Natural Products and Bioprospecting    2020, Vol. 10 Issue (5) : 325-335     DOI: 10.1007/s13659-020-00260-2
ORIGINAL ARTICLES |
Anthraquinone Derivatives as an Immune Booster and their Therapeutic Option Against COVID-19
Pukar Khanal1, B. M. Patil1, Jagdish Chand2, Yasmin Naaz2
1 Department of Pharmacology and Toxicology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research(KAHER), Belagavi 590010, India;
2 Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research(KAHER), Belagavi 590010, India
Download: PDF(11170 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Anthraquinone derivatives are identified for their immune-boosting, anti-inflammatory, and anti-viral efficacy. Hence, the present study aimed to investigate the reported anthraquinone derivatives as immune booster molecules in COVID-19 infection and evaluate their binding affinity with three reported targets of novel coronavirus i.e. 3C-like protease, papain-like protease, and spike protein. The reported anthraquinone derivatives were retrieved from an open-source database and filtered based on a positive druglikeness score. Compounds with positive druglikeness scores were predicted for their targets using DIGEPPred and the interaction among modulated proteins was evaluated using STRING. Further, the associated pathways were recorded concerning the Kyoto Encyclopedia of Genes and Genomes pathway database. Finally, the docking was performed using autodock4 to identify the binding efficacy of anthraquinone derivatives with 3C-like protease, papain-like protease, and spike protein. After docking the pose of ligand scoring minimum binding energy was chosen to visualize the ligand-protein interaction. Among 101 bioactives, 36 scored positive druglikeness score and regulated multiple pathways concerned with immune modulation and (non-) infectious diseases. Similarly, docking study revealed torososide B to possess the highest binding affinity with papain-like protease and 3C-like protease and 1,3,6-trihydroxy-2-methyl-9,10-anthraquinone-3-O-(6'-O-acetyl)-β-D-xylopyranosyl-(1 → 2)-β-D-glucopyranoside with spike protein.
Keywords 3CLpro      Anthroquine derivatives      Coronavirus      COVID-19      Immune boost     
Fund:All the authors are thankful to Principal KLE College of Pharmacy, Belagavi, KAHER Belagavi for his support for this completion of this work.
Corresponding Authors: Pukar Khanal, B. M. Patil     E-mail: pukarkhanal58@gmail.com;drbmpatil@klepharm.edu,bmpatil59@hotmail.com
Issue Date: 23 October 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pukar Khanal
B. M. Patil
Jagdish Chand
Yasmin Naaz
Trendmd:   
Cite this article:   
Pukar Khanal,B. M. Patil,Jagdish Chand, et al. Anthraquinone Derivatives as an Immune Booster and their Therapeutic Option Against COVID-19[J]. Natural Products and Bioprospecting, 2020, 10(5): 325-335.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-020-00260-2     OR     http://npb.kib.ac.cn/EN/Y2020/V10/I5/325
1. T.A. Miura, K.V. Holmes, J. Leukoc. Biol. 86, 1145-1151 (2009)
2. University of Melbourne. Science News. https://www.sciencedaily.com/releases/2020/03/200317103815.htm. Accessed 28 May 2020
3. P. Khanal, T. Duyu, B.M. Patil, Y.N. Dey, I. Pasha, R.S. Kavalapure, Res Sq. (2020a). https://doi.org/10.21203/rs.3.rs-32233/v1
4. P. Khanal, T. Duyu, Y.N. Dey, I. Pasha, M. Wanjari, Res. Sq. (2020b). https://doi.org/10.21203/rs.3.rs-31776/v1
5. D.H. Zhang, K.L. Wu, X. Zhang, S.Q. Deng, B. Peng, J. Integr. Med. 18, 152-158 (2020)
6. S. Mahdian, A. Ebrahim-Habibi, M. Zarrabi, J. Diabetes Metab. Disord. (2020). https://doi.org/10.1007/s40200-020-00546-9
7. E.M. Malik, C.E. Müller, Med. Res. Rev. 36, 705-748 (2016). https://doi.org/10.1002/med.21391
8. S.C. Chien, Y.C. Wu, Z.W. Chen, W.C. Yang, Evid.-Based Complement. Altern. Med.:eCAM 2015, 357357 (2015)
9. D.O. Andersen, N.D. Weber, S.G. Wood, B.G. Hughes, B.K. Murray, J.A. North, Antivir. Res. 16, 185-196 (1991)
10. A.D. Kshirsagar, P.V. Panchal, U.N. Harle, R.K. Nanda, H.M. Shaikh, Int. J. Inflamm. 2014, 690596 (2014)
11. G.K. Panigrahi, A. Yadav, P. Mandal, A. Tripathi, M. Das, Toxicol. Lett. 245, 15-23 (2016)
12. A. Lagunin, S. Ivanov, A. Rudik, D. Filimonov, V. Poroikov, Bioinformatics 29, 2062-2063 (2013)
13. D. Szklarczyk, J.H. Morris, H. Cook, M. Kuhn, S. Wyder, M. Simonovic et al., Nucleic Acids Res. 45, D362-D368 (2017)
14. P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage et al., Genome Res. 13, 2498-2504 (2003)
15. P. Khanal, B.M. Patil, Adv. Tradit. Med. (2020). https://doi.org/10.1007/s13596-020-00426-w
16. V.V. Poroikov, D.A. Filimonov, W.D. Ihlenfeldt, T.A. Gloriozova, A.A. Lagunin, Y.V. Borodina et al., J. Chem. Inf. Comput. Sci. 43, 228-236 (2003)
17. D.S. Biovia, Discovery Studio client (DassaultSystèmes, San Diego, 2019), p. 2019
18. T.A. Halgren, J. Comput. Chem. 17, 490-519 (1996)
19. T. Schwede, J. Kopp, N. Guex, M.C. Peitsch, Nucleic Acids Res. 31, 3381-3385 (2003). https://doi.org/10.1093/nar/gkg520
20. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell et al., J. Comput. Chem. 30, 2785-2791 (2009). https://doi.org/10.1002/jcc.21256
21. P. Khanal, B.M. Patil, K.K. Hullatti, Indian J. Pharm. Sci. 81, 550-555 (2019)
22. P. Khanal, P. Magadum, B.M. Patil, K.K. Hullatti, Indian J. Pharm. Sci. 81, 326-332 (2019)
23. C.A. Lipinski, Drug. Discov. Today Technol. 1, 337-341 (2004)
24. P. Khanal, B.M. Patil, Asian Pac. J. Trop. Biomed. 9, 263 (2019)
25. P. Khanal, B.M. Patil, J. Diabetes Metab. Disord. (2020). https://doi.org/10.1007/s40200-020-00554-9
26. C. Muñoz-Fontela, A. Mandinova, S.A. Aaronson, S.W. Lee, Nat. Rev. Immunol. 16, 741-750 (2016). https://doi.org/10.1038/nri.2016.99
27. T. Weichhart, M.D. Säemann, Ann. Rheum. Dis. iii67, iii70-iii74 (2008)
28. D.S. Johnson, Y.H. Chen, Curr. Opin. Pharmacol. 12, 458-463 (2012)
29. C.L. Sokol, A.D. Luster, Cold Spring Harb. Perspect. Biol. 7, a016303 (2015)
30. V.G. Bhoj, Z.J. Chen, Nature 458, 430-437 (2009)
31. H.A. Lindner, N. Fotouhi-Ardakani, V. Lytvyn, P. Lachance, T. Sulea, R. Ménard, J. Virol. 79, 15199-15208 (2005)
32. W. Li, M.J. Moore, N. Vasilieva, J. Sui, S.K. Wong, M.A. Berne, M. Somasundaran, J.L. Sullivan, K. Luzuriaga, T.C. Greenough, H. Choe, M. Farzan, Nature 426, 450-454 (2003)
33. J.H. Kuhn, W. Li, H. Choe, M. Farzan, Cell Mol. Life Sci. 61, 2738-2743 (2004)
[1] Rohan R. Narkhede, Ashwini V. Pise, Rameshwar S. Cheke, Sachin D. Shinde. Recognition of Natural Products as Potential Inhibitors of COVID-19 Main Protease (Mpro): In-Silico Evidences[J]. Natural Products and Bioprospecting, 2020, 10(5): 297-306.
[2] Ilkay Erdogan Orhan, F. Sezer Senol Deniz. Natural Products as Potential Leads Against Coronaviruses: Could They be Encouraging Structural Models Against SARS-CoV-2?[J]. Natural Products and Bioprospecting, 2020, 10(4): 171-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed