Natural Products and Bioprospecting    2025, Vol. 15 Issue (2) : 17-17     DOI: 10.1007/s13659-025-00498-8
ORIGINAL ARTICLES |
Emestrin-type epipolythiodioxopiperazines from Aspergillus nidulans with cytotoxic activities by regulating PI3K/AKT and mitochondrial apoptotic pathways
Pengkun Li1, Qin Li1, Aimin Fu1, Yang Xiao1, Chunmei Chen1, Hucheng Zhu1, Changxing Qi1, Wei Wei2, Yuan Zhou1, Yonghui Zhang1
1. Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China;
2. China National Center for Biotechnology Development, Beijing, 100039, People's Republic of China
Download: PDF(3179 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Five novel emestrin-type epipolythiodioxopiperazines (ETPs), prenylemestrins C-G (1-5), along with two known ETPs, prenylemestrin A (6) and prenylemestrin B (7), were obtained from Aspergillus nidulans. Their structures were characterized by spectroscopic data, X-ray crystallographic data, ECD comparisons and calculations. Prenylemestrins C-G (1 - 5) represent a rare class of ETPs, characterized by a 2,5-dithia-7,9-diazabicyclo[4.2.2]decane-8,10-dione core involving a hemiterpene moiety. Notably, compound 6 exhibited moderate cytotoxicity, inducing G2/M cell cycle arrest and apoptosis of L1210 cells by regulating the PI3K/AKT signaling pathway and mitochondrial apoptotic mechanisms.
Keywords Aspergillus nidulans      Epipolythiodioxopiperazines      Thioethanothio bridge      Structural elucidation      Cytotoxicity     
Fund:National Natural Science Foundation of China (U22A20380, 82173706, 82104028) and Fundamental Research Funds for the Central Universities (2024BRA018) financially supported this project.
Corresponding Authors: Wei Wei, E-mail:weiwei@cncbd.org.cn;Yuan Zhou, E-mail:zhouyuan@hust.edu.cn;Yonghui Zhang, E-mail:zhangyh@mails.tjmu.edu.cn     E-mail: weiwei@cncbd.org.cn;zhouyuan@hust.edu.cn;zhangyh@mails.tjmu.edu.cn
Issue Date: 17 May 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pengkun Li
Qin Li
Aimin Fu
Yang Xiao
Chunmei Chen
Hucheng Zhu
Changxing Qi
Wei Wei
Yuan Zhou
Yonghui Zhang
Trendmd:   
Cite this article:   
Pengkun Li,Qin Li,Aimin Fu, et al. Emestrin-type epipolythiodioxopiperazines from Aspergillus nidulans with cytotoxic activities by regulating PI3K/AKT and mitochondrial apoptotic pathways[J]. Natural Products and Bioprospecting, 2025, 15(2): 17-17.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-025-00498-8     OR     http://npb.kib.ac.cn/EN/Y2025/V15/I2/17
[1] Abdel-Razek AS, El-Naggar ME, Allam A, Morsy OM, Othman SI. Microbial natural products in drug discovery. Processes. 2020;8(4):470.
[2] Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770-803.
[3] Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem. 2016;8(6):531-41.
[4] Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, Singh BP, Mudili V, Gupta VK, Siddaiah CN, Chowdappa S, Alqarawi AA, Abd_Allah EF. Endophytic fungi-alternative sources of cytotoxic compounds: a review. Front Pharmacol. 2018;9: 309/301-309/337.
[5] Yao H, Liu J, Xu S, Zhu Z, Xu J. The structural modification of natural products for novel drug discovery. Expert Opin Drug Discov. 2017;12(2):121-40.
[6] Li Q, Zheng Y, Fu A, Wei M, Kang X, Chen C, Zhu H, Zhang Y. 30-norlanostane triterpenoids and steroid derivatives from the endophytic fungus Aspergillus nidulans. Phytochemistry. 2022;201: 113257.
[7] Huber EM. Epipolythiodioxopiperazine-based natural products: building blocks, biosynthesis and biological activities. ChemBioChem. 2022;23(23): e202200341.
[8] Wang L, Jiang Q, Chen S, Wang S, Lu J, Gao X, Zhang D, Jin X. Natural epidithiodiketopiperazine alkaloids as potential anticancer agents: recent mechanisms of action, structural modification, and synthetic strategies. Bioorg Chem. 2023;137: 106642.
[9] Martínez C, García-Domínguez P, Álvarez R, de Lera AR. Bispyrrolidinoindoline epi(poly)thiodioxopiperazines (BPI-ETPs) and simplified mimetics: structural characterization, bioactivities, and total synthesis. Molecules. 2022;27(21):7585.
[10] Zhu M, Zhang X, Huang X, Wang H, Anjum K, Gu Q, Zhu T, Zhang G, Li D. Irregularly bridged epipolythiodioxopiperazines and related analogues: sources, structures, and biological activities. J Nat Prod. 2020;83(6):2045-53.
[11] Onodera H, Hasegawa A, Tsumagari N, Nakai R, Ogawa T, Kanda Y. MPC1001 and its analogues: new antitumor agents from the fungus Cladorrhinum species. Org Lett. 2004;6(22):4101-4.
[12] Ueno Y, Umemori K, Niimi E-C, Tanuma S-I, Nagata S, Sugamata M, Ihara T, Sekijima M, Kawai K-I, et al. Induction of apoptosis by T-2 toxin and other natural toxins in HL-60 human promyelotic leukemia cells. Nat Toxins. 1995;3(3):129-37.
[13] Seya H, Nakajima S, Kawai K, Udagawa S. Structure and absolute configuration of emestrin, a new macrocyclic epidithiodioxopiperazine from Emericella striata. J Chem Soc, Chem Commun. 1985;10:657-8.
[14] Kawai K, Ishizaki K, Nakamaru T, Hisada K, Nozawa Y, Kawai KI. Toxicity of emestrin, a new macrocyclic dithiodioxopiperazine mycotoxin, to mitochondrial function. Mycotoxin Res. 1989;5(1):2-8.
[15] Kawahara N, Nozawa K, Nakajima S, Kawai K-I. Aurantioemestrin from Emericella striata and silvathione from Aspergillus silvaticus, possible key intermediates from epidithiodioxopiperazines to trioxopiperazines. J Chem Soc Chem Commun. 1986;19:1495-6.
[16] Herath HMTB, Jacob M, Wilson AD, Abbas HK, Nanayakkara NPD. New secondary metabolites from bioactive extracts of the fungus Armillaria tabescens. Nat Prod Res. 2013;27(17):1562-8.
[17] Chang S, Cai M, Xiao T, Chen Y, Zhao W, Yu L, Shao R, Jiang W, Zhang T, Gan M, Si S, Chen M. Prenylemestrins A and B: Two unexpected epipolythiodioxopiperazines with a thioethanothio bridge from Emericella sp. isolated by genomic analysis. Org Lett. 2022;24(32):5941-5.
[18] Chen Y, Xiao T, Guo S, Chang S, Xi X, Su B, Zhang T, Yu L, Zhao W, Wu J, Li Y, Si S, Chen M. Unexpected noremestrin with a sulfur-bearing 15-membered macrocyclic lactone from Emericella sp. 1454. Org Lett. 2024;26(1):1-5.
[19] Li Q, Fu A, Wei M, Xiao Y, Yin J, Huang J, Li X-N, Tong Q, Chen C, Zhu H, Zhang Y. Asperemestrins A-D, emestrin hybrid polymers with bridged skeletons from the endophytic fungus Aspergillus nidulans. Org Lett. 2022;24(37):6800-4.
[20] Li Y, Yue Q, Krausert NM, An Z, Gloer JB, Bills GF. Emestrins: Anti-cryptococcus epipolythiodioxopiperazines from Podospora australis. J Nat Prod. 2016;79(9):2357-63.
[21] Lv F-Y, Mándi A, Li X-M, Chi L-P, Li X, Wang B-G, Kurtán T, Meng L-H. Emestrin-type thiodiketopiperazines from Aspergillus nidulans SD-531, a fungus obtained from the deep-sea sediment of cold seep in the South China Sea. Deep Sea Res, Part I. 2023;195: 104004.
[22] Wu J-S, Shi X-H, Yao G-S, Shao C-L, Fu X-M, Zhang X-L, Guan H-S, Wang C-Y. New thiodiketopiperazine and 3,4-dihydroisocoumarin derivatives from the marine-derived fungus Aspergillus terreus. Mar Drugs. 2020;18(3):132.
[23] Ooike M, Nozawa K, Kawai K-I. An epitetrathiodioxopiperazine related to emestrin from Emericella foveolata. Phytochemistry. 1997;46(1):123-6.
[24] Wang J, Chen M, Wang M, Zhao W, Zhang C, Liu X, Cai M, Qiu Y, Zhang T, Zhou H, Zhao W, Si S, Shao R. The novel ER stress inducer Sec C triggers apoptosis by sulfating ER cysteine residues and degrading YAP via ER stress in pancreatic cancer cells. Acta Pharm Sin B. 2022;12(1):210-27.
[25] Tan X, Sun L, Li Q, Qi C, Fu C, Zhu H, Yang X, Feng H, Li Y, Zhang Y, Chen G. Secoemestrin C inhibits activation of NKT/conventional T cells and protects against concanavalin A-induced autoimmune hepatitis in mice. Am J Transl Res. 2020;12(7):3389-401.
[26] Fu A, Li Q, Li Y, Chen Y, Wei Y, Dong J, Peng Y, Deng M, Sun W, Chen C, Zhang Y, Zhu H. Nidustrin A cysteine-retained emestrin with a unique 18-membered macrocyclic lactone from the endophytic fungus Aspergillus nidulans. Bioorg Chem. 2025;155:108105.
[1] Dong-Yang Wang, Ming-Xing Li, Yan-Chao Xu, Peng Fu, Wei-Ming Zhu, Li-Ping Wang. Dibohemamines I-O from Streptomyces sp. GZWMJZ-662, an endophytic actinomycete from the medicinal and edible plant Houttuynia cordata Thunb.[J]. Natural Products and Bioprospecting, 2025, 15(1): 9-9.
[2] Yue-Mei Chen, Nan-Kai Cao, Si-Si Zhu, Meng Ding, Hai-Zhen Liang, Ming-Bo Zhao, Ke-Wu Zeng, Peng-Fei Tu, Yong Jiang. Euchrestifolines A-O, fifteen novel carbazole alkaloids with potent anti-ferroptotic activity from Murraya euchrestifolia[J]. Natural Products and Bioprospecting, 2025, 15(1): 5-5.
[3] Alica Fischle, Mika Lutsch, Florian Hübner, Linda Sch?ker-Hübner, Lina Schürmann, Finn K. Hansen, Svetlana A. Kalinina. Micro-scale screening of genetically modified Fusarium fujikuroi strain extends the apicidin family[J]. Natural Products and Bioprospecting, 2024, 14(6): 51-51.
[4] Qi-Xiu Hai, Kun Hu, Su-Ping Chen, Yang-Yang Fu, Xiao-Nian Li, Han-Dong Sun, Hong-Ping He, Pema-Tenzin Puno. Silvaticusins A-D: ent-kaurane diterpenoids and a cyclobutane-containing ent-kaurane dimer from Isodon silvaticus[J]. Natural Products and Bioprospecting, 2024, 14(5): 45-45.
[5] Fengli Li, Saisai Gu, Sitian Zhang, Shuyuan Mo, Jieru Guo, Zhengxi Hu, Yonghui Zhang. Three new amide derivatives from the fungus Alternaria brassicicola[J]. Natural Products and Bioprospecting, 2023, 13(4): 28-28.
[6] Shuyuan Mo, Ziming Zhao, Zi Ye, Zhihong Huang, Yaxin Zhang, Wanqi Yang, Jianping Wang, Zhengxi Hu, Yonghui Zhang. New secondary metabolites with cytotoxicity from fungus Penicillium roqueforti[J]. Natural Products and Bioprospecting, 2023, 13(3): 17-17.
[7] Li Hou, Cui-Xuan Mei, Chun-Mao Yuan, Gui-Hua Tang, Duo-Zhi Chen, Qing Zhao, Hong-Ping He, Ming-Ming Cao, Xiao-Jiang Hao. Five new limonoids isolated from Walsura robusta[J]. Natural Products and Bioprospecting, 2023, 13(2): 7-7.
[8] Ya-Li Hu, Xing-Ren Li, Gang Xu. Carascynol A, a hybrid of caryophyllane-type terpenoid and a C6 unit degraded by polyprenylated acylphloroglucinols from Hypericum ascyron[J]. Natural Products and Bioprospecting, 2022, 12(6): 38-38.
[9] Xin Zhang, Yun-Bao Ma, Xiao-Feng He, Tian-Ze Li, Chang-An Geng, Li-Hua Su, Shuang Tang, Zhen Gao, Ji-Jun Chen. Artemyrianosins A–J, cytotoxic germacrane-type sesquiterpene lactones from Artemisia myriantha[J]. Natural Products and Bioprospecting, 2022, 12(3): 16-16.
[10] Natividad Herrera Cano, Sebastian A. Andujar, Cristina Theoduloz, Daniel A. Wunderlin, Ana N. Santiago, Guillermo Schmeda-Hirschmann, Ricardo D. Enriz, Gabriela E. Feresin. Arylated analogues of cypronazole: fungicidal effect and activity on human fibroblasts. Docking analysis and molecular dynamics simulations[J]. Natural Products and Bioprospecting, 2022, 12(2): 9-9.
[11] Ruo-Song Zhang, Yang-Yang Liu, Pei-Feng Zhu, Qiong Jin, Zhi Dai, Xiao-Dong Luo. Furostanol Saponins from Asparagus cochinchinensis and Their Cytotoxicity[J]. Natural Products and Bioprospecting, 2021, 11(6): 651-658.
[12] Patrick O. Sakyi, Richard K. Amewu, Robert N. O. A. Devine, Emahi Ismaila, Whelton A. Miller, Samuel K. Kwofie. The Search for Putative Hits in Combating Leishmaniasis: The Contributions of Natural Products Over the Last Decade[J]. Natural Products and Bioprospecting, 2021, 11(5): 489-544.
[13] Chen Shi, Yue-Ling Peng, Juan He, Zheng-Hui Li, Ji-Kai Liu, Tao Feng. Structures, Chemical Conversions, and Cytotoxicity of Tricholopardins C and D, Two Tricholoma Triterpenoids from the Wild Mushroom Tricholoma pardinum[J]. Natural Products and Bioprospecting, 2021, 11(2): 235-241.
[14] Yi Chen, Song-Wei Li, Fang-Zhou Yin, Min Yang, Xia-Juan Huan, Ze-Hong Miao, Xiao-Ming Wang, Yue-Wei Guo. Lagerindicine, a New Pyrrole Alkaloid Isolated from the Flowers of Lagerstroemia indica Linnaeus[J]. Natural Products and Bioprospecting, 2021, 11(1): 73-79.
[15] Mohammad Sanad Abu-Darwish, Célia Cabral, Zulfigar Ali, Mei Wang, Shabana I. Khan, Melissa R. Jacob, Surendra K. Jain, Babu L. Tekwani, Fazila Zulfiqar, Ikhlas A. Khan, Hatem Taifour, Lígia Salgueiro, Thomas Efferth. Salvia ceratophylla L. from South of Jordan: new insights on chemical composition and biological activities[J]. Natural Products and Bioprospecting, 2020, 10(5): 307-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed