Natural Products and Bioprospecting    2024, Vol. 14 Issue (6) : 51-51     DOI: 10.1007/s13659-024-00473-9
ORIGINAL ARTICLES |
Micro-scale screening of genetically modified Fusarium fujikuroi strain extends the apicidin family
Alica Fischle1,2, Mika Lutsch1, Florian Hübner1, Linda Sch?ker-Hübner3, Lina Schürmann1, Finn K. Hansen3, Svetlana A. Kalinina1,2
1. Institute of Food Chemistry, University of Münster, Corrensstra?e 45, 48149 Münster, Germany;
2. Graduate School of Natural Products, Corrensstra?e 43, 48149 Münster, Germany;
3. Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, An Der Immenburg 4, 53121 Bonn, Germany
Download: PDF(1833 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Apicidins are a class of naturally occurring cyclic tetrapeptides produced by few strains within the Fusarium genus. These secondary metabolites have gained significant attention due to their antiprotozoal activity through HDAC inhibition, thereby highlighting their potential for the treatment of malaria. Predominantly, apicidins have been isolated from Fusarium semitectum, offering a deep insight into the biosynthetic pathway responsible for their formation. A similar biosynthetic gene cluster has also been identified in the rice pathogenic fungus F. fujikuroi, leading the discovery of three additional apicidins through genetic manipulation. Routine mass spectrometric screening of these compound-producing strains revealed another metabolite structurally related to previously studied apicidins. By optimizing culture conditions and developing an effective isolation method, we obtained a highly pure substance, whose chemical structure was fully elucidated using NMR and HRMS fragmentation. Further studies were conducted to determine cytotoxicity, antimalarial activity, and HDAC inhibitory activity of this new secondary metabolite alongside the previously known apicidins. This work not only expands the apicidin class with a new member but also provides extensive insights and comparative analysis of apicidin-like substances produced by F. fujikuroi.
Keywords Cyclic tetrapeptides      Apicidins      Cytotoxicity      HDAC inhibition      Tropical diseases     
Corresponding Authors: Svetlana A. Kalinina,E-mail:s_kali03@uni-muenster.de     E-mail: s_kali03@uni-muenster.de
Issue Date: 13 December 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Alica Fischle
Mika Lutsch
Florian Hübner
Linda Sch?ker-Hübner
Lina Schürmann
Finn K. Hansen
Svetlana A. Kalinina
Trendmd:   
Cite this article:   
Alica Fischle,Mika Lutsch,Florian Hübner, et al. Micro-scale screening of genetically modified Fusarium fujikuroi strain extends the apicidin family[J]. Natural Products and Bioprospecting, 2024, 14(6): 51-51.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00473-9     OR     http://npb.kib.ac.cn/EN/Y2024/V14/I6/51
[1] Caparco AA, Dautel DR, Champion JA. Protein mediated enzyme immobilization. Small. 2022;18(19):2106425. https://doi.org/10.1002/smll.202106425.
[2] Bilal M, Rasheed T, Zhao Y, Iqbal HMN. Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. Int J Biol Macromol. 2019;124:742-9. https://doi.org/10.1016/j.ijbiomac.2018.11.220.
[3] Gao Y, Shah K, Kwok I, Wang M, Rome LH, Mahendra S. Immobilized fungal enzymes: Innovations and potential applications in biodegradation and biosynthesis. Biotechnol Adv. 2022;57:107936. https://doi.org/10.1016/j.biotechadv.2022.107936.
[4] Mohammadi M, Habibi Z, Gandomkar S, Yousefi M. A novel approach for bioconjugation of Rhizomucor miehei lipase (RML) onto amine-functionalized supports. Int J Biol Macromol. 2018;117:523-31. https://doi.org/10.1016/j.ijbiomac.2018.05.218.
[5] Zdarta J, Meyer AS, Jesionowski T, Pinelo M. Developments in support materials for immobilization of oxidoreductases: a comprehensive review. Adv Colloid Interface Sci. 2018;258:1-20. https://doi.org/10.1016/j.cis.2018.07.004.
[6] Chen Q, Luo GS, Wang YJ. Orderly cascade of immobilized-enzyme catalysis and photocatalysis for continuous-microflow production of 2-phenylbenzothiazole. Green Chem. 2021;23(18):7074-83. https://doi.org/10.1039/d1gc01887f.
[7] Shen Y, Wang M, Zhou J, Chen Y, Wu M, Yang Z, et al. Construction of Fe3O4@alpha-glucosidase magnetic nanoparticles for ligand fishing of alpha-glucosidase inhibitors from a natural tonic Epimedii Folium. Int J Biol Macromol. 2020;165:1361-72. https://doi.org/10.1016/j.ijbiomac.2020.10.018.
[8] Feng W, Ji P. Enzymes immobilized on carbon nanotubes. Biotechnol Adv. 2011;29(6):889-95. https://doi.org/10.1016/j.biotechadv.2011.07.007.
[9] Hu Y, Dai L, Liu D, Du W. Rationally designing hydrophobic UiO-66 support for the enhanced enzymatic performance of immobilized lipase. Green Chem. 2018;20(19):4500-6. https://doi.org/10.1039/c8gc01284a.
[10] Sher H, Ali H, Rashid MH, Iftikhar F, Rehman SU, Nawaz MS, et al. Enzyme immobilization on metal-organic framework (MOF): effects on thermostability and function. Protein Pept Lett. 2019;26(9):636-47. https://doi.org/10.2174/0929866526666190430120046.
[11] Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K. Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol. 2017;105:1358-68. https://doi.org/10.1016/j.ijbiomac.2017.07.087.
[12] Hamed I, Ozogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol. 2016;48:40-50. https://doi.org/10.1016/j.tifs.2015.11.007.
[13] Urrutia P, Arrieta R, Alvarez L, Cardenas C, Mesa M, Wilson L. Immobilization of lipases in hydrophobic chitosan for selective hydrolysis of fish oil: the impact of support functionalization on lipase activity, selectivity and stability. Int J Biol Macromol. 2018;108:674-86. https://doi.org/10.1016/j.ijbiomac.2017.12.062.
[14] Gulay B, Omur C, Murat K, Arica MY. Immobilization of Candida rugosa lipase on magnetic chitosan beads and application in flavor esters synthesis. Food Chem. 2022;366:130699. https://doi.org/10.1016/j.foodchem.2021.130699.
[15] Kim JS, Lee S. Immobilization of trypsin from porcine pancreas onto chitosan nonwoven by covalent bonding. Polym. 2019;11(9):1462. https://doi.org/10.3390/polym11091462.
[16] Wahba MI. Porous chitosan beads of superior mechanical properties for the covalent immobilization of enzymes. Int J Biol Macromol. 2017;105:894-904. https://doi.org/10.1016/j.ijbiomac.2017.07.102.
[17] Liu CY, Li RY, Peng J, Qu D, Huang MM, Chen Y. Enhanced hydrolysis and antitumor efficacy of Epimedium flavonoids mediated by immobilized snailase on silica. Process Biochem. 2019;86:80-8. https://doi.org/10.1016/j.procbio.2019.06.020.
[18] Lee CH, Lin TS, Mou CY. Mesoporous materials for encapsulating enzymes. Nano Today. 2009;4(2):165-79. https://doi.org/10.1016/j.nantod.2009.02.001.
[19] Lei CH, Shin YS, Liu J, Ackerman EJ. Entrapping enzyme in a functionalized nanoporous support. J Am Chem Soc. 2002;124(38):11242-3. https://doi.org/10.1021/ja026855o.
[20] Al-Shehri BM, Khder AERS, Ashour SS, Hamdy MS. A review: the utilization of mesoporous materials in wastewater treatment. Mater Res Express. 2019;6(12):122002. https://doi.org/10.1088/2053-1591/ab52af.
[21] Rasmussen MK, Bordallo HN, Bordenalli MA, Akamatsu MA, Trezena AG, Tino-De-Franco M, et al. Assessing the efficiency of SBA-15 as a nanocarrier for diphtheria anatoxin. Microporous Mesoporous Mater. 2021;312:110763. https://doi.org/10.1016/j.micromeso.2020.110763.
[22] Xiang X, Ding S, Suo H, Xu C, Gao Z, Hu Y. Fabrication of chitosan-mesoporous silica SBA-15 nanocomposites via functional ionic liquid as the bridging agent for PPL immobilization. Carbohyd Polym. 2018;182:245-53. https://doi.org/10.1016/j.carbpol.2017.11.031.
[23] Zhao X, Zhao F, Zhong N. Production of diacylglycerols through glycerolysis with SBA-15 supported Thermomyces lanuginosus lipase as catalyst. J Sci Food Agric. 2020;100(4):1426-35. https://doi.org/10.1002/jsfa.10140.
[24] Losito DW, Lopes PS, Ueoka AR, Fantini MCA, Oseliero PL, Andreo N, et al. Biocomposites based on SBA-15 and papain: characterization, enzymatic activity and cytotoxicity evaluation. Microporous Mesoporous Mater. 2021;325:43-56. https://doi.org/10.1016/j.micromeso.2021.111316.
[25] Cong VT, Gaus K, Tilley RD, Gooding JJ. Rod-shaped mesoporous silica nanoparticles for nanomedicine: recent progress and perspectives. Expert Opin Drug Deliv. 2018;15(9):881-92. https://doi.org/10.1080/17425247.2018.1517748.
[26] Marcucci SMP, Zanin GM, Arroyo PA. Synthesis of SBA-15 and pore-expanded SBA-15 and surface modification with tin for covalent lipase immobilization. Microporous Mesoporous Mater. 2022;337:111951. https://doi.org/10.1016/j.micromeso.2022.111951.
[27] Wang X, He L, Huang J, Zhong N. Immobilization of lipases onto the halogen & haloalkanes modified SBA-15: enzymatic activity and glycerolysis performance study. Int J Biol Macromol. 2021;169:239-50. https://doi.org/10.1016/j.ijbiomac.2020.12.111.
[28] Li Y, Wang W, Han P. Immobilization of Candida sp. 99-125 lipase onto silanized SBA-15 mesoporous materials by physical adsorption. Korean J Chem Eng. 2014;31(1):98-103. https://doi.org/10.1007/s11814-013-0198-1.
[29] Ge A, Li J, Donnapee S, Bai Y, Liu J, He J, et al. Simultaneous determination of 2 aconitum alkaloids and 12 ginsenosides in Shenfu injection by ultraperformance liquid chromatography coupled with a photodiode array detector with few markers to determine multicomponents. J Food Drug Anal. 2015;23(2):267-78. https://doi.org/10.1016/j.jfda.2014.10.013.
[30] Lu Y, Yang H, Hu Y, Li X. Nanomedicine-boosting icaritin-based immunotherapy of advanced hepatocellular carcinoma, affiliations department of polymeric materials. Mil Med Res. 2022;9(1):69. https://doi.org/10.1186/s40779-022-00433-9.
[31] Lu Y, Luo Q, Jia X, Tam JP, Yang H, Shen Y, et al. Multidisciplinary strategies to enhance therapeutic effects of flavonoids from Epimedii Folium: integration of herbal medicine, enzyme engineering, and nanotechnology. J Pharm Anal. 2023;13(3):239-54. https://doi.org/10.1016/j.jpha.2022.12.001.
[32] An DS, Cui CH, Lee HG, Wang L, Kim SC, Lee ST, et al. Identification and characterization of a novel Terrabacter ginsenosidimutans sp nov beta-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl Environ Microbiol. 2010;76(17):5827-36. https://doi.org/10.1128/aem.00106-10.
[33] Jin XF, Yu HS, Wang DM, Liu TQ, Liu CY, An DS, et al. Kinetics of a cloned special ginsenosidase hydrolyzing 3-o-glucoside of multi-protopanaxadiol-type ginsenosides, named ginsenosidase type III. J Microbiol Biotechnol. 2012;22(3):343-51. https://doi.org/10.4014/jmb.1107.07066.
[34] Shen YP, Lu Y, Gao J, Zhu YT, Wang M, Jing SL, et al. Efficient preparation of rare Sagittatoside A from epimedin A, by recyclable aqueous organic two-phase enzymatic hydrolysis. Nat Prod Res. 2019;33(21):3095-102. https://doi.org/10.1080/14786419.2018.1519820.
[35] Shen YP, Wang M, Zhou JW, Chen Y, Xu L, Wu M, et al. Eco-efficient biphasic enzymatic hydrolysis for the green production of rare baohuoside I. Enzyme Microb Technol. 2019;131:109431. https://doi.org/10.1016/j.enzmictec.2019.109431.
[36] Li Y, Zhong N, Cheong LZ, Huang J, Chen H, Lin S. Immobilization of Candida antarctica Lipase B onto organically-modified SBA-15 for efficient production of soybean-based mono and diacylglycerols. Int J Biol Macromol. 2018;120:886-95. https://doi.org/10.1016/j.ijbiomac.2018.08.155.
[37] Song SW, Hidajat K, Kawi S. Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. Langmuir. 2005;21(21):9568-75. https://doi.org/10.1021/la051167e.
[38] Barbagallo RN, Spagna G, Palmeri R. Selection, characterization and comparison of β-glucosidase from mould and yeasts employable for enological applications. Enzyme Microb Technol. 2004;35(1):58-66. https://doi.org/10.1016/j.enzmictec.2004.03.005.
[39] Chanquia SN, Benfeldt FV, Petrovai N, Santner P, Hollmann F, Eser BE, et al. Immobilization and application of fatty acid photodecarboxylase in deep eutectic solvents. Chembiochem. 2022;23(23):e202200482. https://doi.org/10.1002/cbic.202200482.
[40] Feng C, Lu Y, Zhou Y, Pang H, Shen Y, Yang H. Convenient preparation of 2’’-O-Rhamnosyl Icariside II, a rare bioactive secondary flavonol glycoside, by recyclable and integrated biphase enzymatic hydrolysis. Pharmacogn Mag. 2019;14(60):147-55. https://doi.org/10.4103/pm.pm_398_18.
[41] Silva JA, Macedo GP, Rodrigues DS, Giordano RLC, Goncalves LRB. Immobilization of Candida antarctica lipase B by covalent attachment on chitosan-based hydrogels using different support activation strategies. Biochem Eng J. 2012;60:16-24. https://doi.org/10.1016/j.bej.2011.09.011.
[42] Gascon V, Diaz I, Marquez-Alvarez C, Blanco RM. Mesoporous silicas with tunable morphology for the immobilization of laccase. Molecules. 2014;19(6):7057-71. https://doi.org/10.3390/molecules19067057.
[43] Yiu H, Wright P, Botting N. Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces. J Mol Catal B: Enzym. 2001;15(1-3):81-92. https://doi.org/10.1016/s1381-1177(01)00011-x.
[44] Ashjari M, Mohammadi M, Badri R. Selective concentration of eicosapentaenoic acid and docosahexaenoic acid from fish oil with immobilized/stabilized preparations of Rhizopus oryzae lipase. J Mol Catal B: Enzym. 2015;122:147-55. https://doi.org/10.1016/j.molcatb.2015.08.017.
[45] Cipolatti EP, Rios NS, Sousa JS, de Robert JM, da Silva AAT, Pinto MCC, et al. Synthesis of lipase/silica biocatalysts through the immobilization of CALB on porous SBA-15 and their application on the resolution of pharmaceutical derivatives and on nutraceutical enrichment of natural oil. Mol Catal. 2021;505:111529. https://doi.org/10.1016/j.mcat.2021.111529.
[46] Garmroodi M, Mohammadi M, Ramazani A, Ashjari M, Mohammadi J, Sabour B, et al. Covalent binding of hyper-activated Rhizomucor miehei lipase (RML) on hetero-functionalized siliceous supports. Int J Biol Macromol. 2016;86:208-15. https://doi.org/10.1016/j.ijbiomac.2016.01.076.
[47] Zhang YJ, Yang R, Wang L, Li Y, Han J, Yang Y, et al. Purification and characterization of a novel thermostable anticoagulant protein from medicinal leech Whitmania pigra Whitman. J Ethnopharmacol. 2022;288:114990. https://doi.org/10.1016/j.jep.2022.114990.
[48] Yang Y, Thorhallsson AT, Rovira C, Holck J, Meyer AS, Yang H, et al. Improved enzymatic production of the fucosylated human milk oligosaccharide LNFP II with GH29B α-1,3/4-L-fucosidases. J Agric Food Chem. 2024;72(19):11013-28. https://doi.org/10.1021/acs.jafc.4c01547.
[49] Wang M, Liang L, Wang R, Jia S, Xu C, Wang Y, et al. Narciclasine, a novel topoisomerase I inhibitor, exhibited potent anti-cancer activity against cancer cells. Nat Prod Bioprospect. 2023;13(1):27. https://doi.org/10.1007/s13659-023-00392-1.
[1] Qi-Xiu Hai, Kun Hu, Su-Ping Chen, Yang-Yang Fu, Xiao-Nian Li, Han-Dong Sun, Hong-Ping He, Pema-Tenzin Puno. Silvaticusins A-D: ent-kaurane diterpenoids and a cyclobutane-containing ent-kaurane dimer from Isodon silvaticus[J]. Natural Products and Bioprospecting, 2024, 14(5): 45-45.
[2] Shuyuan Mo, Ziming Zhao, Zi Ye, Zhihong Huang, Yaxin Zhang, Wanqi Yang, Jianping Wang, Zhengxi Hu, Yonghui Zhang. New secondary metabolites with cytotoxicity from fungus Penicillium roqueforti[J]. Natural Products and Bioprospecting, 2023, 13(3): 17-17.
[3] Li Hou, Cui-Xuan Mei, Chun-Mao Yuan, Gui-Hua Tang, Duo-Zhi Chen, Qing Zhao, Hong-Ping He, Ming-Ming Cao, Xiao-Jiang Hao. Five new limonoids isolated from Walsura robusta[J]. Natural Products and Bioprospecting, 2023, 13(2): 7-7.
[4] Ya-Li Hu, Xing-Ren Li, Gang Xu. Carascynol A, a hybrid of caryophyllane-type terpenoid and a C6 unit degraded by polyprenylated acylphloroglucinols from Hypericum ascyron[J]. Natural Products and Bioprospecting, 2022, 12(6): 38-38.
[5] Xin Zhang, Yun-Bao Ma, Xiao-Feng He, Tian-Ze Li, Chang-An Geng, Li-Hua Su, Shuang Tang, Zhen Gao, Ji-Jun Chen. Artemyrianosins A–J, cytotoxic germacrane-type sesquiterpene lactones from Artemisia myriantha[J]. Natural Products and Bioprospecting, 2022, 12(3): 16-16.
[6] Natividad Herrera Cano, Sebastian A. Andujar, Cristina Theoduloz, Daniel A. Wunderlin, Ana N. Santiago, Guillermo Schmeda-Hirschmann, Ricardo D. Enriz, Gabriela E. Feresin. Arylated analogues of cypronazole: fungicidal effect and activity on human fibroblasts. Docking analysis and molecular dynamics simulations[J]. Natural Products and Bioprospecting, 2022, 12(2): 9-9.
[7] Ruo-Song Zhang, Yang-Yang Liu, Pei-Feng Zhu, Qiong Jin, Zhi Dai, Xiao-Dong Luo. Furostanol Saponins from Asparagus cochinchinensis and Their Cytotoxicity[J]. Natural Products and Bioprospecting, 2021, 11(6): 651-658.
[8] Patrick O. Sakyi, Richard K. Amewu, Robert N. O. A. Devine, Emahi Ismaila, Whelton A. Miller, Samuel K. Kwofie. The Search for Putative Hits in Combating Leishmaniasis: The Contributions of Natural Products Over the Last Decade[J]. Natural Products and Bioprospecting, 2021, 11(5): 489-544.
[9] Chen Shi, Yue-Ling Peng, Juan He, Zheng-Hui Li, Ji-Kai Liu, Tao Feng. Structures, Chemical Conversions, and Cytotoxicity of Tricholopardins C and D, Two Tricholoma Triterpenoids from the Wild Mushroom Tricholoma pardinum[J]. Natural Products and Bioprospecting, 2021, 11(2): 235-241.
[10] Yi Chen, Song-Wei Li, Fang-Zhou Yin, Min Yang, Xia-Juan Huan, Ze-Hong Miao, Xiao-Ming Wang, Yue-Wei Guo. Lagerindicine, a New Pyrrole Alkaloid Isolated from the Flowers of Lagerstroemia indica Linnaeus[J]. Natural Products and Bioprospecting, 2021, 11(1): 73-79.
[11] Mohammad Sanad Abu-Darwish, Célia Cabral, Zulfigar Ali, Mei Wang, Shabana I. Khan, Melissa R. Jacob, Surendra K. Jain, Babu L. Tekwani, Fazila Zulfiqar, Ikhlas A. Khan, Hatem Taifour, Lígia Salgueiro, Thomas Efferth. Salvia ceratophylla L. from South of Jordan: new insights on chemical composition and biological activities[J]. Natural Products and Bioprospecting, 2020, 10(5): 307-316.
[12] Cheng Shen, Xiao-Yan Huang, Chang-An Geng, Tian-Ze Li, Shuang Tang, Li-Hua Su, Zhen Gao, Xue-Mei Zhang, Jing Hu, Ji-Jun Chen. Artemlavanins A and B from Artemisia lavandulaefolia and Their Cytotoxicity Against Hepatic Stellate Cell Line LX2[J]. Natural Products and Bioprospecting, 2020, 10(4): 243-250.
[13] Shuang Tang, Yun-Bao Ma, Chang-An Geng, Cheng Shen, Tian-Ze Li, Xue-Mei Zhang, Li-Hua Su, Zhen Gao, Jing Hu, Ji-Jun Chen. Artemyrianins A-G from Artemisia myriantha and Their Cytotoxicity Against HepG2 Cells[J]. Natural Products and Bioprospecting, 2020, 10(4): 251-260.
[14] Jia-Huan Shang, Guo-Wei Xu, Hong-Tao Zhu, Dong Wang, Chong-Ren Yang, Ying-Jun Zhang. Anti-inflammatory and Cytotoxic Triterpenes from the Rot Roots of Panax notoginseng[J]. Natural Products and Bioprospecting, 2019, 9(4): 287-295.
[15] Cheng-Ji Li, Fan Xia, Rong Wu, Hong-Sheng Tan, Hong-Xi Xu, Gang Xu, Hong-Bo Qin. Synthesis and Cytotoxicities of Royleanone Derivatives[J]. Natural Products and Bioprospecting, 2018, 8(6): 453-456.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed