ORIGINAL ARTICLES |
|
|
|
|
|
Bioactivity profile of dissolved organic matter and its relation to molecular composition |
Teresa S. Catalá1,2,3, Linn G. Speidel3,4, Arlette Wenzel-Storjohann5, Thorsten Dittmar3,6, Deniz Tasdemir5,7 |
1. Global Society Institute, Wälderhaus, Hamburg, Germany; 2. Organization for Science, Education and Global Society gGmbH, Stuttgart, Germany; 3. ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany; 4. Geological Institute, Department of Earth Sciences, ETH Zurich, 8092, Zurich, Switzerland; 5. GEOMAR Centre for Marine Biotechnology, Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106, Kiel, Germany; 6. Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Oldenburg, Germany; 7. Kiel University, Christian-Albrechts-Platz 4, 24118, Kiel, Germany |
|
|
Abstract Dissolved organic matter (DOM) occupies a huge and uncharted molecular space. Given its properties, DOM can be presented as a promising biotechnological resource. However, research into bioactivities of DOM is still in early stages. In this study, the biotechnological potential of terrestrial and marine DOM, its molecular composition and their relationships are investigated. Samples were screened for their in vitro antibacterial, antifungal, anticancer and antioxidant activities. Antibacterial activity was detected against Staphylococcus aureus in almost all DOM samples, with freshwater DOM showing the lowest IC50 values. Most samples also inhibited Staphylococcus epidermidis, and four DOM extracts showed up to fourfold higher potency than the reference drug. Antifungal activity was limited to only porewater DOM towards human dermatophyte Trichophyton rubrum. No significant in vitro anticancer activity was observed. Low antioxidant potential was exerted. The molecular characterization by FT-ICR MS allowed a broad compositional overview. Three main distinguished groups have been identified by PCoA analyses. Antibacterial activities are related to high aromaticity content and highly-unsaturated molecular formulae (O-poor). Antifungal effect is correlated with highly-unsaturated molecular formulae (O-rich). Antioxidant activity is positively related to the presence of double bonds and polyphenols. This study evidenced for the first time antibacterial and antifungal activity in DOM with potential applications in cosmeceutical, pharmaceutical and aquaculture industry. The lack of cytotoxicity and the almost unlimited presence of this organic material may open new avenues in future marine bioprospecting efforts.
|
Keywords
Dissolved organic matter
Antibacterial activity
Antifungal activity
Antioxidant activity
Molecular composition
|
Fund:This work was supported by the Marie Skłodowska-Curie individual Fellow- ship “DOC-Dark Ocean Cosmeceutical: The Cosmetical and Pharmaceutical Potential of Marine Dissolved Organic Matter” (H2020-MSCA-IF-2016, number 749586) and the Start-up funding for junior research groups, 》Program- mhaushalt Forschung《 (PH-F) of the Carl von Ossietzky University Oldenburg. |
Corresponding Authors:
Teresa S. Catalá,E-mail:teresa.scatala@globalsocietyinstitute.org
E-mail: teresa.scatala@globalsocietyinstitute.org
|
Issue Date: 03 November 2023
|
|
|
[1] Zark M, Dittmar T. Universal molecular structures in natural dissolved organic matter. Nat Comms. 2018;9(1):3178. [2] Repeta DJ. Chemical characterization and cycling of dissolved organic matter. In: Hansell DA, Carlson CA, editors. Biogeochemistry of marine dissolved organic matter, 2nd edn. 2015. p. 21-63. [3] Song K, Shang Y, Wen Z, Jacinthe P-A, Liu G, Lyu L, et al. Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis. Water Res. 2019;150:403-17. [4] Wen Z, Shang Y, Song K, Liu G, Hou J, Lyu L, et al. Composition of dissolved organic matter (DOM) in lakes responds to the trophic state and phytoplankton community succession. Water Res. 2022;224: 119073. [5] Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol. 2007;5:782-91. [6] Carlson CA, Del Giorgio PA, Herndl GJ. Microbes and the dissipation of energy and respiration: from cells to ecosystems. Oceanography. 2007;20:89-100. [7] Dittmar T, Stubbins A. In: Birrer B, Falkowski P, Freeman K, editors. Treatise on geochemistry, 2nd edn. 2014; 12:125-156. [8] Hansell DA. Recalcitrant dissolved organic carbon fractions. Ann Rev Mar Sci. 2013;5(1):421-45. [9] Kandasamy S, Nagender NB. Perspectives on the terrestrial organic matter transport and burial along the land-deep sea continuum: caveats in our understanding of biogeochemical processes and future needs. Front Mar Sci. 2016;3:259. [10] Carlson CA, Hansell DA. DOM sources, sinks, reactivity, and budgets. In: Hansell DA, Carlson CA, editors. Biogeochemistry of marine dissolved organic matter. 2nd ed. Burlington: Academic Press; 2015. p. 65-126. [11] Catalá TS, Martínez-Pérez AM, Nieto-Cid M, Álvarez M, Otero J, Emelianov M, et al. Dissolved Organic Matter (DOM) in the open Mediterranean Sea. I. Basin-wide distribution and drivers of chromophoric DOM. Prog Oceanography. 2018;165:35-51. [12] Prijac A, Gandois L, Jeanneau L, Taillardat P, Garneau M. Dissolved organic matter concentration and composition discontinuity at the peat-pool interface in a boreal peatland. Biogeosciences. 2022;19:4571-88. [13] Sobek S, Tranvik LJ, Prairie YT, Kortelainen P, Cole JJ. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol Oceanogr. 2007;52(3):1208-19. [14] Toming K, Kotta J, Uuemaa E, Sobek S, Kutser T, Tranvik LJ. Predicting lake dissolved organic carbon at a global scale. Sci Rep. 2020;10:8471. [15] Lechtenfeld OJ, Hertkorn N, Shen Y, Witt M, Benner R. Marine sequestration of carbon in bacterial metabolites. Nat Commun. 2015;6:6711. [16] Zark M, Christoffers J, Dittmar T. Molecular properties of deep- sea dissolved organic matter are predictable by the central limit theorem: evidence from tandem FT- ICR-MS. Mar Chem. 2017;191:9-15. [17] Dittmar T, Lennartz ST, Buck-Wiese H, Hansell DA, Santinelli C, Vanni C, et al. Enigmatic persistence of dissolved organic matter in the ocean. Nat Rev Earth Environ. 2021. https://doi.org/10.1038/s43017-021-00183-7. [18] Dittmar T, Kattner G. Recalcitrant dissolved organic matter in the ocean: major contribution of small amphiphilics. Mar Chem. 2003;82:115-23. [19] Riedel T, Dittmar T. A method detection limit for the analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2014;86:8376-82. [20] Hertkorn N, Ruecker C, Meringer M, Gugisch R, Frommberger M, Perdue EM, et al. High- precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems. Anal Bioanal Chem. 2007;389:1311-27. [21] Masoom H, Courtier-Murias D, Farooq H, Soong R, Kelleher BP, Zhang C, et al. Soil organic matter in its native state: unravelling the most complex biomaterial on Earth. Environ Sci Technol. 2016;50:1670-80. [22] Aristilde L, Guzman JF, Klein AR, Balkind RJ. Compound-specific short-chain carboxylic acids identified in a peat dissolved organic matter using high-resolution liquid chromatography-mass spectrometry. Org Geochem. 2017;111:9-12. [23] Arnosti C, Wietz M, Brinkhoff T, Hehemann J-H, Probandt D, Zeugner L, et al. The biogeochemistry of marine polysaccharides: sources, inventories, and bacterial drivers of the carbohydrate cycle. Ann Rev Mar Sci. 2021;13:81-108. [24] Hedges JI, Cowie GL, Richey JE, Quay PD, Benner R, Strom M, Forsberg BR. Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids. Limnol Oceanogr. 1994;39:743-61. [25] Loh AN, Bauer JE, Druffel ERM. Variable ageing and storage of dissolved organic components in the open ocean. Nature. 2004;430:877-81. [26] Zigah PK, McNichol AP, Xu L, Johnson C, Santinelli X, Karl DM, et al. Allochthonous sources and dynamic cycling of ocean dissolved organic carbon revealed by carbon isotopes. Geophys Res Lett. 2017;44:2407-15. [27] Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2023;40(2):275-325. [28] https://www.marinepharmacology.org. Accessed 20 June 2023. [29] Sankarapandian V, Jothirajan B, Arasu SP, Subramaniam S, Venmathi Maran BA. Marine biotechnology and its applications in drug discovery. In: Shah MD, Ransangan J, Venmathi Maran BA, editors. Marine biotechnology: applications in food, drugs and energy. Springer, Singapore; 2023. [30] Radhakrishnan G, Yamamoto M, Maeda H, Nakagawa A, KatareGopalrao R, Okada H, et al. Intake of dissolved organic matter from deep seawater inhibits atherosclerosis progression. Biochem Biophys Res Commun. 2009;387(1):25-30. [31] Mueller C, Kremb S, Gonsior M, Brack-Werner R, Voolstra CR, Schmitt-Kopplin P. Advanced identification of global bioactivity hotspots via screening of the metabolic fingerprint of entire ecosystems. Sci Rep. 2020;10:1319. [32] Zhernov YV, Kremb S, Helfer M, Schindler M, Harir M, Mueller C, et al. Supramolecular combinations of humic polyanions as potent microbicides with polymodal anti-HIV-activities. New J Chem. 2017;41:212-24. [33] Romera-Castillo C, Jaffé R. Free radical scavenging (antioxidant activity) of natural dissolved organic matter. Mar Chem. 2015;177:668-76. [34] Catalá TS, Rossel PE, Álvarez-Gómez F, Tebben J, Figueroa FL, Dittmar T. Antioxidant activity and phenolic content of marine dissolved organic matter and their relation to molecular composition. Front Mar Sci. 2020;7: 603447. [35] Aeschbacher M, Graf C, Schwarzenbach RP, Sander M. Antioxidant properties of humic substances. Environ Sci Technol. 2012;46(9):4916-25. [36] Klein OI, Kulikova NA, Filimonov IS, Koroleva OV, Konstantinov AI. Long-term kinetics study and quantitative characterization of the antioxidant capacities of humic and humic-like substances. J Soils Sediments. 2018;18(4):1355-64. [37] Shun TY, Lazo JS, Sharlow ER, Johnston PA. Identifying actives from HTS data sets: practical approaches for the selection of an appropriate HTS data-processing method and quality control review. J Biomol Screen. 2010;16:1-14. [38] Paricharak S, Ijzerman AP, Bender A, Nigsch F. Analysis of iterative screening with stepwise compound selection based on novartis in-house HTS data. ACS Chem Biol. 2016;11(5):1255-64. [39] Elsebai MF, Kehraus S, Lindequist U, Sasse F, Shaaban S, Guetschow M, et al. Antimicrobial phenalenone derivatives from the marine-derived fungus Coniothyrium cereale. Org Biomol Chem. 2011;9(3):802-8. [40] Elsebai MF, Saleem M, Tejesvi MV, Kajula M, Mattila S, Mehiri M, et al. Fungal phenalenones: chemistry, biology, biosynthesis and phylogeny. Nat Prod Rep. 2014;31:628-45. [41] McCorkindale NJ, McRitchie A, Hutchinson SA. Lamellicolic anhydride—a heptaketide naphthalic anhydride from Verticillium lamellicola. J Chem Soc Chem Commun. 1973. https://doi.org/10.1039/C39730000108. [42] McCorkindale NJ, Hutchinson SA, McRitchie AC, Sood GR. Lamellicolic anhydride, 4-o-carbomethoxylamellicolic anhydride and monomethyl 3-chlorolamellicolate, metabolites of verticillium lamellicola. Tetrahedron. 1983;39(13):2283-8. [43] Hilliard D. Site-specific information in support of establishing numeric nutrient criteria in suwannee estuary/suwannee sound/cedar keys, Waccasassa Bay, and Withlacoochee Bay. Florida Department of Environmental Protection Tallahassee, FL. 2010; 32399 [44] Schories D. Sporulation of Enteromorpha spp. (Chlorpphyta) and overwintering of spores in sediments of the Wadden Sea, Island Sylt, North Sea. Neth J Aquat Ecol. 1995;29(3-4):341-7. [45] Elsebai MF, Stefan Kehraus S, Lindequist U, Sasse F, Shaaban S, Gütschow M, et al. Antimicrobial phenalenone derivatives from the marine-derived fungus Coniothyrium cereale. Org Biomol Chem. 2011;9:802-8. [46] Lavoie S, Sweeney-Jones AM, Mojib N, Dale B, Gagaring K, McNamara CW, et al. Antibacterial oligomeric polyphenols from the green alga Cladophora socialis. J Org Chem. 2019;84:5035-45. [47] Michalak I, Messyasz B. Concise review of Cladophora spp.: macroalgae of commercial interest. J Appl Phycol. 2021;33(1):133-66. [48] Tanaka N, Ogata H, Ushiyama K, Ono H. New antibiotics, juglomycins. II. Structures of juglomycins A and B. Jpn J Antibiot. 1971;24:222-4. [49] Ushiyama K, Tanaka N, Ono H, Ogata H. New antibiotics, juglomycins. I. Biological properties of Streptomyces species 190-2 and its products. Jpn J Antibiot. 1971;24:197-9. [50] Kämpfer P. Family Streptomycetaceae. In: Whitman W, Goodfellow M, Kämpfer P, Busse H-J, Trujillo M, Ludwig W, Suzuki K-I, Parte A, editors. Bergey's manual of systematic bacteriology volume 5: the Actinobacteria. New York: Springer-Verlag; 2012. [51] Lloyd AB. Behaviour of Streptomycetes in soil. J Gen Microbiol. 1969;56:165-70. [52] Ahmad T, Arora P, Nalli Y, Ali A, Riyaz-Ul-Hassan S. Antibacterial potential of Juglomycin A isolated from Streptomyces achromogenes, an endophyte of Crocus sativus Linn. J Appl Microbiol. 2020;128(5):1366-77. [53] Gopikrishnan V, Radhakrishnan M, Shanmugasundaram T, Ramakodi MP, Balagurunathan R. Isolation, characterization and identification of antibiofouling metabolite from mangrove derived Streptomyces sampsonii PM33. Sci Rep-uk. 2019;9:12975. [54] Kumla D. Bioactive secondary metabolites from marine-derived fungi. Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto; 2019. [55] Månsson M, Larsen TO, Nielsen KF, Gotfredsen CH. Discovery of bioactive natural products from marine bacteria. 2011; Kgs. Lyngby, Denmark: Technical University of Denmark (DTU). [56] Li H-L, Li X-M, Liu H, Meng L-H, Wang B-G. Two new diphenylketones and a new xanthone from Talaromyces islandicus EN-501, an endophytic fungus derived from the marine red alga Laurencia okamurai. Mar Drugs. 2016;14:223. [57] Nicoletti R, Vinale F. Bioactive compounds from marine-derived Aspergillus, Penicillium Talaromyces and Trichoderma species. Mar Drugs. 2019;16:408. [58] Hann MM, Leach AR, Harper G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci. 2001;41:856-66. [59] Dhandapani K, Sivarajan K, Ravindhiran R, Sekar JN. Fungal infections as an uprising threat to human health: chemosensitization of fungal pathogens with AFP from Aspergillus giganteus. Front Cell Infect Microbiol. 2022;12: 887971. [60] Roemer T, Krysan DJ. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med. 2014;4(5): a019703. [61] Pereira L. Therapeutic and nutritional uses of algae (1st edn.). CRC Press; 2017. [62] Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2023 update. Nucleic Acids Res. 2023;51(D1):D1373-80. [63] Shahid I, Han J, Hanooq S, Malik KA, Borchers CH, Mehnaz S. Profiling of metabolites of Bacillus spp. and their application in sustainable plant growth promotion and biocontrol. Front Sustain Food Syst. 2021;5: 605195. [64] Wipat A, Harwood CR. The Bacillus subtilis genome sequence: the molecular blueprint of a soil bacterium. FEMS Microbiol Ecol. 1999;28:1-9. [65] Bonner MY, Arbiser JL. The antioxidant paradox: what are antioxidants and how should they be used in a therapeutic context for cancer. Future Med Chem. 2014;6:1413-22. [66] Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. Rsc Adv. 2015;5:27986-8006. [67] Smith J, Johnson K, Brown L. Polyphenolic compounds as antioxidants from marine sources. J Appl Mar Sci. 2017;10(2):45-52. [68] Bravo L. Polyphenols, chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 1998;56(11):317-33. [69] Hockaday WC, Gallagher ME, Masiello CA, Baldock JA, Iversen CM, Norby RJ. Forest soil carbon oxidation state and oxidative ratio responses to elevated CO2. J Geophys Res Biogeosci. 2015;120:1797-811. [70] Zherebker AY, Kostyukevich YI, Kononikhin AS, Nikolaev EN, Perminova IV. Molecular compositions of humic acids extracted from leonardite and lignite as determined by Fourier transform ion cyclotron resonance mass spectrometry. Mendeleev Commun. 2016;26:446-8. [71] Tarnawski M, Depta K, Grejciun D, Szelepin B. HPLC determination of phenolic acids and antioxidant activity in concentrated peat extract—a natural immunomodulator. J Pharmaceut Biomed. 2006;41:182-8. [72] Linkhorst A, Dittmar T, Waska H. Molecular fractionation of dissolved organic matter in a shallow subterranean estuary: the role of the Iron curtain. Environ Sci Technol. 2017;51:1312-20. [73] Schmidt F, Koch BP, Goldhammer T, Elvert M, Witt M, Lin YS, et al. Unraveling signatures of biogeochemical processes and the depositional setting in the molecular composition of pore water DOM across different marine environments. Geochim Cosmochim Acta. 2017;207:57-80. [74] Carvalho da Silva R, Seidel M, Dittmar T, Waska H. Groundwater springs in the German Wadden Sea tidal flat: a fast-track terrestrial transfer route for nutrients and dissolved organic matter. Front Mar Sci. 2023;10:1128855. [75] Osterholz H, Niggemann J, Giebel H, Simon M, Dittmar T. Inefficient microbial production of refractory dissolved organic matter in the ocean. Nat Commun. 2015;6:7422. [76] Martínez-Pérez AM, Osterholz H, Nieto-Cid M, Álvarez M, Dittmar T, Álvarez-Salgado XA. Molecular composition of dissolved organic matter in the Mediterranean Sea. Limnol Oceanogr. 2017;62(6):2699-712. [77] Seidel M, Vemulapalli SPB, Mathieu D, Dittmar T. Marine dissolved organic matter shares thousands of molecular formulae yet differs structurally across major water masses. Environ Sci Technol. 2022;56(6):3758-69. [78] Green NW, Perdue EM, Aiken GR, Butler KD, Chen H, Dittmar T, et al. An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter. Mar Chem. 2014;161:14-9. [79] Chen B, Yang Y, Liang X, Yu K, Zhang T, Li X. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments. Environ Sci Technol. 2013;47(22):12753-60. [80] He L, Huang X, Zhang G, Yuan L, Shen E, Zhang L, et al. Distinctive signatures of pathogenic and antibiotic resistant potentials in the hadal microbiome. Environ Microbiome. 2022;17:19. [81] UNESCO, HELCOM. Pharmaceuticals in the aquatic environment of the Baltic Sea region—a status report. UNESCO Emerging Pollutants in Water Series—No. 1, UNESCO Publishing, Paris; 2017. [82] Minze S, Quay PD, Ostlund HG. Abyssal water carbon-14 distribution and the age of the world oceans. Science. 1983;219:849-51. [83] Catalá TS, Shorte S, Dittmar T. Marine dissolved organic matter: a vast and unexplored molecular space. Appl Microbiol Biotechnol. 2021;105:7225-39. [84] Michel U, Mildes W. Environmental monitoring in peat bog areas by change detection methods. Proc. SPIE 10005, Earth Resources and Environmental Remote Sensing/GIS Applications VII, 100051N. 2016. [85] Seidel M, Beck M, Riedel T, Waska H, Suryaputra IGNA, Schnetger B, Niggemann J, Simon M, Dittmar T. Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank. Geochim Cosmochim Acta. 2014;140:418-34. [86] Green NW, McInnis D, Hertkorn N, Maurice PA, Perdue EM. Suwannee river natural organic matter: isolation of the 2R101N reference sample by reverse osmosis. Env Eng Sci. 2014;32:1. [87] Moody CS, Worrall F. Modeling rates of DOC degradation using DOM composition and hydroclimatic variables. J Geophys Res Biogeosci. 2017;122:1175-91. [88] Stubbins A, Dittmar T. Low volume quantification of dissolved organic carbon and dissolved nitrogen. Limnol Oceanogr Methods. 2012;10:347-52. [89] Pfeifer Barbosa AL, Wenzel-Storjohann A, Barbosa JD, Zidorn C, Peifer C, Tasdemir D, Cicek SS. Antimicrobial and cytotoxic effects of the Copaifera reticulata oleoresin and its main diterpene acids. J Ethnopharmacol. 2019;233:94-100. [90] Kang HS, Kim HR, Byun DS, Son BW, Nam TJ, Choi JS. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Arch Pharm Res. 2004;27:1226-32. [91] Olsen EK, Hansen E, Isaksson J, Andersen JH. Cellular antioxidant effect of four bromophenols from the red algae, Vertebrata lanosa. Mar Drugs. 2013;11(8):2769-84. [92] Osterholz H, Dittmar T, Niggemann J. Molecular evidence for rapid dissolved organic matter turnover in Arctic fjords. Mar Chem. 2014;160:1-10. [93] Hansman RL, Dittmar T, Herndl GJ. Conservation of dissolved organic matter molecular composition during mixing of the deep water masses of the northeast Atlantic Ocean. Mar Chem. 2015;177:288-97. [94] Merder J, Freund JA, Feudel U, Hansen CT, Hawkes JA, Jacob B, et al. ICBM-OCEAN: processing ultrahigh-resolution mass spectrometry data of complex molecular mixtures. Anal Chem. 2020;92(10):6832-8. [95] Merder J, Freund JA, Feudel U, Niggemann J, Singer G, Dittmar T. Improved mass accuracy and isotope confirmation through alignment of ultrahigh-resolution mass spectra of complex natural mixtures. Anal Chem. 2019;92:2558-65. [96] Koch BP, Dittmar T. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun Mass Sp. 2006;20(5):926-32. [97] Koch BP, Dittmar T. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun Mass Sp. 2016;30:250. [98] Seidel M, Manecki M, Herlemann DPR, Deutsch B, Schulz-Bull D, Jürgens K, Dittmar T. Composition and transformation of dissolved organic matter in the Baltic Sea. Front Earth Sci. 2017;5:31. [99] Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn, et al. vegan: Community Ecology Package. R package version 2.5-6; 2017. https://cran.r-project.org/web/packages/vegan/index.html. [100] RStudio Team (2018). RStudio: Integrated Development Environment for R. Available online at: http://www.rstudio.com/. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|