Natural Products and Bioprospecting    2020, Vol. 10 Issue (6) : 453-462     DOI: 10.1007/s13659-020-00275-9
ORIGINAL ARTICLES |
Hordatines as a Potential Inhibitor of COVID-19 Main Protease and RNA Polymerase: An In-Silico Approach
Mohammed A. Dahab1, Mostafa M. Hegazy2, Hatem S. Abbass2,3
1 Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy, Al-Azhar University(Boys), Cairo 11884, Egypt;
2 Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University(Boys), Cairo 11884, Egypt;
3 Department of Pharmacognosy, Faculty of Pharmacy, Sinai University, Kantara 41636, Egypt
Download: PDF(6861 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Total 40 natural compounds were selected to perform the molecular docking studies to screen and identify the potent antiviral agents specifically for Severe Acute Respiratory Syndrome Coronavirus 2 that causes coronavirus disease 2019 (COVID-19). The key targets of COVID-19, protease (PDB ID:7BQY) and RNA polymerase (PDB ID:7bV2) were used to dock our target compounds by Molecular Operating Environment (MOE) version 2014.09. We used 3 different conformations of protease target (6M0K, 6Y2F and 7BQY) and two different score functions to strengthen the probability of inhibitors discovery. After an extensive screening analysis, 20 compounds exhibit good binding affinities to one or both COVID-19 targets. 7 out of 20 compounds were predicted to overcome the activity of both targets. The top 7 hits are, flacourticin (3), sagerinic acid (16), hordatine A (23), hordatine B (24), N-feruloyl tyramine dimer (25), bisavenanthramides B-5 (29) and vulnibactins (40). According to our results, all these top hits was found to have a better binding scores than remdesivir, the native ligand in RNA polymerase target (PDB ID:7bV2). Hordatines are phenolic compounds present in barley, were found to exhibit the highest binding affinity to both protease and polymerase through forming strong hydrogen bonds with the catalytic residues, as well as significant interactions with other receptor-binding residues. These results probably provided an excellent lead candidate for the development of therapeutic drugs against COVID-19. Eventually, animal experiment and accurate clinical trials are needed to confirm the preventive potentials of these compounds.
Keywords Barley      COVID-19      Docking      Hordatine      Protease      RNA polymerase      MOE     
Corresponding Authors: Hatem S. Abbass     E-mail: hsam8406@azhar.edu.eg
Issue Date: 24 December 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mohammed A. Dahab
Mostafa M. Hegazy
Hatem S. Abbass
Trendmd:   
Cite this article:   
Mohammed A. Dahab,Mostafa M. Hegazy,Hatem S. Abbass. Hordatines as a Potential Inhibitor of COVID-19 Main Protease and RNA Polymerase: An In-Silico Approach[J]. Natural Products and Bioprospecting, 2020, 10(6): 453-462.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-020-00275-9     OR     http://npb.kib.ac.cn/EN/Y2020/V10/I6/453
1. E. De Clercq, Nat. Rev. Drug Discov. 1, 13 (2002)
2. R. Ulferts, I. Imbert, B. Canard, J. Ziebuhr (2009) J. Mol. Biol. SARS-Coronavirus. 75:75-98
3. A. Savarino, C. Buonavoglia, S. Norelli, L.D. Trani, A. Cassone, Expert Opin. Ther. Pat. 16, 1269 (2006)
4. D.J. Newman, G.M. Cragg, J. Nat. Prod. 83, 770 (2020)
5. J.C. Borah, Curr. Sci 109, 1672 (2015)
6. W.F. Li, W.I. Chik, D.Y. Wang, L.T. Pan, Curr. Org. Chem. 21, 1847 (2017)
7. D. Chattopadhyay, H. Mukherjee, P. Bag, S. Ghosh, A. Samanta, S. Chakrabarti, Int. J. Biomed. Pharm. Sci. 3, 1 (2009)
8. Y.-H. Wu, B.-Y. Zhang, L.-P. Qiu, R.-F. Guan, Z.-H. Ye, X.-P. Yu, Curr. Med. Chem. 24, 4279 (2017)
9. I. Tanida, Y. Shirasago, R. Suzuki, R. Abe, T. Wakita, K. Hanada, M. Fukasawa, Jpn J Infect Dis 68, 268 (2015)
10. M.Z. Hassan, H. Osman, M.A. Ali, M.J. Ahsan, Eur. J. Med. Chem. 123, 236 (2016)
11. C. Bird, T. Smith, Ann. Bot. 53, 483 (1984)
12. N. Kohyama, H. Ono, J. Agric. Food Chem. 61, 1112 (2013)
13. A. Stoessl, C. Unwin, Can. J. Bot. 48, 465 (1970)
14. A. Sinha, A. Meena, P. Panda, B. Srivastava, M. Gupta, M. Padhi, Asian J. Res. Chem. 5, 1303 (2012)
15. G. Panahandeh, A. Khoshdel, M. Sedehi, A. Aliakbari, J. Clin. Diagnos. Res. 11, 16 (2017)
16. J. Grein, N. Ohmagari, D. Shin, G. Diaz, E. Asperges, A. Castagna, T. Feldt, G. Green, M.L. Green, F.-X. Lescure, N. Engl, J. Med. 382, 2327 (2020)
17. C.R. Bird, T.A. Smith, J. Chromatogr. A 214, 263 (1981)
18. X.Y. Meng, H.X. Zhang, M. Mezei, M. Cui, Curr. Comput. Aided Drug Des. 7, 146 (2011)
19. W. Dai, B. Zhang, X.M. Jiang, H. Su, J. Li, Y. Zhao, X. Xie, Z. Jin, J. Peng, F. Liu, C. Li, Y. Li, F. Bai, H. Wang, X. Cheng, X. Cen, S. Hu, X. Yang, J. Wang, X. Liu, G. Xiao, H. Jiang, Z. Rao, L.K. Zhang, Y. Xu, H. Yang, H. Liu, Science (New York, NY). 368, 1331 (2020)
20. L. Zhang, D. Lin, X. Sun, U. Curth, C. Drosten, L. Sauerhering, S. Becker, K. Rox, R. Hilgenfeld, Science (New York, NY). 368, 409 (2020)
21. Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L.W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao, H. Yang, Nature. 582, 289 (2020)
22. W. Yin, C. Mao, X. Luan, D. D. Shen, Q. Shen, H. Su, X. Wang, F. Zhou, W. Zhao, M. Gao, S. Chang, Y. C. Xie, G. Tian, H. W. Jiang, S. C. Tao, J. Shen, Y. Jiang, H. Jiang, Y. Xu, S. Zhang, Y. Zhang, H. E. Xu,, Science (New York, NY), (2020).
[1] Ayman Khalil, Diana Tazeddinova. The upshot of Polyphenolic compounds on immunity amid COVID-19 pandemic and other emerging communicable diseases: An appraisal[J]. Natural Products and Bioprospecting, 2020, 10(6): 411-429.
[2] Pukar Khanal, B. M. Patil, Jagdish Chand, Yasmin Naaz. Anthraquinone Derivatives as an Immune Booster and their Therapeutic Option Against COVID-19[J]. Natural Products and Bioprospecting, 2020, 10(5): 325-335.
[3] Rohan R. Narkhede, Ashwini V. Pise, Rameshwar S. Cheke, Sachin D. Shinde. Recognition of Natural Products as Potential Inhibitors of COVID-19 Main Protease (Mpro): In-Silico Evidences[J]. Natural Products and Bioprospecting, 2020, 10(5): 297-306.
[4] Jean J. K. Bankeu, Hira Sattar, Yannick S. F. Fongang, Syeda W. Muhammadi, Conrad V. Simoben, Fidele Ntie-Kang, Guy R. T. Feuya, Marthe A. T. Tchuenmogne, Mehreen Lateef, Bruno N. Lenta, Muhammad S. Ali, Augustin S. Ngouela. Synthesis, Urease Inhibition and Molecular Modelling Studies of Novel Derivatives of the Naturally Occurring β-Amyrenone[J]. Natural Products and Bioprospecting, 2019, 9(1): 49-60.
[5] Yinglan Pu, Hui Liu, Yeheng Zhou, Jiale Peng, Yaping Li, Penghua Li, Yingying Li, Xingyong Liu, Li Zhang. In silico Discovery of Novel FXa Inhibitors by Pharmacophore Modeling and Molecular Docking[J]. Natural Products and Bioprospecting, 2017, 7(3): 249-256.
[6] Mehtab Parveen, Faheem Ahmad, Ali Mohammed Malla, Shaista Azaz, Mahboob Alam, Omer A. Basudan, Manuela Ramos Silva, Pedro S. Pereira Silva. Acetylcholinesterase and Cytotoxic Activity of Chemical Constituents of Clutia lanceolata Leaves and its Molecular Docking Study[J]. Natural Products and Bioprospecting, 2016, 6(6): 267-278.
[7] Jing-Xian Zhuo, Yue-Hu Wang, Xing-Li Su, Ren-Qiang Mei, Jun Yang, Yi Kong, Chun-Lin Long. Neolignans from Selaginella moellendorffii[J]. Natural Products and Bioprospecting, 2016, 6(3): 161-166.
[8] Christian Bäcker, Malgorzata N. Drwal, Robert Preissner, Ulrike Lindequist. Inhibition of DNA-Topoisomerase I by Acylated Triterpene Saponins from Pittosporum angustifolium Lodd[J]. Natural Products and Bioprospecting, 2016, 6(2): 141-147.
[9] A.Anita Margret,T.Nargis Begum, S.Parthasarathy,S.Suvaithenamudhan. A Strategy to Employ Clitoria ternatea as a Prospective Brain Drug Confronting Monoamine Oxidase (MAO) Against Neurodegenerative Diseases and Depression[J]. Natural Products and Bioprospecting, 2015, 5(6): 293-306.
[10] David Mary Rajathei, Jayakumar Preethi, Hemant K. Singh, Koilmani Emmanuvel Rajan. Molecular Docking of Bacosides with Tryptophan Hydroxylase: A Model to Understand the Bacosides Mechanism[J]. Natural Products and Bioprospecting, 2014, 4(4): 251-255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed