Natural Products and Bioprospecting    2024, Vol. 14 Issue (3) : 25-25     DOI: 10.1007/s13659-024-00446-y
ORIGINAL ARTICLES |
Scutellarin ameliorates diabetic nephropathy via TGF-β1 signaling pathway
Bangrui Huang1,2, Rui Han1, Hong Tan1, Wenzhuo Zhu1, Yang Li1, Fakun Jiang2, Chun Xie2, Zundan Ren1, Rou Shi1
1 Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, People's Republic of China;
2 Key Laboratory of Medicinal Chemistry for Natural Resource(Ministry of Education) Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, People's Republic of China
Download: PDF(5612 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Breviscapine, a natural flavonoid mixture derived from the traditional Chinese herb Erigeron breviscapus (Vant.) Hand-Mazz, has demonstrated a promising potential in improving diabetic nephropathy (DN). However, the specific active constituent(s) responsible for its therapeutic effects and the underlying pharmacological mechanisms remain unclear. In this study, we aimed to investigate the impact of scutellarin, a constituent of breviscapine, on streptozotocin- induced diabetic nephropathy and elucidate its pharmacological mechanism(s). Our findings demonstrate that scutellarin effectively ameliorates various features of DN in vivo, including proteinuria, glomerular expansion, mesangial matrix accumulation, renal fibrosis, and podocyte injury. Mechanistically, scutellarin appears to exert its beneficial effects through modulation of the transforming growth factor-β1 (TGF-β1) signaling pathway, as well as its interaction with the extracellular signal-regulated kinase (Erk) and Wnt/β-catenin pathways.
Keywords Scutellarin      Diabetic nephropathy      Proteinuria      Fibrosis      Podocyte injury     
Fund:This work was supported by Yunnan Province Clinical Research Center for Metabolic diseases(202102AA100056); Scientific and Technological Innovation Team of Kunming Medical University (CXTD202101); Union Foundation of Yunnan Provincial Science and Technology Department and Kunming Medical University (202001AY070001-034); Yunnan health training project of high level talents (D-2019011).
Corresponding Authors: Rou Shi,E-mail:shirourou325@sina.com     E-mail: shirourou325@sina.com
Issue Date: 14 June 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bangrui Huang
Rui Han
Hong Tan
Wenzhuo Zhu
Yang Li
Fakun Jiang
Chun Xie
Zundan Ren
Rou Shi
Trendmd:   
Cite this article:   
Bangrui Huang,Rui Han,Hong Tan, et al. Scutellarin ameliorates diabetic nephropathy via TGF-β1 signaling pathway[J]. Natural Products and Bioprospecting, 2024, 14(3): 25-25.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00446-y     OR     http://npb.kib.ac.cn/EN/Y2024/V14/I3/25
1. Dagar N, Das P, Bisht P, Taraphdar AK, Velayutham R, Arumugam S. Diabetic nephropathy: a twisted thread to unravel. Life Sci. 2021;278: 119635.
2. Forst T, Mathieu C, Giorgino F, Wheeler DC, Papanas N, Schmieder RE, Halabi A, Schnell O, Streckbein M, Tuttle KR. New strategies to improve clinical outcomes for diabetic kidney diseas e. BMC Med. 2022;20:337.
3. Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, García-Pérez J. Inflammatory molecules and pathways in the pathogenesis of diabetic ne phropathy. Nat Rev Nephrol. 2011;7:327–40.
4. Tervaert TWC, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, Ferrario F, Fogo AB, Haas M, de Heer E, Joh K, Noël LH, Radhakrishnan J, Seshan SV, Bajema IM, Bruijn JA, Renal Pathology S. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21:556–63.
5. Vartak T, Godson C, Brennan E. Therapeutic potential of pro-resolving mediators in diabetic kidney di sease. Adv Drug Deliv Rev. 2021;178: 113965.
6. Tomita I, Kume S, Sugahara S, Osawa N, Yamahara K, Yasuda-Yamahara M, Takeda N, Chin-Kanasaki M, Kaneko T, Mayoux E, Mark M, Yanagita M, Ogita H, Araki S-I, Maegawa H. SGLT2 inhibition mediates protection from diabetic kidney disease by P romoting ketone body-induced mTORC1 inhibition. Cell Metab. 2020;32:404-419.e406.
7. Liew A, Bavanandan S, Prasad N, Wong MG, Chang JM, Eiam-Ong S, Hao C-M, Lim CY, Lim SK, Oh K-H, Okada H, Susantitaphong P, Lydia A, Tran HTB, Villanueva R, Yeo SC, Tang SCW. Asian pacific society of nephrology clinical practice guideline on diabetic kidney disease—executive summary. Nephrology (Carlton). 2020;25(Suppl 2):3–11.
8. Thomas HY, Ford Versypt AN. Pathophysiology of mesangial expansion in diabetic nephropathy: mesang ial structure, glomerular biomechanics, and biochemical signaling and regulation. J Biol Eng. 2022;16:19.
9. Spirk M, Zimny S, Neumann M, McMullen N, Sinal CJ, Buechler C. Chemerin-156 is the active isoform in human hepatic stellate cells. Int J Mol Sci. 2020;21:7555.
10. Tsurumi H, Kurihara H, Miura K, Tanego A, Ohta Y, Igarashi T, Oka A, Horita S, Hattori M, Harita Y. Afadin is localized at cell–cell contact sites in mesangial cells and regulates migratory polarity. Lab Invest. 2016;96:49–59.
11. Ayo SH, Radnik RA, Garoni JA, Glass WF 2nd, Kreisberg JI. High glucose causes an increase in extracellular matrix proteins in cu ltured mesangial cells. Am J Pathol. 1990;136:1339–48.
12. Makino H, Shikata K, Wieslander J, Wada J, Kashihara N, Yoshioka K, Ota Z. Localization of fibril/microfibril and basement membrane collagens in diabetic glomerulosclerosis in type 2 diabetes. Diabet Med. 1994;11:304–11.
13. Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Invest. 2014;124:2333–40.
14. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210.
15. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325–38.
16. Sharma K, Ziyadeh FN, Alzahabi B, McGowan TA, Kapoor S, Kurnik BR, Kurnik PB, Weisberg LS. Increased renal production of transforming growth factor-beta1 in pati ents with type II diabetes. Diabetes. 1997;46:854–9.
17. Sun X, Yang Y, Sun X, Meng H, Hao W, Yin J, Ma F, Guo X, Du L, Sun L, Wu H. Krill oil turns off TGF-β1 profibrotic signaling in the prevention of diabetic nephropathy. J Agric Food Chem. 2022;70:9865–76.
18. Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND, Zhao YY. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact. 2018;292:76–83.
19. Wang Y, Zhang X, Mao Y, Liang L, Liu L, Peng W, Liu H, Xiao Y, Zhang Y, Zhang F, Shi M, Liu L, Guo B. Smad2 and Smad3 play antagonistic roles in high glucose-induced renal tubular fibrosis via the regulation of SnoN. Exp Mol Pathol. 2020;113: 104375.
20. Chen L, Yang T, Lu D-W, Zhao H, Feng Y-L, Chen H, Chen D-Q, Vaziri ND, Zhao Y-Y. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother. 2018;101:670–81.
21. Wang L, Ma Q. Clinical benefits and pharmacology of scutellarin: a comprehensive rev iew. Pharmacol Ther. 2018;190:105–27.
22. Kang SQ, Liu JY. Effect of breviscapine on urinary micro-albumine in patients with diab etes mellitus type 2. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2003;23:458–9.
23. Liu X, Yao L, Sun D, Zhu X, Liu Q, Xu T, Wang L. Effect of breviscapine injection on clinical parameters in diabetic nephropathy: a meta-analysis of randomized controlled trials. Exp Ther Med. 2016;12:1383–97.
24. Wei L, Tan J. Clinical observation on Breviscapine in treating hypertension patients complicated with micro-albuminuria of renal impairment. Chin J Integr Med. 2005;11:31–3.
25. Yu JP. Breviscapine valsartan combined treatment of early diabetic nephropathy. Chin Arch Tradit Chin Med. 2010;28:1337.
26. Xu XX, Zhang W, Zhang P, Qi XM, Wu YG, Shen JJ. Superior renoprotective effects of the combination of breviscapine with enalapril and its mechanism in diabetic rats. Phytomedicine. 2013;20:820–7.
27. Yang Q, Wang Y, Chen H, Fan H, Zhang X, Bello BK, Liu G, Feng X, Teng D, Chen Y, Zhao P, Dong J. Protective activities of scutellarin against alcoholinduced acute kidney injury. Chem Biodivers. 2022;19: e202200254.
28. Sun CY, Nie J, Zheng ZL, Zhao J, Wu LM, Zhu Y, Su ZQ, Zheng GJ, Feng B. Renoprotective effect of scutellarin on cisplatin-induced renal injury in mice: Impact on inflammation, apoptosis, and autophagy. Biomed Pharmacothera Biomed Pharmacothera. 2019;112: 108647.
29. Dai J, Li C, Zhao L, Guan C, Yang C, Zhang N, Zhou B, Zhang Y, Wang L, Jiang W, Luo C, Xu Y. Scutellarin protects the kidney from ischemia/reperfusion injury by targeting Nrf2. Nephrology (Carlton). 2022;27:690–700.
30. Li G, Guan C, Xu L, Wang L, Yang C, Zhao L, Zhou B, Luo C, Luan H, Jiang W, Li C, Xu Y. Scutellarin ameliorates renal injury via increasing CCN1 expression and suppressing NLRP3 inflammasome activation in hyperuricemic mice. Front Pharmacol. 2020;11: 584942.
31. Dai C, Stolz DB, Kiss LP, Monga SP, Holzman LB, Liu Y. Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminur ia. J Am Soc Nephrol. 2009;20:1997–2008.
32. Wang D, Dai C, Li Y, Liu Y. Canonical Wnt/β-catenin signaling mediates transforming growth factor-β1-driven podocyte injury and proteinuria. Kidney Int. 2011;80:1159–69.
33. Qi XM, Wu GZ, Wu YG, Lin H, Shen JJ, Lin SY. Renoprotective effect of breviscapine through suppression of renal mac rophage recruitment in streptozotocin-induced diabetic rats. Nephron Exp Nephrol. 2006;104:e147-157.
34. Neelisetty S, Alford C, Reynolds K, Woodbury L, Nlandu-khodo S, Yang H, Fogo AB, Hao C-M, Harris RC, Zent R, Gewin L. Renal fibrosis is not reduced by blocking transforming growth factor-β signaling in matrixproducing interstitial cells. Kidney Int. 2015;88:503–14.
35. Koesters R, Kaissling B, Lehir M, Picard N, Theilig F, Gebhardt R, Glick AB, Hähnel B, Hosser H, Gröne H-J, Kriz W. Tubular overexpression of transforming growth factor-beta1 induces aut ophagy and fibrosis but not mesenchymal transition of renal epithelial cells. Am J Pathol. 2010;177:632–43.
36. Brinkkoetter PT, Ising C, Benzing T. The role of the podocyte in albumin filtration. Nat Rev Nephrol. 2013;9:328–36.
37. Huber TB, Benzing T. The slit diaphragm: a signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens. 2005;14:211–6.
38. Schunk SJ, Floege J, Fliser D, Speer T. WNT-β-catenin signalling—a versatile player in kidney injury and rep air. Nat Rev Nephrol. 2021;17:172–84.
[1] Yifei Xie, Guotong Sun, Yue Tao, Wen Zhang, Shiying Yang, Li Zhang, Yang Lu, Guanhua Du. Current advances on the therapeutic potential of scutellarin: an updated review[J]. Natural Products and Bioprospecting, 2024, 14(3): 20-20.
[2] Ya-Juan Chen, Chen Chen, Meng-Yuan Li, Qing-Qing Li, Xiu-Juan Zhang, Rong Huang, Xing-Wei Zhu, Chun-Yun Bai, Liu-Yi Zhang, Pei-Hua Peng, Wei-Min Yang. Scutellarin Reduces Cerebral Ischemia Reperfusion Injury Involving in Vascular Endothelium Protection and PKG Signal[J]. Natural Products and Bioprospecting, 2021, 11(6): 659-670.
[3] Pei Cao, Zhen-Jie Li, Wen-Wu Sun, Shashwat Malhotra, Yuan-Liang Ma, Bin Wu, Virinder S. Parmar. Cascade N-Alkylation/Hemiacetalization for Facile Construction of the Spiroketal Skeleton of Acortatarin Alkaloids with Therapeutic Potentiality in Diabetic Nephropathy[J]. Natural Products and Bioprospecting, 2015, 5(1): 37-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed