Natural Products and Bioprospecting    2024, Vol. 14 Issue (3) : 23-23     DOI: 10.1007/s13659-024-00440-4
ORIGINAL ARTICLES |
Compounds from Agathis dammara exert hypoglycaemic activity by enhancing glucose uptake: lignans, terpenes and others
Zhe-Wei Yu1,2, Bang-Ping Cai3, Su-Zhi Xie4, Yi Zhang1, Wen-Hui Wang1, Shun-Zhi Liu1, Yan-Lin Bin1, Qi Chen1, Mei-Juan Fang1, Rong Qi2, Ming-Yu Li1, Ying-Kun Qiu1
1 School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
2 School of Basic Medical Sciences, Peking University, Beijing 100191, China;
3 Xiamen Botanical Garden, Xiamen 361003, Fujian, China;
4 Xiamen Medical College Affiliated Haicang Hospital, Xiamen 361026, China
Download: PDF(2205 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In this study, two new kaurane diterpenes (16, 17), together with 12 lignans (112), a triterpene (15), and two other compounds (13, 14) were isolated from the woods of Agathis dammara. The structure of the new compound was determined by HR ESIMS and 1D/2D NMR spectroscopy, and its absolute configuration was determined by electronic circular dichroism (ECD) exciton chirality method. Compounds 5, 11, 14 exhibit significant hypoglycaemic activity in zebrafish, and their mechanism of action is to enhance glucose uptake in zebrafish.
Keywords Agathis dammara      Lignans      Terpenes      Hypoglycaemic      Glucose uptake     
Fund:This work was financially supported by Project XWZY-2023-0303 supported by Traditional Chinese Medicine Foundation of Xiamen.
Corresponding Authors: Ming-Yu Li,E-mail:limingyu@xmu.edu.cn;Ying-Kun Qiu,E-mail:qyk@xmu.edu.cn     E-mail: limingyu@xmu.edu.cn;qyk@xmu.edu.cn
Issue Date: 14 June 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhe-Wei Yu
Bang-Ping Cai
Su-Zhi Xie
Yi Zhang
Wen-Hui Wang
Shun-Zhi Liu
Yan-Lin Bin
Qi Chen
Mei-Juan Fang
Rong Qi
Ming-Yu Li
Ying-Kun Qiu
Trendmd:   
Cite this article:   
Zhe-Wei Yu,Bang-Ping Cai,Su-Zhi Xie, et al. Compounds from Agathis dammara exert hypoglycaemic activity by enhancing glucose uptake: lignans, terpenes and others[J]. Natural Products and Bioprospecting, 2024, 14(3): 23-23.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00440-4     OR     http://npb.kib.ac.cn/EN/Y2024/V14/I3/23
1. Zhang X. Research on the introduction and cultivation of Agathis dammara and seedling breeding technology. Straits Sci. 2002;05:41–2+44.
2. Wang A, Yue S, Peng A, Qi R. A review of research progress on Agathis dammara and its application prospects for cardiovascular diseases and fatty liver disease. Mini-Rev Med Chem. 2021;21(6):670–6.
3. Xiao D. Damar Minyak of Agathis. Furnit Interior Des. 2013;12:90–3.
4. Zhang Q, Cai Z, Yu Z, Di C, Qiu Y, Qi R. Agathis dammara extract and its monomer Araucarone attenuate abdominal aortic aneurysm in mice. Cardiovasc Drugs Therapy. 2023. https://doi.org/10.1007/s10557-023-07518-0.
5. Konishi T, Konoshima T, Fujiwara Y, Kiyosawa S. Excoecarins D, E, and K, from Excoecaria agallocha. J Nat Prod. 2000;63(3):344–6.
6. Takaku N, Choi D, Mikame K, Okunishi T, Suzuki S, Ohashi H, Umezawa T, Shimada M. Lignans of Chamaecyparis obtusa. J Wood Sci. 2001;47(6):476–82.
7. Li X, Cai J, Wang W, Ai H, Mao Z. Two new acetylenic compounds from Asparagus officinalis. J Asian Nat Prod Res. 2016;18(4):344–8.
8. Zhang Y, Tan N, Yang Y, Lu Y, Cao P, Wu Y. Norlignans from Sequoia sempervirens. Chem Biodivers. 2005;2(4):497–505.
9. Tang J, Fan G, Dai F, Ding D, Wang Q, Lu D, Li R, Li X, Hu L, Jin X, Zhou B. Finding more active antioxidants and cancer chemoprevention agents by elongating the conjugated links of resveratrol. Free Radic Biol Med. 2011;50(10):1447–57.
10. Leyi H, Yuzheng S, Qianqian C, Tingting D, Hongtao X, Guixin C. Chemical constituents of Patrinia villosa. Chin Tradit Herb Drugs. 2021;52(23):7088–95.
11. Li H, Li X, Wang J. Chemical constituents of Nux Prinsepiae Uniflorae. J Shenyang Pharm Univ. 2006;04:209–11.
12. Cambie RC, Clark GR, Craw PA, Jones TC, Rutledge PS, Woodgate PD. Chemistry of the Podocarpaceae. LXIX. Further lignans from te wood of Dacrydium intermedium. Aust J Chem. 1985;38(11):1631–45.
13. Zhou X, Yu F, Zeng Q. Study on the chemical composition of Taxus yunnanensis heartwood. Tradit Chin Drug Res Clin Pharmacol. 2002;05:317–9.
14. Jingi W, Yanzi M, Chunxue Z, Qinxue J, Huming H, Jiao B. Lignans from stems and leaves of Cephalotaxus fortunei. Chin Tradit Herb Drugs. 2020;51(01):36–42.
15. Chang CI, Hsu CM, Li TS, Huang SD, Lin CC, Yen CH, Chou CH, Cheng HL. Constituents of the stem of Cucurbita moschata exhibit antidiabetic activities through multiple mechanisms. J Funct Foods. 2014;10:260–73.
16. Okuyama E, Suzumura K, Yamazaki M. Pharmacologically active components of Todopon Puok (Fagraea racemosa), a medicinal plant from Borneo. Chem Pharm Bull. 1995;43(12):2200–4.
17. Yang Y, Liu J. The constituents of Ervatamia divaricata. Acta Botanica Yunnanica. 1999;21(2):260–4.
18. Heckler K, Kroll J. Zebrafish as a model for the study of microvascular complications of diabetes and their mechanisms. Int J Mol Sci. 2017:18(9):2002.
19. Jia JX, Kang Q, Liu SZ, Song YB, Wong FS, Qiu YK, Li MY. Artemether and aspterric acid induce pancreatic alpha cells to transdifferentiate into beta cells in zebrafish. Br J Pharmacol. 2022;179(9):1962–77.
20. Li M, Maddison LA, Page-McCaw P, Chen W. Overnutrition induces β-cell differentiation through prolonged activation of β-cells in zebrafish larvae. Am J Physiol Endocrinol Metab. 2014;306(7):E799-807.
21. Lee J, Jung D, Kim W, Um J, Yim S, Oh WK, Williams DR. Development of a highly visual, simple, and rapid test for the discovery of novel insulin mimetics in living vertebrates. ACS Chem Biol. 2013;8(8):1803–14.
[1] Inga Dammann, Claudia Keil, Iris Hardewig, Elżbieta Skrzydlewska, Michał Biernacki, Hajo Haase. Effects of combined cannabidiol (CBD) and hops (Humulus lupulus) terpene extract treatment on RAW 264.7 macrophage viability and inflammatory markers[J]. Natural Products and Bioprospecting, 2023, 13(3): 19-19.
[2] Ganna Kravchenko, Oksana Krasilnikova, Ain Raal, Matar Mazen, Natalia Chaika, Igor Kireyev, Andriy Grytsyk, Oleh Koshovyi. Arctostaphylos uva-ursi L. leaves extract and its modified cysteine preparation for the management of insulin resistance: chemical analysis and bioactivity[J]. Natural Products and Bioprospecting, 2022, 12(5): 30-30.
[3] Shui-Mei Zhang, Kun Hu, Xiao-Nian Li, Han-Dong Sun, Pema-Tenzin Puno. Lignans and sesquiterpenoids from the stems of Schisandra bicolor var. tuberculata[J]. Natural Products and Bioprospecting, 2022, 12(3): 19-19.
[4] Suhad A. A. Al-Salihi, Fabrizio Alberti. Naturally Occurring Terpenes: A Promising Class of Organic Molecules to Address Influenza Pandemics[J]. Natural Products and Bioprospecting, 2021, 11(4): 405-419.
[5] I. Poulopoulou, I. Hadjigeorgiou. Evaluation of Terpenes' Degradation Rates by Rumen Fluid of Adapted and Non-adapted Animals[J]. Natural Products and Bioprospecting, 2021, 11(3): 307-314.
[6] Yi-Jie Zhai, Jian-Nan Li, Yu-Qi Gao, Lin-Lin Gao, Da-Cheng Wang, Wen-Bo Han, Jin-Ming Gao. Structurally Diverse Sesquiterpenoids with Anti-neuroinflammatory Activity from the Endolichenic Fungus Cryptomarasmius aucubae[J]. Natural Products and Bioprospecting, 2021, 11(3): 325-332.
[7] Hong-Jie Zhu, Te Xu, Yong-Ming Yan, Zheng-Chao Tu, Yong-Xian Cheng. Neolignans and Norlignans from Insect Medicine Polyphaga plancyi and Their Biological Activities[J]. Natural Products and Bioprospecting, 2021, 11(1): 51-62.
[8] Shuang Tang, Yun-Bao Ma, Chang-An Geng, Cheng Shen, Tian-Ze Li, Xue-Mei Zhang, Li-Hua Su, Zhen Gao, Jing Hu, Ji-Jun Chen. Artemyrianins A-G from Artemisia myriantha and Their Cytotoxicity Against HepG2 Cells[J]. Natural Products and Bioprospecting, 2020, 10(4): 251-260.
[9] Jia-Huan Shang, Guo-Wei Xu, Hong-Tao Zhu, Dong Wang, Chong-Ren Yang, Ying-Jun Zhang. Anti-inflammatory and Cytotoxic Triterpenes from the Rot Roots of Panax notoginseng[J]. Natural Products and Bioprospecting, 2019, 9(4): 287-295.
[10] Nay Lin Tun, Dong-Bao Hu, Meng-Yuan Xia, Dong-Dong Zhang, Jun Yang, Thaung Naing Oo, Yue-Hu Wang, Xue-Fei Yang. Chemical Constituents from Ethanoic Extracts of the Aerial Parts of Leea aequata L., a Traditional Folk Medicine of Myanmar[J]. Natural Products and Bioprospecting, 2019, 9(3): 243-249.
[11] Yan-Ting Lu, Xiu-Li Ma, Yu-Hui Xu, Jing Hu, Fang Wang, Wan-Ying Qin, Wen-Yong Xiong. A Fluorescent Glucose Transport Assay for Screening SGLT2 Inhibitors in Endogenous SGLT2-Expressing HK-2 Cells[J]. Natural Products and Bioprospecting, 2019, 9(1): 13-22.
[12] Kennedy D. Nyongbela, Fidele Ntie-Kang, Thomas R. Hoye, Simon M. N. Efange. Antiparasitic Sesquiterpenes from the Cameroonian Spice Scleria striatinux and Preliminary In Vitro and In Silico DMPK Assessment[J]. Natural Products and Bioprospecting, 2017, 7(3): 235-247.
[13] Joseph Sakah Kaunda, Ying-Jun Zhang. The Genus Carissa: An Ethnopharmacological, Phytochemical and Pharmacological Review[J]. Natural Products and Bioprospecting, 2017, 7(2): 181-199.
[14] Jing-Xian Zhuo, Yue-Hu Wang, Xing-Li Su, Ren-Qiang Mei, Jun Yang, Yi Kong, Chun-Lin Long. Neolignans from Selaginella moellendorffii[J]. Natural Products and Bioprospecting, 2016, 6(3): 161-166.
[15] Rong-Hua Yin, Zhen-Zhu Zhao, Xu Ji, Ze-Jun Dong, Zheng-Hui Li, Tao Feng, Ji-Kai Liu. Steroids and Sesquiterpenes From Cultures of the Fungus Phellinus igniarius[J]. Natural Products and Bioprospecting, 2015, 5(1): 17-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed