ORIGINAL ARTICLES |
|
|
|
|
|
Therapeutic targeting of ocular diseases with emphasis on PI3K/Akt, and OPRL pathways by Hedera helix L. saponins: a new approach for the treatment of Pseudomonas aeruginosa-induced bacterial keratitis |
Sherif A. Hamdy1, Shymaa Hatem2, Heba Elosaily3, Abrar Gomaa Abd-Elfattah Hassan4, Rana Elshimy5,6, Ahmed H. Osman7, Riham A. El-Shiekh1 |
1. Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt; 2. Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, New Cairo, Egypt; 3. Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 4th Industrial Region, 6th of October City, 12585, Giza, Egypt; 4. Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11765, Egypt; 5. Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt; 6. Department of Microbiology and Immunology, Egyptian Drug Authority, Cairo, Egypt; 7. Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt |
|
|
Abstract Pseudomonas aeruginosa-induced bacterial keratitis is one of the most sight-threatening corneal infections associated with intense ocular inflammatory reactions that may lead to vision loss. Hence, this study investigated the efficacy of three nanocomposite chitosan-coated penetration enhancer vesicles (PEVs) to augment the ocular delivery of saponin(s), α-hederin (PEVI), hederacoside C (PEVII), or both (PEVIII) for treatment of Pseudomonas keratitis and its induced inflammatory response. The three formulations were prepared using the ethanol injection method and comprehensively characterized. In vitro, the antibacterial activity of the three formulations against P. aeruginosa was evaluated using agar well-diffusion method, pyocyanin production inhibition, and swarming and twitching motility inhibition assays. The therapeutic effect of the three formulations has been investigated in P. aeruginosa keratitis by gross lesion monitoring, determination of bacterial bioburden, biochemical markers, histopathological examination, and scoring after 7 days of topical treatment. Data revealed that PEVI, PEVII, and PEVIII nanocomposites showed particle size in the nanometer range, high entrapment efficiency, good stability, and sustained release of the saponins throughout 24 h. Among them, PEVIII exhibited notably strong in vitro antipseudomonal activity. Additionally, animals treated topically with PEVIII showed an appreciable gross lesion reduction, corneal tissue improvement, and formidable bacterial load reduction compared with untreated and gentamicin sulfate eye (GENTAWISE®) ointment-treated groups. Moreover, PEVIII treatment showed the most significant reduction in TNF-α, NF-κB, ROS levels, and OPRL virulence gene expression while enhancing PI3K/Akt activation. Therefore, this study offers PEVIII as a promising treatment for P. aeruginosa keratitis.
|
Keywords
Hedera helix L.
Saponins
α-Hederin
Hedracoside C
Pseudomonas keratitis
Eye disease
|
Fund:This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. |
Issue Date: 18 June 2025
|
|
|
1. El-Telbany M, Mohamed AA, Yahya G, Abdelghafar A, Abdel-Halim MS, Saber S, et al. Combination of Meropenem and zinc oxide nanoparticles; antimicrobial synergism, exaggerated antibiofilm activity, and efficient therapeutic strategy against bacterial keratitis. Antibiotics. 2022;11:1374. 2. De Oliveira DM, Forde BM, Kidd TJ, Harris PN, Schembri MA, Beatson SA, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020. https://doi.org/10.1128/cmr.00181-19. 3. Fleiszig SM, Evans DJ. The pathogenesis of bacterial keratitis: studies with Pseudomonas aeruginosa. Clin Exp Optom. 2002;85:271-8. 4. Roshni J, Ahmad SF, Wani A, Ahmed SS. Multi-target effect of Aloeresin-A against bacterial and host inflammatory targets benefits contact lens-related keratitis: a multi-omics and quantum chemical investigation. Molecules. 2023;28:6955. 5. Liao C, Huang X, Wang Q, Yao D, Lu W. Virulence factors of Pseudomonas aeruginosa and antivirulence strategies to combat its drug resistance. Front Cell Infect Microbiol. 2022;12:926758. 6. Raheema RH, Yasir QD. Molecular detection of carbanemase in gram negative bacteria Isolated from intensive care unit patients Molecular detection of carbanemase in gram negative bacteria Isolated from intensive care unit patients in wasit province, Iraqin wasit province, Iraq. World J Biol Pharm Health Sci. 2022;12:130-9. 7. Sánchez-Peña A, Winans JB, Nadell CD, Limoli DH. Pseudomonas aeruginosa surface motility and invasion into competing communities enhances interspecies antagonism. bioRxiv. 2024. https://doi.org/10.1128/mbio.00956-24. 8. Ghazaei C. Pseudomonas aeruginosa: Prevalence of Pathogenic Genes, OprL and ToxA in Human and Veterinary Clinical Samples in Ardabil, Iran. J Adv Biomed Sci. 2022. https://doi.org/10.18502/jabs.v12i4.11443. 9. Kierbel A, Gassama-Diagne A, Mostov K, Engel J. The phosphoinositol-3-kinase-protein kinase B/Akt pathway is critical for Pseudomonas aeruginosa strain PAK internalization. Mol Biol Cell. 2005;16:2577-85. 10. Chen K, Li Y, Zhang X, Ullah R, Tong J, Shen Y. The role of the PI3K/AKT signalling pathway in the corneal epithelium: recent updates. Cell Death Dis. 2022;13:513. 11. Wu X-Y, Han S-P, Ren M-Y, Chang Y, Yu F-X. The role of NF-κB activation in lipopolysacchavide induced keratitis in rats. Chin Med J. 2005;118:1893-9. 12. Wu X, Chen G, Han S. The expression of nuclear factor-kappa B in lipopolysaccharide-induced keratitis of rats and the effect of pyrrolidine dithiocarbamate on its expression [Zhonghua yan ke za Zhi]. Chin J Ophthalmol. 2006;42:699-703. 13. Dong J, Jimi E, Zeiss C, Hayden MS, Ghosh S. Constitutively active NF-κB triggers systemic TNFα-dependent inflammation and localized TNFα-independent inflammatory disease. Genes Dev. 2010;24:1709-17. 14. Kim JM, Yoon JN, Jung JW, Choi HD, Shin YJ, Han CK, et al. Pharmacokinetics of hederacoside C, an active ingredient in AG NPP709, in rats. Xenobiotica. 2013;43:985-92. 15. Khdair A, Mohammad MK, Tawaha K, Al-Hamarsheh E, AlKhatib HS, Al-Khalidi B, et al. A validated RP HPLC-PAD method for the determination of hederacoside C in ivy-thyme cough syrup. Int J Anal Chem. 2010;2010:478143. 16. Blumenthal M. The complete German commission E monographs. Therapeutic guide to herbal medicines. 1999. 17. Demirci B, Goppel M, Demirci F, Franz G. HPLC profiling and quantification of active principles in leaves of Hedera helix L. Die Pharmazie Int J Pharm Sci. 2004;59:770-4. 18. Hong E-H, Song J-H, Shim A, Lee B-R, Kwon B-E, Song H-H, et al. Coadministration of Hedera helix L. extract enabled mice to overcome insufficient protection against influenza A/PR/8 virus infection under suboptimal treatment with oseltamivir. PloS ONE. 2015;10:e0131089. 19. Hocaoglu AB, Karaman O, Erge DO, Erbil G, Yilmaz O, Kivcak B, et al. Effect of Hedera helix on lung histopathology in chronic asthma. Iran J Allergy Asthma Immunol. 2012;11:316-23. 20. El-Shiekh R, Atwa AM, Elgindy AM, Ibrahim KM, Senna MM, Ebid N, et al. Current perspective and mechanistic insights on α-Hederin for the prevention and treatment of several non-communicable diseases. Chem Biodivers. 2024;22:e202402289. 21. Xu H-C, Wu B, Ma Y-M, Xu H, Shen Z-H, Chen S. Hederacoside-C protects against AGEs-induced ECM degradation in mice chondrocytes. Int Immunopharmacol. 2020;84:106579. 22. Muhammad A, Aftab S, Arshad Z, Chen Y, Wang Y, Yang M, et al. Hederacoside-C inhibition of staphylococcus aureus-induced mastitis via TLR2 & TLR4 and their downstream Signaling NF-κB and MAPKs pathways in vivo and in vitro. Inflammation. 2020;43:579-94. 23. Mazayen ZM, Ghoneim AM, Elbatanony RS, Basalious EB, Bendas ER. Pharmaceutical nanotechnology: from the bench to the market. Future J Pharm Sci. 2022;8:12. 24. Wassif RK, Elkheshen SA, Shamma RN, Amer MS, Elhelw R, El-Kayal M. Injectable systems of chitosan in situ forming composite gel incorporating linezolid-loaded biodegradable nanoparticles for long-term treatment of bone infections. Drug Deliv Transl Res. 2024;14:80-102. 25. Bisen AC, Biswas A, Dubey A, Sanap SN, Agrawal S, Yadav KS, et al. A review on polymers in ocular drug delivery systems. MedComm Biomater Appl. 2024;3:e77. 26. Bajcura M, Lukáč M, Pisárčik M, Horváth B. Study of micelles and surface properties of triterpene saponins with improved isolation method from Hedera helix. Chem Pap. 2024;78:1875-85. 27. Ang S-S, Thoo YY, Siow LF. Encapsulation of hydrophobic apigenin into small unilamellar liposomes coated with chitosan through ethanol injection and spray drying. Food Bioprocess Technol. 2024;17:424-39. 28. El-Kayal M, Hatem S. A comparative study between nanostructured lipid carriers and invasomes for the topical delivery of luteolin: design, optimization and pre-clinical investigations for psoriasis treatment. J Drug Deliv Sci Technol. 2024;97:105740. 29. Hatem S, Elkheshen SA, Kamel AO, Nasr M, Moftah NH, Ragai MH, et al. Functionalized chitosan nanoparticles for cutaneous delivery of a skin whitening agent: an approach to clinically augment the therapeutic efficacy for melasma treatment. Drug Deliv. 2022;29:1212-31. 30. Havlíková L, Macáková K, Opletal L, Solich P. Rapid determination of α-hederin and hederacoside C in extracts of Hedera helix leaves available in the Czech Republic and Poland. Nat Prod Commun. 2015;10:1934578X1501000910. 31. Hatem S, Nasr M, Moftah NH, Ragai MH, Geneidi AS, Elkheshen SA. Melatonin vitamin C-based nanovesicles for treatment of androgenic alopecia: design, characterization and clinical appraisal. Eur J Pharm Sci. 2018;122:246-53. 32. Hatem S, Nasr M, Moftah NH, Ragai MH, Geneidi AS, Elkheshen SA. Clinical cosmeceutical repurposing of melatonin in androgenic alopecia using nanostructured lipid carriers prepared with antioxidant oils. Expert Opin Drug Deliv. 2018;15:927-35. 33. Hatem S, El-Kayal M. Novel anti-psoriatic nanostructured lipid carriers for the cutaneous delivery of luteolin: a comprehensive in-vitro and in-vivo evaluation. Eur J Pharm Sci. 2023;191:106612. 34. El-Gendy MA, Mansour M, El-Assal MI, Ishak RA, Mortada ND. Travoprost liquid nanocrystals: an innovative armamentarium for effective glaucoma therapy. Pharmaceutics. 2023;15:954. 35. Esposito E, Pozza E, Contado C, Pula W, Bortolini O, Ragno D, et al. Microfluidic fabricated liposomes for Nutlin-3a ocular delivery as potential candidate for proliferative vitreoretinal diseases treatment. Int J Nanomed. 2024;19:3513-36. 36. Eltellawy YA, El-Kayal M, Abdel-Rahman RF, Salah S, Shaker DS. Optimization of transdermal atorvastatin calcium-Loaded proniosomes: Restoring lipid profile and alleviating hepatotoxicity in poloxamer 407-induced hyperlipidemia. Int J Pharm. 2021;593:120163. 37. Mohamed A, Abdelhamid F. Antibiotic susceptibility of Pseudomonas aeruginosa isolated from different clinical sources. Zagazig J Pharm Sci. 2020;28:10-7. 38. Boongapim R, Ponyaim D, Ponyaim D, Phiwthong T, Rattanasuk S. In vitro antibacterial activity of Capparis sepiaria L. against human pathogenic bacteria. Asian J Plant Sci. 2021. https://doi.org/10.3923/ajps.2021.102.108. 39. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163-75. 40. Jabłońska J, Dubrowska K, Augustyniak A, Wróbel RJ, Piz M, Cendrowski K, et al. The influence of nanomaterials on pyocyanin production by Pseudomonas aeruginosa. Appl Nanosci. 2022;12:1929-40. 41. Pham DTN, Khan F, Phan TTV, Park S-K, Manivasagan P, Oh J, et al. Biofilm inhibition, modulation of virulence and motility properties by FeOOH nanoparticle in Pseudomonas aeruginosa. Brazilian J Microbiol. 2019;50:791-805. 42. Abdul Hak A, Zedan HH, El-Mahallawy HA, El-Sayyad GS, Zafer MM. In Vivo and in Vitro activity of colistin-conjugated bimetallic silver-copper oxide nanoparticles against Pandrug-resistant Pseudomonas aeruginosa. BMC Microbiol. 2024;24:213. 43. Utlu B, Öndaş O, Yıldırım M, Bayrakçeken K, Yıldırım S. Pseudomonas aeruginosa Keratitis in rats: study of the effect of topical 5% hesperidin practice on Healing. Eurasian J Med. 2023;55:64. 44. Bancroft JD, Gamble M. Theory and practice of histological techniques. Amsterdam: Elsevier health sciences; 2008. 45. Holsæter AM, Wizgird K, Karlsen I, Hemmingsen JF, Brandl M, Škalko-Basnet N. How docetaxel entrapment, vesicle size, zeta potential and stability change with liposome composition-A formulation screening study. Eur J Pharm Sci. 2022;177:106267. 46. Sharma N, Sharma S, Kaushik R. Formulation and evaluation of lornoxicam transdermal patches using various permeation enhancers. Int J Drug Deliv Technol. 2019;9:597-607. 47. Lakshmi P, Mounica V, Manoj KY, Prasanthi D. Preparation and evaluation of curcumin invasomes. Int J Drug Deliv. 2014;6:113. 48. Abdel Azim EA, Elkheshen SA, Hathout RM, Fouly MA, El El Hoffy NM. Augmented in vitro and in vivo profiles of brimonidine tartrate using gelatinized-core liposomes. Int J Nanomed. 2022;17:2753-76. 49. Rashki S, Asgarpour K, Tarrahimofrad H, Hashemipour M, Ebrahimi MS, Fathizadeh H, et al. Chitosan-based nanoparticles against bacterial infections. Carbohyd Polym. 2021;251:117108. 50. García-Manrique P, Machado ND, Fernández MA, Blanco-López MC, Matos M, Gutiérrez G. Effect of drug molecular weight on niosomes size and encapsulation efficiency. Colloids Surf B. 2020;186:110711. 51. Ledezma-Gallegos F, Jurado R, Mir R, Medina LA, Mondragon-Fuentes L, Garcia-Lopez P. Liposomes co-encapsulating cisplatin/mifepristone improve the effect on cervical cancer: in vitro and in vivo assessment. Pharmaceutics. 2020;12:897. 52. Budhian A, Siegel SJ, Winey KI. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm. 2007;336:367-75. 53. Manchanda R, Fernandez-Fernandez A, Nagesetti A, McGoron AJ. Preparation and characterization of a polymeric (PLGA) nanoparticulate drug delivery system with simultaneous incorporation of chemotherapeutic and thermo-optical agents. Colloids Surf B. 2010;75:260-7. 54. El-Kayal M, Nasr M, Elkheshen S, Mortada N. Colloidal (-)-epigallocatechin-3-gallate vesicular systems for prevention and treatment of skin cancer: a comprehensive experimental study with preclinical investigation. Eur J Pharm Sci. 2019;137:104972. 55. Manca ML, Manconi M, Falchi AM, Castangia I, Valenti D, Lampis S, et al. Close-packed vesicles for diclofenac skin delivery and fibroblast targeting. Colloids Surf, B. 2013;111:609-17. 56. Barakat SS, Nasr M, Ahmed RF, Badawy SS, Mansour S. Intranasally administered in situ gelling nanocomposite system of dimenhydrinate: preparation, characterization and pharmacodynamic applicability in chemotherapy induced emesis model. Sci Rep. 2017;7:9910. 57. Naik P, Pandey S, Gagan S, Biswas S, Joseph J. Virulence factors in multidrug (MDR) and Pan-drug resistant (XDR) Pseudomonas aeruginosa: a cross-sectional study of isolates recovered from ocular infections in a high-incidence setting in southern India. J Ophthalmic Inflamm Infect. 2021;11:1-11. 58. Capece D, Verzella D, Flati I, Arboretto P, Cornice J, Franzoso G. NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol. 2022;43:757-75. 59. Khan MI, Karima G, Khan MZ, Shin JH, Kim JD. Therapeutic effects of saponins for the prevention and treatment of cancer by ameliorating inflammation and angiogenesis and inducing antioxidant and apoptotic effects in human cells. Int J Mol Sci. 2022;23:10665. 60. Passos FRS, Araújo-Filho HG, Monteiro BS, Shanmugam S, de Souza Araújo AA, da Silva Almeida JRG, et al. Anti-inflammatory and modulatory effects of steroidal saponins and sapogenins on cytokines: a review of pre-clinical research. Phytomedicine. 2022;96:153842. 61. Hu J-N, Yang J-Y, Jiang S, Zhang J, Liu Z, Hou J-G, et al. Panax quinquefolium saponins protect against cisplatin evoked intestinal injury via ROS-mediated multiple mechanisms. Phytomedicine. 2021;82:153446. 62. Sun Y, Zhang Y, Qi W, Xie J, Cui X. Saponins extracted by ultrasound from Zizyphus jujuba Mil var. spinosa leaves exert resistance to oxidative damage in Caenorhabditis elegans. J Food Meas Charact. 2021;15:541-54. 63. Wang L, Chen Y, Sternberg P, Cai J. Essential roles of the PI3 kinase/Akt pathway in regulating Nrf2-dependent antioxidant functions in the RPE. Invest Ophthalmol Vis Sci. 2008;49:1671-8. 64. Wen S-Y, Ng S-C, Ho W-K, Huang H-Z, Huang C-Y, Kuo W-W. Activation of PI3K/Akt mediates the protective effect of diallyl trisulfide on doxorubicin induced cardiac apoptosis. Curr Res Toxicol. 2023;5:100136. 65. Acosta-Martinez M, Cabail MZ. The PI3K/Akt pathway in meta-inflammation. Int J Mol Sci. 2022;23:15330. 66. Wijesekara T, Luo J, Xu B. Critical review on anti-inflammation effects of saponins and their molecular mechanisms. Phytother Res. 2024;38:2007-22. 67. Algammal AM, Eidaroos NH, Alfifi KJ, Alatawy M, Al-Harbi AI, Alanazi YF, et al. Opr l gene sequencing, resistance patterns, virulence genes, quorum sensing and antibiotic resistance genes of xdr Pseudomonas aeruginosa isolated from broiler chickens. Infect Drug Resist. 2023;16:853-67. 68. Liao Y, Li Z, Zhou Q, Sheng M, Qu Q, Shi Y, et al. Saponin surfactants used in drug delivery systems: a new application for natural medicine components. Int J Pharm. 2021;603:120709. 69. Ekanayaka SA, McClellan SA, Barrett RP, Hazlett LD. Topical glycyrrhizin is therapeutic for Pseudomonas aeruginosa keratitis. J Ocul Pharmacol Ther. 2018;34:239-49. 70. Shah SL, Wahid F, Khan N, Farooq U, Shah AJ, Tareen S, et al. Inhibitory effects of Glycyrrhiza glabra and its major constituent glycyrrhizin on inflammation-associated corneal neovascularization. Evidence-Based Complementary Altern Med. 2018;2018:8438101. 71. Burillon C, Chiambaretta F, Pisella P-J. Efficacy and safety of glycyrrhizin 2.5% eye drops in the treatment of moderate dry eye disease: results from a prospective, open-label pilot study. Clin Ophthalmol. 2018;12:2629-36. 72. Ying Y, Zhang Y-L, Ma C-J, Li M-Q, Tang C-Y, Yang Y-F, et al. Neuroprotective effects of ginsenoside Rg1 against hyperphosphorylated tau-induced diabetic retinal neurodegeneration via activation of IRS-1/Akt/GSK3β signaling. J Agric Food Chem. 2019;67:8348-60. 73. Wang Y, Sun X, Xie Y, Du A, Chen M, Lai S, et al. Panax notoginseng saponins alleviate diabetic retinopathy by inhibiting retinal inflammation: association with the NF-κB signaling pathway. J Ethnopharmacol. 2024;319:117135. 74. Zhang XP, Li KR, Yu Q, Yao MD, Ge HM, Li XM, et al. Ginsenoside Rh2 inhibits vascular endothelial growth factor-induced corneal neovascularization. FASEB J. 2018;32:3782-91. 75. Hu R-Y, Qi S-M, Wang Y-J, Li W-L, Zou W-C, Wang Z, et al. Ginsenoside Rg3 improved age-related macular degeneration through inhibiting ROS-mediated mitochondrion-dependent apoptosis in vivo and in vitro. Int J Mol Sci. 2024;25:11414. 76. Zhao F, Wang S, Li Y, Wang J, Wang Y, Zhang C, et al. Surfactant cocamide monoethanolamide causes eye irritation by activating nociceptor TRPV1 channels. Br J Pharmacol. 2021;178:3448-62. 77. Shree D, Patra CN, Sahoo BM. Applications of nanotechnology-mediated herbal nanosystems for ophthalmic drug. Pharm Nanotechnol. 2024;12:229-50. 78. Razavi MS, Ebrahimnejad P, Fatahi Y, D’Emanuele A, Dinarvand R. Recent developments of nanostructures for the ocular delivery of natural compounds. Front Chem. 2022;10:850757. 79. Ways TM, Lau WM, Khutoryanskiy VV. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers. 2018;10:267. 80. Zamboulis A, Nanaki S, Michailidou G, Koumentakou I, Lazaridou M, Ainali NM, et al. Chitosan and its derivatives for ocular delivery formulations: recent advances and developments. Polymers. 2020;12:1519. 81. Albarqi HA, Garg A, Ahmad MZ, Alqahtani AA, Walbi IA, Ahmad J. Recent progress in chitosan-based nanomedicine for its ocular application in glaucoma. Pharmaceutics. 2023;15:681. 82. Irimia T, Ghica MV, Popa L, Anuţa V, Arsene A-L, Dinu-Pîrvu C-E. Strategies for improving ocular drug bioavailability and corneal wound healing with chitosan-based delivery systems. Polymers. 2018;10:1221. 83. Ren M, Wu X. Evaluation of three different methods to establish animal models of Acanthamoeba keratitis. Yonsei Med J. 2009;51:121-7. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|