Natural Products and Bioprospecting    2023, Vol. 13 Issue (3) : 17-17     DOI: 10.1007/s13659-023-00381-4
2023-6-25 |
New secondary metabolites with cytotoxicity from fungus Penicillium roqueforti
Shuyuan Mo, Ziming Zhao, Zi Ye, Zhihong Huang, Yaxin Zhang, Wanqi Yang, Jianping Wang, Zhengxi Hu, Yonghui Zhang
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
Download: PDF(1573 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Two novel compounds including a cyclohelminthol type polyketide (namely oxaleimide K,1) and a maleimide derivative (namely peniroquefortine A,2), and a new natural product (namely 2-(acetylamino)-N-[(1E)-2-phenylethenyl]-acetamide,3), together with four known compounds (4-7), were isolated and identified from fungus Penicillium roqueforti, which was separated from the root soil of Hypericum beanii N. Robson collected from the Shennongjia Forestry District, Hubei Province. Their structures including absolute configurations were mainly established by the NMR spectroscopy analyses and single-crystal X-ray diffraction experiment. Compound1 represents the second example of a cyclohelminthol type polyketide, which features a rare 6/6/5/5 tetracyclic system and a branched aliphatic chain containing a terminal olefin (oct-1-en-3-yl) moiety, and compound2 possesses an unprecedented carbon skeleton that is uniquely defined by a maleimide moiety linked to the respective 4-methylene-2-(3-methylbut-2-en-1-yl)-phenol and para-substituted aromatic moieties via the carbon-carbon bonds. Remarkably, the absolute configuration of a cyclohelminthol type polyketide as exemplified by compound1 is determined by the single-crystal diffraction analysis for the first time, highlighting an E-configuration for the linkage of a succinimide moiety and a tetrahydrofuran moiety for1 rather than a Z-configuration as previously reported in the biosynthesis study, which gives a new insight into the structural elucidation of this category of polyketides. Additionally, compound1 exhibited significant cytotoxic activity against multiple tumor cells, especially against the Farage and SU-DHL-2 cells (IC50<20 μM, 48 h). Further mechanism study revealed that compound1 significantly induced cell cycle arrest in Farage and SU-DHL-2 cells by causing abnormal ROS level and triggering oxidative stress.
Keywords Hypericum beanii N. Robson      Root soil-derived fungus      Penicillium roqueforti      Structural elucidation      Cytotoxicity     
Fund:This project was financially supported by the National Program for Support of Top-notch Young Professionals (No. 0106514050), the National Natural Science Foundation of China (Nos. 82273811 and 31870326), the National Key R&D Program of China (No. 2021YFA0910500), the National Natural Science Foundation for Distinguished Young Scholars (No. 81725021), the Innovative Research Groups of the National Natural Science Foundation of China (No. 81721005), the Research and Development Program of Hubei Province (No. 2020BCA058), and the Chinese Medicine Research Foundation of Health Commission of Hubei Province (No. ZY2021Z019).
Corresponding Authors: Jianping Wang,E-mail:jpwang1001@163.com;Zhengxi Hu,E-mail:hzx616@126.com;Yonghui Zhang,E-mail:zhangyh@mails.tjmu.edu.cn     E-mail: jpwang1001@163.com;hzx616@126.com;zhangyh@mails.tjmu.edu.cn
Issue Date: 18 July 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuyuan Mo
Ziming Zhao
Zi Ye
Zhihong Huang
Yaxin Zhang
Wanqi Yang
Jianping Wang
Zhengxi Hu
Yonghui Zhang
Trendmd:   
Cite this article:   
Shuyuan Mo,Ziming Zhao,Zi Ye, et al. New secondary metabolites with cytotoxicity from fungus Penicillium roqueforti[J]. Natural Products and Bioprospecting, 2023, 13(3): 17-17.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-023-00381-4     OR     http://npb.kib.ac.cn/EN/Y2023/V13/I3/17
1 Chan SH, Chui CH, Chan SW, Kok SHL, Chan D, Tsoi MYT, Leung PHM, Lam AKY, Chan ASC, Lam KH, Tang JCO. Synthesis of 8-hydroxyquinoline derivatives as novel antitumor agents. ACS Med Chem Lett. 2013;4:170-4.
2 Guo C, Dong E, Lai Q, Zhou S, Zhang G, Wu M, Yue X, Tao Y, Peng Y, Ali JM, Lu Y, Fu Y, Lai W, Zhang Z, Ma F, Yao Y, Gou L, Yang H, Yang J. Effective antitumor activity of 5T4-specific CAR-T cells against ovarian cancer cells in vitro and xenotransplanted tumors in vivo. MedComm. 2020;1:338-50.
3 Shi R, Tang Y, Miao H. Metabolism in tumor microenvironment: implications for cancer immunotherapy. MedComm. 2020;1:47-68.
4 Pich O, Bailey C, Watkins TBK, Zaccaria S, Jamal-Hanjani M, Swanton C. The translational challenges of precision oncology. Cancer Cell. 2022;40:458-78.
5 Chen S, Zhen Y. Research progress in new anti-tumor drugs on different targets derived from microorganisms. Acta Pharm Sin. 2018;53:833-8.
6 Duan Y, Meng L. Research progress in multi-targeted anti-tumor natural products. Acta Pharm Sin. 2021;56:403-13.
7 Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770-803.
8 Xu J, Meng L, Qing C. The clinical application and development of traditional antitumor drug. Acta Pharm Sin. 2021;56:1551-61.
9 Wu Q, Qian W, Sun X, Jiang S. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. J Hematol Oncol. 2022;15:143-3.
10 Zhao S, Wang D, Zhao H, Gong J, Zhang J, Fang W, Ma F, Xu B, Li J, Hu X, Ba Y, Chen X, Yang Z, Shen L, Jiang J, Zhang L. Time to raise the bar: transition rate of phase 1 programs on anticancer drugs. Cancer Cell. 2022;40:233-5.
11 Moreau S, Cacan M, Lablache-Combier A, Eremofortin C. A new metabolite obtained from Penicillium roqueforti cultures and from biotransformation of PR toxin. J Org Chem. 1977;42:2632-4.
12 Omura S, Inokoshi J, Uchida R, Shiomi K, Masuma R, Kawakubo T, Tanaka H, Iwai Y, Kosemura S, Yamamura S. Andrastins A-C, new protein farnesyltransferase inhibitors produced by Penicillium sp. FO-3929. I. producing strain, fermentation, isolation, and biological activities. J Antibiot. 1996;49:414-7.
13 Wang J, Yu J, Shu Y, Shi Y, Luo P, Cai L, Ding Z. Peniroquesines A-C: sesterterpenoids possessing a 5-6-5-6-5-fused pentacyclic ring system from Penicillium roqueforti YJ-14. Org Lett. 2018;20:5853-6.
14 Inose K, Tanaka S, Tanaka K, Hashimoto M. Cyclohelminthol CPs: scope and limitations of density functional theory-based structural elucidation of natural products. J Org Chem. 2021;86:1501-15.
15 Stewart SG, Ho LA, Polomska ME, Percival AT, Yeoh GCT. Rapid evaluation of Antrodia camphorata natural products and derivatives in tumourigenic liver progenitor cells with a novel cell proliferation assay. ChemMedChem. 2009;4:1657-67.
16 Gooßen LJ, Blanchot M, Salih KSM, Gooßen K. Ruthenium-catalyzed addition of primary amides to alkynes: a stereoselective synthesis of secondary enamides. Synthesis. 2009;13:2283-8.
17 Talontsi FM, Facey P, Tatong MDK, Islam MT, Frauendorf H, Draeger S, Tiedemann VA, Laatsch H. Zoosporicidal metabolites from an endophytic fungus Cryptosporiopsis sp. of Zanthoxylum leprieurii. Phytochemistry. 2012;83:87-94.
18 Yoshida Y, Haraguchi D, Ukuda-Hosokawa R, Andou T, Matsuyama T, Kohama T, Eguchi T, Ohno S, Ono H, Nishida R. Synthesis and activity of 3-oxo-α-ionone analogs as male attractants for the solanaceous fruit fly, Bactrocera latifrons (Diptera: Tephritidae). Biosci Biotechnol Biochem. 2021;85:2360-7.
19 Zhao Y, Liu D, Proksch P, Yua S, Lin W. Isocoumarin derivatives from the sponge-associated fungus Peyronellaea glomerata with antioxidant activities. Chem Biodivers. 2016;13:1186-93.
20 Chen L, Zhu T, Zhu G, Liu Y, Wang C, Pawinee P, Arthit C, Zhu W. Bioactive natural products from the marine-derived Penicillium brevicompactum OUCMDZ-4920. Chin J Org Chem. 2017;37:2752-62.
21 Vurusaner B, Poli G, Basaga H. Tumor suppressor genes and ROS: complex networks of interactions. Free Radical Bio Med. 2012;52:7-18.
22 Zhu C, Shi H, Wu M, Wei X, Lin W. A dual MET/AXL small-molecule inhibitor exerts efficacy against gastric carcinoma through killing cancer cells as well as modulating tumor microenvironment. MedComm. 2020;1:103-18.
[1] Li Hou, Cui-Xuan Mei, Chun-Mao Yuan, Gui-Hua Tang, Duo-Zhi Chen, Qing Zhao, Hong-Ping He, Ming-Ming Cao, Xiao-Jiang Hao. Five new limonoids isolated from Walsura robusta[J]. Natural Products and Bioprospecting, 2023, 13(2): 7-7.
[2] Ya-Li Hu, Xing-Ren Li, Gang Xu. Carascynol A, a hybrid of caryophyllane-type terpenoid and a C6 unit degraded by polyprenylated acylphloroglucinols from Hypericum ascyron[J]. Natural Products and Bioprospecting, 2022, 12(6): 38-38.
[3] Xin Zhang, Yun-Bao Ma, Xiao-Feng He, Tian-Ze Li, Chang-An Geng, Li-Hua Su, Shuang Tang, Zhen Gao, Ji-Jun Chen. Artemyrianosins A–J, cytotoxic germacrane-type sesquiterpene lactones from Artemisia myriantha[J]. Natural Products and Bioprospecting, 2022, 12(3): 16-16.
[4] Natividad Herrera Cano, Sebastian A. Andujar, Cristina Theoduloz, Daniel A. Wunderlin, Ana N. Santiago, Guillermo Schmeda-Hirschmann, Ricardo D. Enriz, Gabriela E. Feresin. Arylated analogues of cypronazole: fungicidal effect and activity on human fibroblasts. Docking analysis and molecular dynamics simulations[J]. Natural Products and Bioprospecting, 2022, 12(2): 9-9.
[5] Ruo-Song Zhang, Yang-Yang Liu, Pei-Feng Zhu, Qiong Jin, Zhi Dai, Xiao-Dong Luo. Furostanol Saponins from Asparagus cochinchinensis and Their Cytotoxicity[J]. Natural Products and Bioprospecting, 2021, 11(6): 651-658.
[6] Patrick O. Sakyi, Richard K. Amewu, Robert N. O. A. Devine, Emahi Ismaila, Whelton A. Miller, Samuel K. Kwofie. The Search for Putative Hits in Combating Leishmaniasis: The Contributions of Natural Products Over the Last Decade[J]. Natural Products and Bioprospecting, 2021, 11(5): 489-544.
[7] Chen Shi, Yue-Ling Peng, Juan He, Zheng-Hui Li, Ji-Kai Liu, Tao Feng. Structures, Chemical Conversions, and Cytotoxicity of Tricholopardins C and D, Two Tricholoma Triterpenoids from the Wild Mushroom Tricholoma pardinum[J]. Natural Products and Bioprospecting, 2021, 11(2): 235-241.
[8] Yi Chen, Song-Wei Li, Fang-Zhou Yin, Min Yang, Xia-Juan Huan, Ze-Hong Miao, Xiao-Ming Wang, Yue-Wei Guo. Lagerindicine, a New Pyrrole Alkaloid Isolated from the Flowers of Lagerstroemia indica Linnaeus[J]. Natural Products and Bioprospecting, 2021, 11(1): 73-79.
[9] Mohammad Sanad Abu-Darwish, Célia Cabral, Zulfigar Ali, Mei Wang, Shabana I. Khan, Melissa R. Jacob, Surendra K. Jain, Babu L. Tekwani, Fazila Zulfiqar, Ikhlas A. Khan, Hatem Taifour, Lígia Salgueiro, Thomas Efferth. Salvia ceratophylla L. from South of Jordan: new insights on chemical composition and biological activities[J]. Natural Products and Bioprospecting, 2020, 10(5): 307-316.
[10] Cheng Shen, Xiao-Yan Huang, Chang-An Geng, Tian-Ze Li, Shuang Tang, Li-Hua Su, Zhen Gao, Xue-Mei Zhang, Jing Hu, Ji-Jun Chen. Artemlavanins A and B from Artemisia lavandulaefolia and Their Cytotoxicity Against Hepatic Stellate Cell Line LX2[J]. Natural Products and Bioprospecting, 2020, 10(4): 243-250.
[11] Shuang Tang, Yun-Bao Ma, Chang-An Geng, Cheng Shen, Tian-Ze Li, Xue-Mei Zhang, Li-Hua Su, Zhen Gao, Jing Hu, Ji-Jun Chen. Artemyrianins A-G from Artemisia myriantha and Their Cytotoxicity Against HepG2 Cells[J]. Natural Products and Bioprospecting, 2020, 10(4): 251-260.
[12] Jia-Huan Shang, Guo-Wei Xu, Hong-Tao Zhu, Dong Wang, Chong-Ren Yang, Ying-Jun Zhang. Anti-inflammatory and Cytotoxic Triterpenes from the Rot Roots of Panax notoginseng[J]. Natural Products and Bioprospecting, 2019, 9(4): 287-295.
[13] Cheng-Ji Li, Fan Xia, Rong Wu, Hong-Sheng Tan, Hong-Xi Xu, Gang Xu, Hong-Bo Qin. Synthesis and Cytotoxicities of Royleanone Derivatives[J]. Natural Products and Bioprospecting, 2018, 8(6): 453-456.
[14] Xia Wang, Xing-Rong Peng, Jing Lu, Gui-Lin Hu, Ming-Hua Qiu. New Dammarane Triterpenoids, Caffruones A-D, from the Cherries of Coffea arabica[J]. Natural Products and Bioprospecting, 2018, 8(6): 413-418.
[15] Gao-Wei Li, Han Liu, Feng Qiu, Xiao-Juan Wang, Xin-Xiang Lei. Residual Dipolar Couplings in Structure Determination of Natural Products[J]. Natural Products and Bioprospecting, 2018, 8(4): 279-295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed