Natural Products and Bioprospecting    2025, Vol. 15 Issue (1) : 7-7     DOI: 10.1007/s13659-024-00487-3
REVIEW |
The need for smart microalgal bioprospecting
Joan Labara Tirado, Andrei Herdean, Peter J. Ralph
Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia
Download: PDF(1652 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Microalgae’s adaptability and resilience to Earth’s diverse environments have evolved these photosynthetic microorganisms into a biotechnological source of industrially relevant physiological functions and biometabolites. Despite this, microalgae-based industries only exploit a handful of species. This lack of biodiversity hinders the expansion of the microalgal industry. Microalgal bioprospecting, searching for novel biological algal resources with new properties, remains a low throughput and time-consuming endeavour due to inefficient workflows that rely on non-selective sampling, monoalgal culture status and outdated, non-standardized characterization techniques. This review will highlight the importance of microalgal bioprospecting and critically explore commonly employed methodologies. We will also explore current advances driving the next generation of smart algal bioprospecting focusing on novel workflows and transdisciplinary methodologies with the potential to enable high-throughput microalgal biodiscoveries. Images adapted from (Addicted04 in Wikipedia File: Australia on the globe (Australia centered).svg. 2014.; Jin et al. in ACS Appl Bio Mater 4:5080–5089, 2021; Kim et al. in Microchim Acta 189:88, 2022; Tony et al. in Lab on a Chip 15, 19:3810–3810; Thermo Fisher Scientific INC. in CTS Rotea Brochure).
Keywords Microalgae      Bioprospecting      Fluorescent probing     
Fund:This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sector.
Corresponding Authors: Joan Labara TIRADO,E-mail:Joan.labaratirado@student.uts.edu.au;Andrei HERDEAN,E-mail:Andrei.herdean@uts.edu.au     E-mail: Joan.labaratirado@student.uts.edu.au;Andrei.herdean@uts.edu.au
Issue Date: 15 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Joan Labara Tirado
Andrei Herdean
Peter J. Ralph
Trendmd:   
Cite this article:   
Joan Labara Tirado,Andrei Herdean,Peter J. Ralph. The need for smart microalgal bioprospecting[J]. Natural Products and Bioprospecting, 2025, 15(1): 7-7.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00487-3     OR     http://npb.kib.ac.cn/EN/Y2025/V15/I1/7
[1] Addicted 04 (Wikipedia User). Wikipedia File Australia on the globe (Australia centered).svg 2014. https://en.m.wikipedia.org/wiki/File:Australia_on_the_globe_(Australia_centered).svg. Accessed 17 Dec 2024.
[2] Jin CR, Kim JY, Kim DH, Jeon MS, Choi YE. In vivo monitoring of intracellular metabolite in a microalgal cell using an aptamer/graphene oxide nanosheet complex. ACS Appl Bio Mater. 2021;4(6):5080–9.
[3] Kim JY, Jin CR, Park J, Kim DG, Kim HS, Choi Y-E. Simultaneous probing of dual intracellular metabolites (ATP and paramylon) in live microalgae using graphene oxide/aptamer nanocomplex. Microchim Acta. 2022;189(3):88.
[4] Ren L, Chen Y, Li P, Mao Z, Huang P-H, Rufo J, et al. A high-throughput acoustic cell sorter. Lab Chip. 2015;15(19):3870–9.
[5] Thermo Fisher Scientific INC. CTS Rotea Counterflow Centrifugation System Brochure. https://www.thermofisher.com/au/en/home/clinical/cell-gene-therapy/cell-therapy/cell-therapy-manufacturingsolutions/rotea-counterflow-centrifugation-system/features.html. Accessed 17 Dec 2024.
[6] Bhola V, Swalaha F, Ranjith Kumar R, Singh M, Bux F. Overview of the potential of microalgae for CO2 sequestration. Int J Environ Sci Technol. 2014;11(7):2103–18.
[7] Fabris M, Abbriano RM, Pernice M, Sutherland DL, Commault AS, Hall CC, et al. Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioeconomy. Front Plant Sci. 2020;11:279.
[8] Barsanti L, Gualtieri P. Algae: anatomy, biochemistry, and biotechnology. 3rd ed. Milton: Taylor & Francis Group; 2022.
[9] Guiry MD. How many species of algae are there? J Phycol. 2012;48(5):1057–63.
[10] Park BS, Li Z. Taxonomy and ecology of marine algae. J Mar Sci Eng. 2022;10(1):105.
[11] Stevenson J. Ecological assessments with algae: a review and synthesis. J Phycol. 2014;50(3):437–61.
[12] Hopes A, Mock T. Evolution of microalgae and their adaptations in different marine ecosystems. eLS. 2015;3:1.
[13] Barati B, Zeng K, Baeyens J, Wang S, Addy M, Gan S-Y, et al. Recent progress in genetically modified microalgae for enhanced carbon dioxide sequestration. Biomass Bioenerg. 2021;145: 105927.
[14] Khan MI, Shin JH, Kim JD. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact. 2018;17(1):36.
[15] Mobin S, Alam F. Some promising microalgal species for commercial applications: a review. Energy Procedia. 2017;110:510–7.
[16] Loke SP. Global market and economic analysis of microalgae technology: status and perspectives. Biores Technol. 2022;357: 127329.
[17] Garbary DJ, Bąk M, Dąbek P, Witkowski A. Abstracts of papers to be presented at the 11th international phycological congress. Phycologia. 2017;56(sup4):1–224.
[18] Chisti Y. Chapter 2-society and microalgae: understanding the past and present. In: Fleurence A, Fleurence J, editors. Microalgae in health and disease prevention. New York: Academic Press; 2018.
[19] West JB. The strange history of atmospheric oxygen. Physiol Rep. 2022;10(6): e15214.
[20] Prihanto A, Jatmiko YD, Nurdiani R, Miftachurrochmah A, Wakayama M. Freshwater microalgae as promising food sources: nutritional and functional properties. Open Microbiol J. 2022;16: e2206200.
[21] Alvarez AL, Weyers SL, Goemann HM, Peyton BM, Gardner RD. Microalgae, soil and plants: a critical review of microalgae as renewable resources for agriculture. Algal Res. 2021;54: 102200.
[22] Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M. Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Crit Rev Biotechnol. 2019;39(8):981–98.
[23] Patel A, Matsakas L, Rova U, Christakopoulos P. A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Biores Technol. 2019;278:424–34.
[24] Lafarga T, Sánchez-Zurano A, Morillas-España A, Acién-Fernández FG. Extremophile microalgae as feedstock for high-value carotenoids: a review. Int J Food Sci Technol. 2021;56(10):4934–41.
[25] Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP. Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol. 2015;184:363–72.
[26] Domozych D, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WG. The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci. 2012;3:82.
[27] Jassey VEJ, Walcker R, Kardol P, Geisen S, Heger T, Lamentowicz M, et al. Contribution of soil algae to the global carbon cycle. New Phytol. 2022;234(1):64–76.
[28] Beardall J, Raven JA. The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia. 2004;43(1):26–40.
[29] Claustre H, Legendre L, Boyd PW, Levy M. The oceans’ biological carbon pumps: framework for a research observational community approach. Front Mar Sci. 2021;8: 780052.
[30] Kholssi R, Lougraimzi H, Moreno-Garrido I. Effects of global environmental change on microalgal photosynthesis, growth and their distribution. Mar Environ Res. 2023;184: 105877.
[31] Bradbury J. Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain. Nutrients. 2011;3(5):529–54.
[32] Crawford MA, Bloom M, Broadhurst CL, Schmidt WF, Cunnane SC, Galli C, et al. Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids. 1999;34(S1 Part 1):S39–47.
[33] Behrenfeld MJ. Climate-mediated dance of the plankton. Nat Clim Chang. 2014;4(10):880–7.
[34] Administration NOaA. Carbon dioxide now more than 50% higher than pre-industrial levels. 2022.
[35] Petrou K, Kranz SA, Trimborn S, Hassler CS, Ameijeiras SB, Sackett O, et al. Southern Ocean phytoplankton physiology in a changing climate. J Plant Physiol. 2016;203:135–50.
[36] Beijerinck MW. Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen. Algen Bot Ztg. 1890;48(725–72):81–8.
[37] Lustig A, Levine AJ. One hundred years of virology. J Virol. 1992;66(8):4629–31.
[38] Bos L. Beijerinck’s work on tobacco mosaic virus: historical context and legacy. Philos Trans R Soc Lond B Biol Sci. 1999;354(1383):675–85.
[39] García JL, de Vicente M, Galán B. Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol. 2017;10(5):1017–24.
[40] Sánchez J, Curt MD, Robert N, Fernández J. Chapter two-biomass resources. In: Lago C, Caldés N, Lechón Y, editors. The role of bioenergy in the bioeconomy. Cambridge: Academic Press; 2019. p. 25–111.
[41] Weart SR. The idea of anthropogenic global climate change in the 20th century. WIREs Clim Change. 2010;1(1):67–81.
[42] Fawzy S, Osman AI, Doran J, Rooney DW. Strategies for mitigation of climate change: a review. Environ Chem Lett. 2020;18(6):2069–94.
[43] Ralph PJ, Pernice M. Save the planet with green industries using algae. PLoS Biol. 2023;21(3): e3002061.
[44] Fuchs W, Rachbauer L, Rittmann SKR, Bochmann G, Ribitsch D, Steger F. Eight up-coming biotech tools to combat climate crisis. Microorganisms. 2023;11(6):1514.
[45] Hunter P. The potential of molecular biology and biotechnology for dealing with global warming: the biosciences will have to play a leading role in developing new technologies for mitigating the impact of greenhouse gas emissions. EMBO Rep. 2016;17(7):946–8.
[46] Reisoglu Ş, Aydin S. Microalgae as a promising candidate for fighting climate change and biodiversity loss. 2023.
[47] Sadvakasova AK, Kossalbayev BD, Bauenova MO, Balouch H, Leong YK, Zayadan BK, et al. Microalgae as a key tool in achieving carbon neutrality for bioproduct production. Algal Res. 2023;72: 103096.
[48] Singh J, Saxena RC. Chapter 2-an introduction to microalgae: diversity and significance. Amsterdam: Elsevier Inc; 2015. p. 11–24.
[49] Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, et al. Microalgae biorefinery: high value products perspectives. Biores Technol. 2017;229:53–62.
[50] Saeed MU, Hussain N, Shahbaz A, Hameed T, Iqbal HMN, Bilal M. Bioprospecting microalgae and cyanobacteria for biopharmaceutical applications. J Basic Microbiol. 2022;62(9):1110–24.
[51] Fernandes T, Cordeiro N. Microalgae as sustainable biofactories to produce high-value lipids: biodiversity, exploitation, and biotechnological applications. Mar Drugs. 2021;19(10):573.
[52] Wu J, Gu X, Yang D, Xu S, Wang S, Chen X, et al. Bioactive substances and potentiality of marine microalgae. Food Sci Nutr. 2021;9(9):5279–92.
[53] Rizwan M, Mujtaba G, Memon SA, Lee K, Rashid N. Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sustain Energy Rev. 2018;92:394–404.
[54] Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65(6):635–48.
[55] Guiry MD. How many species of algae are there? A reprise. Four kingdoms, 14 phyla, 63 classes and still growing. J Phycol. 2024;60(2):214–28.
[56] Sharma N, Rai A. Biodiversity and biogeography of microalgae: progress and pitfalls. Environ Rev. 2011;19:1.
[57] Abida H, Ruchaud S, Rios L, Humeau A, Probert I, De Vargas C, et al. Bioprospecting marine plankton. Mar Drugs. 2013;11(11):4594–611.
[58] Vuong P, Chong S, Kaur P. The little things that matter: how bioprospecting microbial biodiversity can build towards the realization of United Nations Sustainable development goals. NPJ Biodivers. 2022;1(1):4.
[59] United Nations DoEaSA. United nations sustainable development goals. 2024. https://sdgs.un.org/goals2024; https://sdgs.un.org/goals. Accessed 10 July 2024.
[60] Müller WEG, Batel R, Schröder HC, Müller IM. Traditional and modern biomedical prospecting: part I—the history. Evid Based Complement Altern Med. 2004;1: 856086.
[61] Verma M, Mishra V. An introduction to algal biofuels. In: Srivastava N, Srivastava M, Mishra PK, Gupta VK, editors. Microbial strategies for techno-economic biofuel production. Singapore: Springer; 2020. p. 1–34.
[62] Richmond A, Hu Q. Handbook of microalgal culture: applied phycology and biotechnology. Newark: Wiley; 2013.
[63] Fernandez-Valenzuela S, Ruvalcaba F, Beltrán-Rocha J, Claudio P, Reyna G. Isolation and culturing axenic microalgae: mini-review. Open Microbiol J. 2021;15:111–9.
[64] Chiu C-S, Chiu P-H, Yong TC, Tsai H-P, Soong K, Huang H-E, et al. Mechanisms protect airborne green microalgae during long distance dispersal. Sci Rep. 2020;10(1):13984.
[65] Roque J, Brito Â, Rocha M, Pissarra J, Nunes T, Bessa M, et al. Isolation and characterization of soil cyanobacteria and microalgae and evaluation of their potential as plant biostimulants. Plant Soil. 2023;493(1):115–36.
[66] Rezaei A, Cheniany M, Ahmadzadeh H, Vaezi J. Evaluation of lipid composition and growth parameters of cold-adapted microalgae under different conditions. BioEnergy Res. 2024;17(1):557–69.
[67] Araj-Shirvani M, Honarvar M, Jahadi M, Mizani M. Biochemical profile of Dunaliella isolates from different regions of Iran with a focus on pharmaceutical and nutraceutical potential applications. Food Sci Nutr. 2024. https://doi.org/10.1002/fsn3.4137.
[68] Ben Ammar FE, Saidane F, Messaoud C, Hamdi M. Screening of efficient microalgae strains isolated from Tunisian ecosystems: Assessment of algal growth rate and added-value bioproducts for biorefinery applications. Biocatal Agric Biotechnol. 2024;58: 103140.
[69] Condori MAM, Condori MM, Gutierrez MEV, Choix FJ, García-Camacho F. Bioremediation potential of the Chlorella and Scenedesmus microalgae in explosives production effluents. Sci Total Environ. 2024;920: 171004.
[70] Grubišić M, Šantek B, Zorić Z, Čošić Z, Vrana I, Gašparović B, et al. Bioprospecting of microalgae isolated from the Adriatic sea: characterization of biomass, pigment, lipid and fatty acid composition, and antioxidant and antimicrobial activity. Molecules. 2022;27(4):1248.
[71] Badary A, Hidasi N, Ferrari S, Mayfield SP. Isolation and characterization of microalgae strains able to grow on complex biomass hydrolysate for industrial application. Algal Res. 2024;78: 103381.
[72] Katayama T, Takahashi K, Wahid MEA, Yusoff FM, Takahashi K. Picochloropsis malayensis gen. et sp. Nov. (Chlorellales, Chlorophyta), an ammonium tolerant, polyphosphate-accumulating microalga from seawater. Phycol Res. 2024. https://doi.org/10.1111/pre.12552.
[73] Candido C, Cardoso LG, Lombardi AT. Bioprospecting and selection of tolerant strains and productive analyses of microalgae grown in vinasse. Braz J Microbiol. 2022;53(2):845–55.
[74] Assobhi B, Bouchelta Y, Alsubih M, Alaoui-Sossé B, Bourgeade P, et al. What are the growth kinetics and biochemical compositions of microalgae isolated from diverse aquatic ecosystems in Morocco, France, and Tunisia? Environ Sci Poll Res. 2024. https://doi.org/10.1007/s11356-024-33412-9.
[75] Aljabri H, Cherif M, Siddiqui SA, Bounnit T, Saadaoui I. Evidence of the drying technique’s impact on the biomass quality of Tetraselmis subcordiformis (Chlorophyceae). Biotechnol Biofuels Bioprod. 2023;16(1):85.
[76] Amouri M, Aziza M, Kaidi F, Abert Vian M, Chemat F, Amrane A, et al. Indigenous microalgae strains characterization for a sustainable biodiesel production. Biotechnol J. 2024;19(1):2300096.
[77] Sweiss M, Assi S, Barhoumi L, Al-Jumeily D, Watson M, Wilson M, et al. Qualitative and quantitative evaluation of microalgal biomass using portable attenuated total reflectance-Fourier transform infrared spectroscopy and machine learning analytics. J Chem Technol Biotechnol. 2024;99(1):92–108.
[78] Patel AK, Vadrale AP, Tseng Y-S, Chen C-W, Dong C-D, Singhania RR. Bioprospecting of marine microalgae from Kaohsiung seacoast for lutein and lipid production. Biores Technol. 2022;351: 126928.
[79] Patel A, Antonopoulou I, Enman J, Rova U, Christakopoulos P, Matsakas L. Lipids detection and quantification in oleaginous microorganisms: an overview of the current state of the art. BMC Chem Eng. 2019;1(1):13.
[80] Han Y, Wen Q, Chen Z, Li P. Review of methods used for microalgal lipid-content analysis. Energy Procedia. 2011;12:944–50.
[81] Hounslow E, Noirel J, Gilmour DJ, Wright PC. Lipid quantification techniques for screening oleaginous species of microalgae for biofuel production. Eur J Lipid Sci Technol. 2017;119(2):1500469.
[82] Sun H, Wang Y, He Y, Liu B, Mou H, Chen F, et al. Microalgae-derived pigments for the food industry. Mar Drugs. 2023;21(2):82.
[83] Pagels F, Pereira RN, Vicente AA, Guedes AC. Extraction of pigments from microalgae and cyanobacteria—a review on current methodologies. Appl Sci. 2021;11(11):5187.
[84] Khosravinia S, Malekzadeh-Shafaroudi S, Bagheri A, Behdad A, Moshtaghi N. Bioprospecting of ten microalgae species isolated from saline water lake for evaluation of the biodiesel production. BioEnergy Research. 2024;17(2):1090–103.
[85] Tan KY, Low SS, Manickam S, Ma Z, Banat F, Munawaroh HSH, et al. Prospects of microalgae in nutraceuticals production with nanotechnology applications. Food Res Int. 2023;169: 112870.
[86] Sánchez-Saavedra MP, Castro-Ochoa FY. Bioprospecting for lipid production of eleven microalgae strains for sustainable biofuel production. BioEnergy Res. 2024;17(2):1118–32.
[87] DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–6.
[88] Maity S, Mallick N. Bioprospecting marine microalgae and cyanobacteria as alternative feedstocks for bioethanol production. Sustain Chem Pharm. 2022;29: 100798.
[89] Cruz JD, Delattre C, Felpeto AB, Pereira H, Pierre G, Morais J, et al. Bioprospecting for industrially relevant exopolysaccharide-producing cyanobacteria under Portuguese simulated climate. Sci Rep. 2023;13(1):13561.
[90] Mosibo OK, Ferrentino G, Udenigwe CC. Microalgae proteins as sustainable ingredients in novel foods: recent developments and challenges. Foods. 2024;13(5):733.
[91] Lucakova S, Branyikova I, Hayes M. Microalgal proteins and bioactives for food, feed, and other applications. Appl Sci. 2022;12(9):4402.
[92] Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J biol Chem. 1951;193(1):265–75.
[93] Shen CH. Chapter 9-quantification and analysis of proteins. In: Shen CH, editor. Diagnostic molecular biology. 2nd ed. Cambridge: Academic Press; 2023. p. 231–57.
[94] Lourenço SO, Barbarino E, Lavín PL, Lanfer Marquez UM, Aidar E. Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol. 2004;39(1):17–32.
[95] Khemiri S, Khelifi N, Messaoud C, Smaali I. Bioprospecting of microalgae for a potential use as enzyme inhibitors, anti-ageing and prebiotic agents. Biocatal Agric Biotechnol. 2023;51: 102759.
[96] Mc Gee D, Archer L, Smyth TJ, Fleming GTA, Touzet N. Bioprospecting and LED-based spectral enhancement of antimicrobial activity of microalgae isolated from the west of Ireland. Algal Res. 2020;45: 101704.
[97] İnan B, Mutlu B, Karaca GA, Koç RÇ, Özçimen D. Bioprospecting Antarctic microalgae as anticancer agent against PC-3 and AGS cell lines. Biochem Eng J. 2023;195: 108900.
[98] Martínez R, García Beltrán A, Kapravelou G, Guzmán A, Lozano A, Gómez-Villegas P, et al. Nutritional and functional assessment of haloarchaea and microalgae from the Andalusian shoreline: promising functional foods with a high nutritional value. J Funct Foods. 2024;116: 106194.
[99] Geng Y, Cui D, Yang L, Xiong Z, Pavlostathis SG, Shao P, et al. Resourceful treatment of harsh high-nitrogen rare earth element tailings (REEs) wastewater by carbonate activated Chlorococcum sp. microalgae. J Hazard Mater. 2022;423:127000.
[100] Wang H, Liu Z, Cui D, Liu Y, Yang L, Chen H, et al. A pilot scale study on the treatment of rare earth tailings (REEs) wastewater with low C/N ratio using microalgae photobioreactor. J Environ Manage. 2023;328: 116973.
[101] Arumugam K, Mohamad R, Ashari SE, Tan JS, Mohamed MS. Bioprospecting microalgae with the capacity for inducing calcium carbonate biomineral precipitation. Asia-Pac J Chem Eng. 2022;17(3): e2767.
[102] Jose S, Renuka N, Ratha SK, Kumari S, Bux F. Bioprospecting of microalgae from agricultural fields and developing consortia for sustainable agriculture. Algal Res. 2024;78: 103428.
[103] Concórdio-Reis P, David H, Reis MAM, Amorim A, Freitas F. Bioprospecting for new exopolysaccharide-producing microalgae of marine origin. Int Microbiol. 2023;26(4):1123–30.
[104] Thangadurai D, Sangeetha J, Prasad R. Bioprospecting algae for nanosized materials. 1st ed. Cham: Springer International Publishing AG; 2022.
[105] Greco GR, Cinquegrani M. Firms plunge into the sea. Marine biotechnology industry, a first investigation. Front Mar Sci. 2016;2:124.
[106] Rusyaev SM, Orlov AM. The phenomenon of marine bioprospecting. Biol Bull Rev. 2024;14(1):115–32.
[107] Ratha SK, Prasanna R. Bioprospecting microalgae as potential sources of “green energy”—challenges and perspectives (review). Appl Biochem Microbiol. 2012;48(2):109–25.
[108] Beattie AJ, Hay M, Magnusson B, de Nys R, Smeathers J, Vincent JF. Ecology and bioprospecting. Austral Ecol. 2011;36(3):341–56.
[109] Lee KH, Jeong HJ, Jang TY, Lim AS, Kang NS, Kim J-H, et al. Feeding by the newly described mixotrophic dinoflagellate Gymnodinium smaydae: feeding mechanism, prey species, and effect of prey concentration. J Exp Mar Biol Ecol. 2014;459:114–25.
[110] Kang HC, Jeong HJ, Park SA, Eom SH, Ok JH, You JH, et al. Feeding by the newly described heterotrophic dinoflagellate Gyrodinium jinhaense: comparison with G dominans and G moestrupii. Mar Biol. 2020;167(10):156.
[111] Doppler P, Kriechbaum R, Singer B, Spadiut O. Make microalgal cultures axenic again—a fast and simple workflow utilizing fluorescence-activated cell sorting. J Microbiol Methods. 2021;186: 106256.
[112] Pokorny L, Hausmann B, Pjevac P, Schagerl M. How to verify non-presence—the challenge of axenic algae cultivation. Cells. 2022;11(16):2594.
[113] Rehman M, Kesharvani S, Dwivedi G, Gidwani SK. Impact of cultivation conditions on microalgae biomass productivity and lipid content. Mater Today: Proc. 2022;56:282–90.
[114] Hoch L, Herdean A, Argyle PA, Ralph PJ. High throughput phenomics for diatoms: challenges and solutions. Prog Oceanogr. 2023;216: 103074.
[115] Selvam J, Mal J, Singh S, Yadav A, Giri BS, Pandey A, et al. Bioprospecting marine microalgae as sustainable bio-factories for value-added compounds. Algal Res. 2024;79: 103444.
[116] Kiani H, Aznar R, Poojary MM, Tiwari BK, Halim R. Chromatographic techniques to separate and identify bioactive compounds in microalgae. Front Energy Res. 2022;10:904014.
[117] Jacobsen C. Fish oils: composition and health effects. In: Caballero B, Finglas PM, Toldrá F, editors. Encyclopedia of food and health. Oxford: Academic Press; 2016. p. 686–92.
[118] Comission EU. Commission Implementing Regulation (EU) 2022/1365 of 4 August 2022 amending Implementing Regulation (EU) 2017/2470 as regards the conditions of use of the novel food Schizochytrium sp. oil rich in DHA and EPA (Text with EEA relevance) Commission implementing regulation (EU) 2022/1365 of 4 August 2022 amending Implementing Regulation (EU) 2017/2470 as regards the conditions of use of the novel food Schizochytrium sp. oil rich in DHA and EPA. 2022.
[119] Giudice AL, Rizzo C. Culture collections as hidden sources of microbial biomolecules and biodiversity. Diversity. 2020;12(7):264.
[120] Foo SC, Mok CY, Ho SY, Khong NMH. Microalgal culture preservation: progress, trends and future developments. Algal Res. 2023;71: 103007.
[121] Chellappan A, Thangamani P, Markose S, Thavasimuthu C, Thangaswamy S, Mariavincent M. Long-term preservation of micro-algal stock for fish hatcheries. Aquac Rep. 2020;17: 100329.
[122] Cheregi O, Ekendahl S, Engelbrektsson J, Strömberg N, Godhe A, Spetea C. Microalgae biotechnology in Nordic countries—the potential of local strains. Physiol Plant. 2019;166(1):438–50.
[123] Duong VT, Li Y, Nowak E, Schenk PM. Microalgae Isolation and selection for prospective biodiesel production. Energies. 2012;5(6):1835–49.
[124] Pourkarimi S, Hallajisani A, Alizadehdakhel A, Nouralishahi A, Golzary A. Factors affecting production of beta-carotene from Dunaliella salina microalgae. Biocatal Agric Biotechnol. 2020;29: 101771.
[125] Smith-Bädorf HD, Chuck CJ, Mokebo KR, MacDonald H, Davidson MG, Scott RJ. Bioprospecting the thermal waters of the Roman baths: isolation of oleaginous species and analysis of the FAME profile for biodiesel production. AMB Express. 2013;3(1):9.
[126] Treves H, Raanan H, Finkel OM, Berkowicz SM, Keren N, Shotland Y, et al. A newly isolated Chlorella sp. from desert sand crusts exhibits a unique resistance to excess light intensity. FEMS Microbiol Ecol. 2013;86(3):373–80.
[127] Abdullahi ZH, Marselin FN, Khaironizam NIA, Fauzi NFA, Wan Maznah WO. Growth stage-related biomass, pigments, and biochemical composition of Stichococcus bacillaris, Synechococcus sp., and Trentepohlia aurea isolated from Gua Tempurung, a cave in Malaysia. Plant Physiol Biochem. 2023;197:107633.
[128] Halder N, Goyal D, Aneja RK. Bioprospecting microalgae from sewage water: assessment of biochemicals for biomass utilization. Mol Biotechnol. 2023. https://doi.org/10.1007/s12033-023-00969-8.
[129] Senhorinho GNA, Laamanen CA, Scott JA. Bioprospecting freshwater microalgae for antibacterial activity from water bodies associated with abandoned mine sites. Phycologia. 2018;57(4):432–9.
[130] Rinaldi KL, Senhorinho GNA, Laamanen CA, Scott JA. A review of extremophilic microalgae: impacts of experimental cultivation conditions for the production of antimicrobials. Algal Res. 2024;78: 103427.
[131] Rocha LC, de Oliveira JR, Vacondio B, Rodrigues GN, Seleghim MHR, Porto ALM. Bioactive marine microorganisms for biocatalytic reactions in organic compounds. Mar Microbiol. 2013. https://doi.org/10.1002/9783527665259.ch25.
[132] Bacellar Mendes LB, Vermelho AB. Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol Biofuels. 2013;6(1):152.
[133] Hosseini H, Al-Jabri HM, Moheimani NR, Siddiqui SA, Saadaoui I. Marine microbial bioprospecting: exploitation of marine biodiversity towards biotechnological applications—a review. J Basic Microbiol. 2022;62(9):1030–43.
[134] Dammak I, Fersi M, Hachicha R, Abdelkafi S. Current insights into growing microalgae for municipal wastewater treatment and biomass generation. Resources. 2023;12(10):119.
[135] Ishika T, Moheimani NR, Bahri PA, Laird DW, Blair S, Parlevliet D. Halo-adapted microalgae for fucoxanthin production: effect of incremental increase in salinity. Algal Res. 2017;28:66–73.
[136] Berge T, Daugbjerg N, Hansen PJ. Isolation and cultivation of microalgae select for low growth rate and tolerance to high pH. Harmful Algae. 2012;20:101–10.
[137] Desjardins SM, Laamanen CA, Basiliko N, Scott JA. Selection and re-acclimation of bioprospected acid-tolerant green microalgae suitable for growth at low pH. Extremophiles. 2021;25(2):129–41.
[138] Yoo C, Jun S-Y, Lee J-Y, Ahn C-Y, Oh H-M. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresourc Technol. 2010;101(1):S71–4.
[139] Ramanna L, Rawat I, Bux F. Light enhancement strategies improve microalgal biomass productivity. Renew Sustain Energy Rev. 2017;80:765–73.
[140] Zuliani L, Frison N, Jelic A, Fatone F, Bolzonella D, Ballottari M. Microalgae cultivation on anaerobic digestate of municipal wastewater, sewage sludge and agro-waste. Int J Mol Sci. 2016;17(10):1692.
[141] Aslam A, Thomas-Hall SR, Mughal TA, Schenk PM. Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas. Biores Technol. 2017;233:271–83.
[142] Argyle PA, Hinners J, Walworth NG, Collins S, Levine NM, Doblin MA. A high-throughput assay for quantifying phenotypic traits of microalgae. Front Microbiol. 2021;12:706235.
[143] Van Wagenen J, Holdt SL, De Francisci D, Valverde-Pérez B, Plósz BG, Angelidaki I. Microplate-based method for high-throughput screening of microalgae growth potential. Biores Technol. 2014;169:566–72.
[144] Zheng J, Cole T, Zhang Y, Bayinqiaoge YD, Tang SY. An automated and intelligent microfluidic platform for microalgae detection and monitoring. Lab Chip. 2024;24(2):244–53.
[145] Zheng G, Cui Y, Lu L, Guo M, Hu X, Wang L, et al. Microfluidic chemostatic bioreactor for high-throughput screening and sustainable co-harvesting of biomass and biodiesel in microalgae. Bioact Mater. 2023;25:629–39.
[146] Westerwalbesloh C, Brehl C, Weber S, Probst C, Widzgowski J, Grünberger A, et al. A microfluidic photobioreactor for simultaneous observation and cultivation of single microalgal cells or cell aggregates. PLoS ONE. 2019;14(4): e0216093.
[147] Radzun KA, Wolf J, Jakob G, Zhang E, Stephens E, Ross I, et al. Automated nutrient screening system enables high-throughput optimisation of microalgae production conditions. Biotechnol Biofuels. 2015;8(1):65.
[148] Porras Reyes L, Havlik I, Beutel S. Software sensors in the monitoring of microalgae cultivations. Rev Environ Sci Bio/Technol. 2024;23(1):67–92.
[149] Tham PE, Ng YJ, Vadivelu N, Lim HR, Khoo KS, Chew KW, et al. Sustainable smart photobioreactor for continuous cultivation of microalgae embedded with Internet of Things. Biores Technol. 2022;346: 126558.
[150] Nguyen BT, Rittmann BE. Low-cost optical sensor to automatically monitor and control biomass concentration in microalgal cultivation. Algal Res. 2018;32:101–6.
[151] Luttmann R, Bracewell DG, Cornelissen G, Gernaey KV, Glassey J, Hass VC, et al. Soft sensors in bioprocessing: a status report and recommendations. Biotechnol J. 2012;7(8):1040–8.
[152] Jakob G, Wolf J, Bui T, Posten C, Kruse O, Stephens E, et al. Surveying a diverse pool of microalgae as a bioresource for future biotechnological applications. J Petrol Environ Biotechnol. 2013;04:2.
[153] Pereira H, Schulze PSC, Schüler LM, Santos T, Barreira L, Varela J. Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. Algal Res. 2018;30:113–20.
[154] Vu CHT, Lee H-G, Chang YK, Oh H-M. Axenic cultures for microalgal biotechnology: establishment, assessment, maintenance, and applications. Biotechnol Adv. 2018;36(2):380–96.
[155] Cho D-H, Ramanan R, Kim B-H, Lee J, Kim S, Yoo C, et al. Novel approach for the development of axenic microalgal cultures from environmental samples. J Phycol. 2013;49(4):802–10.
[156] Soomro RR, Ndikubwimana T, Zeng X, Lu Y, Lin L, Danquah MK. Development of a two-stage microalgae dewatering process—a life cycle assessment approach. Front Plant Sci. 2016;7:113.
[157] Lee TC, Chan PL, Tam NF, Xu SJ, Lee FW. Establish axenic cultures of armored and unarmored marine dinoflagellate species using density separation, antibacterial treatments and stepwise dilution selection. Sci Rep. 2021;11(1):202.
[158] Li A, Kusuma GD, Driscoll D, Smith N, Wall DM, Levine BL, et al. Advances in automated cell washing and concentration. Cytotherapy. 2021;23(9):774–86.
[159] Dargitz CT, Daoudi S, Dunn S, du Jeu XD, Ravinder N. Rotea: a closed and automated instrument for efficient cell isolation, washing and conentration in cell therapy workflows. Cytotherapy. 2020;22(5):S200.
[160] De Stefano JA, Foy JM, Sullivan DW, Dawes SM, Cushion MT, Babcock GF, et al. Fractionation of Pneumocystis carinii developmental stages by counterflow centrifugal elutriation and sequential filtrations. Parasitol Res. 1994;80(1):1–9.
[161] Kim GY, Son J, Han JI, Park JK. Inertial microfluidics-based separation of microalgae using a contraction-expansion array microchannel. Micromachines (Basel). 2021;12(1):97.
[162] Sapp M, Schwaderer AS, Wiltshire KH, Hoppe H-G, Gerdts G, Wichels A. Species-specific bacterial communities in the phycosphere of microalgae? Microb Ecol. 2007;53(4):683–99.
[163] Samo TJ, Kimbrel JA, Nilson DJ, Pett-Ridge J, Weber PK, Mayali X. Attachment between heterotrophic bacteria and microalgae influences symbiotic microscale interactions. Environ Microbiol. 2018;20(12):4385–400.
[164] Variem SS, Kizhakkedath VK. Phycosphere associated bacteria; a prospective source of bioactive compounds. Biologia. 2021;76(3):1095–8.
[165] Santo ÉdE, Ishii M, Pinto UM, Matsudo MC, Carvalho JC. Obtaining bioproducts from the studies of signals and interactions between microalgae and bacteria. Microorganisms. 2022;10(10):2029.
[166] Perković L, Djedović E, Vujović T, Baković M, Paradžik T, Čož-Rakovac R. Biotechnological enhancement of probiotics through co-cultivation with algae: future or a trend? Mar Drugs. 2022;20(2):142.
[167] Tandon P, Jin Q. Microalgae culture enhancement through key microbial approaches. Renew Sustain Energy Rev. 2017;80:1089–99.
[168] Chong JWR, Khoo KS, Chew KW, Vo DV, Balakrishnan D, Banat F, et al. Microalgae identification: Future of image processing and digital algorithm. Bioresourc Technol. 2023;369:128418.
[169] Otálora P, Guzmán JL, Acién FG, Berenguel M, Reul A. An artificial intelligence approach for identification of microalgae cultures. New Biotechnol. 2023;77:58–67.
[170] Liu F, Zhang C, Wang Y, Chen G. A review of the current and emerging detection methods of marine harmful microalgae. Sci Total Environ. 2022;815: 152913.
[171] Jahn MT, Schmidt K, Mock T. A novel cost effective and high-throughput isolation and identification method for marine microalgae. Plant Methods. 2014;10(1):26.
[172] Vuong P, Wise MJ, Whiteley AS, Kaur P. Small investments with big returns: environmental genomic bioprospecting of microbial life. Crit Rev Microbiol. 2022;48(5):641–55.
[173] Maghembe R, Damian D, Makaranga A, Nyandoro SS, Lyantagaye SL, Kusari S, et al. Omics for bioprospecting and drug discovery from bacteria and microalgae. Antibiotics. 2020;9(5):229.
[1] Shohreh Ariaeenejad, Javad Gharechahi, Mehdi Foroozandeh Shahraki, Fereshteh Fallah Atanaki, Jian-Lin Han, Xue-Zhi Ding, Falk Hildebrand, Mohammad Bahram, Kaveh Kavousi, Ghasem Hosseini Salekdeh. Precision enzyme discovery through targeted mining of metagenomic data[J]. Natural Products and Bioprospecting, 2024, 14(1): 7-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed