institutes for Food and Drug Contro. Yunnan Institute for Drug Control. In: Annals of Chinese national medicine. Beijing: People’s Medical Publishing House; 1984.
[13] Xie N, Ming ZD, Zhao SX, Feng R. Flavones from Teurium quadrifarium. J China Pharm Univ. 1991;22(4):200–2.
[14] Zhu YY, Li GY. Studies on the diterpenoids of Teucrium quadrifarium Buch-Ham. Acta Pharm Sin B. 1993;28(9):679–83.
[15] Aydoğan F, Ali Z, Zulfiqar F, Karaalp C, Khan IA, Bedir E. neo-clerodanes from Teucrium divaricatum subsp. divaricatum and their biological activity assessment. Phytochem Lett. 2023;54:45–9.
[16] Simoes F, Rodríguez B, Bruno M, Piozzi F, Savona G, Arnold NA. neo-Clerodane diterpenoids from Teucrium kotschyanum. Phytochemistry. 1989;28(10):2763–8.
[17] Lv HW, Luo JG, Meng DZ, Shan SM, Kong LY. Teucvisins A-E, five new neo-clerodane diterpenes from Teucrium viscidum. Chem Pharm Bull. 2014;62(5):472–6.
[18] Aoyagi Y, Yamazaki A, Nakatsugawa C, Fukaya H, Takeya K, Kawauchi S, Izumi H. Salvileucalin B, a novel diterpenoid with an unprecedented rearranged neoclerodane skeleton from Salvia leucantha Cav. Org Lett. 2008;10(20):4429–32.
[19] Piozzi F, Savona G, Paternostro M, Rodriguez BP. New clerodane diterpenoids from Teucrium spinosum L. Heterocycles. 1980;14:193.
[20] Bruno M, Piozzi F, Savona G, De La Torre MC, Rodríguez B. neo-Clerodane diterpenoids from Teucrium canadense. Phytochemistry. 1989;28(12):3539–41.
[21] Li W, Wang RM, Pan YH, Zhao YY, Yuan FY, Huang D, Tang GH, Bi HC, Yin S. Crotonpenoids A and B, two highly modified clerodane diterpenoids with a tricyclo[7.2.1.02,7]dodecane core from Croton yanhuii: isolation, structural elucidation, and biomimetic semisynthesis. Org Lett. 2020;22(11):4435–9.
[22] Xu G, Peng L, Niu X, Zhao Q, Li R, Sun H. Novel diterpenoids from Salvia dugesii. Helv Chim Acta. 2004;87(4):949–55.
[23] Jiang YJ, Su J, Shi X, Wu XD, Chen XQ, He J, Shao LD, Li XN, Peng LY, Li RT, Zhao QS. neo-Clerodanes from the aerial parts of Salvia leucantha. Tetrahedron. 2016;72(35):5507–14.
[24] Papanov GY, Malakov PY. New furanoid diterpenes from Teucrium scordium L. Zeitschrift für Naturforschung B. 1981;36(1):112–3.
[25] Ye D, Shu LP, Qiang Z, Xun L, Li SD. Clerodane diterpenoids from Kinostemon alborubrum. Helv Chim Acta. 2002;85(8):2547–52.
[26] Maria C, Rodríguez B, Bruno M, Savona G, Piozzi F, Servettaz O. neo-clerodane diterpenoids from Teucrium micropodioldes. Phytochemistry. 1988;27(1):213–6.
[27] Gacs-Baitz E, Kajtar M, Papanov G, Malakov P. Carbon-13 NMR spectra of some furanoid diterpenes from Teucrium species. Heterocycles. 1982;19:539–50.
[28] Mbwambo ZH, Foubert K, Chacha M, Kapingu MC, Magadula JJ, Moshi MM, Lemiere F, Goubitz K, Fraanje J, Peschar R, Vlietinck A, Apers S, Pieters L. New furanoditerpenoids from Croton jatrophoides. Planta Med. 2009;75(3):262–7.
[29] Shi HW, Jiang XF, Cao LD, Peng X, Tan QY, Teng XF, Gu Q, He L. Chemical constituents of Ajuga forrestii and their anti-ferroptosis activity. Fitoterapia. 2023;166: 105461.
[30] Zhao X, Zheng ZP, Chen C, Wang H, Liu HF, Li JY, Sun C, Lou HY, Pan WD. New clerodane diterpenoids from Callicarpa pseudorubella and their antitumor proliferative activity. Fitoterapia. 2024;174: 105878.
[1] Gabin T. M. Bitchagno, Nathan Reynolds, Monique S. J. Simmonds. Diterpene chemical space of Aeollanthus buchnerianus Briq. aerial part[J]. Natural Products and Bioprospecting, 2025, 15(1): 6-6.
[2] Joan Labara Tirado, Andrei Herdean, Peter J. Ralph. The need for smart microalgal bioprospecting[J]. Natural Products and Bioprospecting, 2025, 15(1): 7-7.
[3] Bangrui Huang, Rui Han, Hong Tan, Wenzhuo Zhu, Yang Li, Fakun Jiang, Chun Xie, Zundan Ren, Rou Shi. Scutellarin ameliorates diabetic nephropathy via TGF-β1 signaling pathway[J]. Natural Products and Bioprospecting, 2024, 14(3): 25-25.
[4] Joana Ribeiro, Henrique Araújo-Silva, Mário Fernandes, Joilna Alves da Silva, Francisco das Chagas L. Pinto, Otília Deusdenia L. Pessoa, Hélcio Silva Santos, Jane Eire Silva Alencar de Menezes, Andreia C. Gomes. Petrosamine isolated from marine sponge Petrosia sp. demonstrates protection against neurotoxicity in vitro and in vivo[J]. Natural Products and Bioprospecting, 2024, 14(2): 4-4.
[5] Shohreh Ariaeenejad, Javad Gharechahi, Mehdi Foroozandeh Shahraki, Fereshteh Fallah Atanaki, Jian-Lin Han, Xue-Zhi Ding, Falk Hildebrand, Mohammad Bahram, Kaveh Kavousi, Ghasem Hosseini Salekdeh. Precision enzyme discovery through targeted mining of metagenomic data[J]. Natural Products and Bioprospecting, 2024, 14(1): 7-7.
[6] Heloísa H. S. Almeida, Pedro J. L. Crugeira, Joana S. Amaral, Alírio E. Rodrigues, Maria-Filomena Barreiro. Disclosing the potential of Cupressus leylandii A.B. Jacks & Dallim, Eucalyptus globulus Labill., Aloysia citrodora Paláu, and Melissa officinalis L. hydrosols as eco-friendly antimicrobial agents[J]. Natural Products and Bioprospecting, 2024, 14(1): 1-1.
[7] Lingli Ding, Zhao Gao, Siluo Wu, Chen Chen, Yamei Liu, Min Wang, Yage Zhang, Ling Li, Hong Zou, Guoping Zhao, Shengnan Qin, Liangliang Xu. Ginsenoside compound-K attenuates OVX-induced osteoporosis via the suppression of RANKL-induced osteoclastogenesis and oxidative stress[J]. Natural Products and Bioprospecting, 2023, 13(6): 49-49.
[8] Mengjing Wu, Mengyu Qin, Xian Wang. Therapeutic effects of isoquercetin on ovariectomy-induced osteoporosis in mice[J]. Natural Products and Bioprospecting, 2023, 13(3): 20-20.
[9] Wen-Tao Gao, Ling-Ling Yu, Jing Xie, Long-Gao Xiao, Shi-Juan Zhang, Wen-Yi Ma, Huan Yan, Hai-Yang Liu. Ypsilandrosides U-Y, five new steroidal saponins from Ypsilandra thibetica[J]. Natural Products and Bioprospecting, 2022, 12(3): 17-17.
[10] Wenbin Gao, Xiaoxia Wang, Fengli Chen, Chunqing Li, Fei Cao, Duqiang Luo. Setosphlides A-D, New Isocoumarin Derivatives from the Entomogenous Fungus Setosphaeria rostrate LGWB-10[J]. Natural Products and Bioprospecting, 2021, 11(1): 137-142.
[11] Mohammad Sanad Abu-Darwish, Célia Cabral, Zulfigar Ali, Mei Wang, Shabana I. Khan, Melissa R. Jacob, Surendra K. Jain, Babu L. Tekwani, Fazila Zulfiqar, Ikhlas A. Khan, Hatem Taifour, Lígia Salgueiro, Thomas Efferth. Salvia ceratophylla L. from South of Jordan: new insights on chemical composition and biological activities[J]. Natural Products and Bioprospecting, 2020, 10(5): 307-316.
[12] G. R. Nalin Rathnayake, N. Savitri Kumar, Lalith Jayasinghe, Hiroshi Araya, Yoshinori Fujimoto. Secondary Metabolites Produced by an Endophytic Fungus Pestalotiopsis microspora[J]. Natural Products and Bioprospecting, 2019, 9(6): 411-418.
[13] Rui-Jing Ma, Liu Yang, Xue Bai, Jin-Yu Li, Ming-Yan Yuan, Ya-Qin Wang, Yong Xie, Jiang-Miao Hu, Jun Zhou. Phenolic Constituents with Antioxidative, Tyrosinase Inhibitory and Anti-aging Activities from Dendrobium loddigesii Rolfe[J]. Natural Products and Bioprospecting, 2019, 9(5): 329-336.
[14] Xiao-Feng He, Chang-An Geng, Xiao-Yan Huang, Yun-Bao Ma, Xue-Mei Zhang, Ji-Jun Chen. Chemical Constituents from Mentha haplocalyx Briq. (Mentha canadensis L.) and Their α-Glucosidase Inhibitory Activities[J]. Natural Products and Bioprospecting, 2019, 9(3): 223-229.
[15] Gao-Wei Li, Han Liu, Feng Qiu, Xiao-Juan Wang, Xin-Xiang Lei. Residual Dipolar Couplings in Structure Determination of Natural Products[J]. Natural Products and Bioprospecting, 2018, 8(4): 279-295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed