Natural Products and Bioprospecting    2022, Vol. 12 Issue (1) : 1-15     DOI: 10.1007/s13659-022-00332-5
ORIGINAL ARTICLES |
Novel insights on acetylcholinesterase inhibition by Convolvulus pluricaulis, scopolamine and their combination in zebrafish
Kalyani Bindu Karunakaran1, Anand Thiyagaraj2, Kirankumar Santhakumar2,3
1 Supercomputer Education and Research Centre, Indian Institute of Science, Bengaluru, India;
2 Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, India;
3 Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, India
Download: PDF(2642 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Acetylcholinesterase (AChE) inhibitors increase the retention of acetylcholine (ACh) in synapses. Although they alleviate cognitive deficits in Alzheimer's disease, their limited benefits warrant investigations of plant extracts with similar properties. We studied the anti-AChE activity of Convolvulus pluricaulis (CP) in a zebrafish model of cognitive impairment induced by scopolamine (SCOP). CP is a perennial herb with anti-amnesiac and anxiolytic properties. It contains alkaloid, anthocyanin, coumarin, flavonoid, phytosterol and triterpenoid components. Isoxazole (ISOX) was used as a positive control for AChE inhibition. CP-treated 168 hpf larvae showed a similar pattern of AChE inhibition (in the myelencephalon and somites) as that of ISOX-treated larvae. CP was superior to ISOX as evidenced by the retention of avoidance response behavior in adult zebrafish. Molecular docking studies indicated that ISOX binds Ser203 of the catalytic triad on the human AChE. The active components of CP-scopoletin and kaempferol-were bound by His447 of the catalytic triad, the anionic subsite of the catalytic center, and the peripheral anionic site. This suggested the ability of CP to mediate both competitive and non-competitive modes of inhibition. Surprisingly, SCOP showed AChE inhibition in larvae, possibly mediated via the choline-binding sites. CP+SCOP induced a concentration-dependent increase in AChE inhibition and ACh depletion. Abnormal motor responses were observed with ISOX, CP, ISOX+SCOP, and CP+SCOP, indicative of undesirable effects on the peripheral cholinergic system. Our study proposes the examination of CP, SCOP, and CP+SCOP as potential AChE inhibitors for their ability to modulate cognitive deficits.
Keywords Alzheimer's disease      Acetylcholinesterase      Zebrafish      Convolvulus pluricaulis      Scopolamine      Isoxazole     
Fund:KS acknowledges the financial assistance received from the Department of Biotechnology, Ministry of Science and Technology, New Delhi (BT/PR26189/GET/119/226/2017) and DST-SERB, New Delhi (EMR/2017/000465).
Corresponding Authors: Kirankumar Santhakumar     E-mail: kirankus@srmist.edu.in
Issue Date: 12 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kalyani Bindu Karunakaran
Anand Thiyagaraj
Kirankumar Santhakumar
Trendmd:   
Cite this article:   
Kalyani Bindu Karunakaran,Anand Thiyagaraj,Kirankumar Santhakumar. Novel insights on acetylcholinesterase inhibition by Convolvulus pluricaulis, scopolamine and their combination in zebrafish[J]. Natural Products and Bioprospecting, 2022, 12(1): 1-15.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-022-00332-5     OR     http://npb.kib.ac.cn/EN/Y2022/V12/I1/1
1. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer's disease. Nat Rev Dis Primers. 2015;1:15056.
2. Ferreira-Vieira HT, Guimaraes MI, Silva RF, Ribeiro MF. Alzheimer's disease:targeting the cholinergic system. Curr Neuropharmacol. 2016;14(1):101-15.
3. Ballinger EC, Ananth M, Talmage DA, Role LW. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron. 2016;91(6):1199-218.
4. McGleenon B, Dynan K, Passmore A. Acetylcholinesterase inhibitors in Alzheimer's disease. Br J Clin Pharmacol. 1999;48(4):471.
5. Paul S, Jeon WK, Bizon JL, Han J-S. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment. Front Aging Neurosci. 2015;7:43.
6. García-Ayllón M-S, Riba-Llena I, Serra-Basante C, Alom J, Boopathy R, Sáez-Valero J. Altered levels of acetylcholinesterase in Alzheimer plasma. PLoS ONE. 2010;5(1):e8701.
7. Perry R, Wilson I, Bober M, Atack J, Blessed G, Tomlinson B, et al. Plasma and erythrocyte acetylcholinesterase in senile dementia of Alzheimer type. Lancet. 1982;319(8264):174-5.
8. Atack J, Perry E, Perry R, Wilson I, Bober M, Blessed G, et al. Blood acetyland butyrylcholinesterases in senile dementia of Alzheimer type. J Neurol Sci. 1985;70(1):1-12.
9. Soreq H, Seidman S. Acetylcholinesterase-new roles for an old actor. Nat Rev Neurosci. 2001;2(4):294-302.
10. Moss DE, Perez RG, Kobayashi H. Cholinesterase inhibitor therapy in Alzheimer's disease:the limits and tolerability of irreversible CNSselective acetylcholinesterase inhibition in primates. J Alzheimers Dis. 2017;55(3):1285-94.
11. Greig NH, Utsuki T, Yu Q-S, Zhu X, Holloway HW, Perry T, et al. A new therapeutic target in Alzheimer's disease treatment:attention to butyrylcholinesterase. Curr Med Res Opin. 2001;17(3):159-65.
12. Ballard C. Advances in the treatment of Alzheimer's disease:benefits of dual cholinesterase inhibition. Eur Neurol. 2002;47(1):64-70.
13. Poirier J. Evidence that the clinical effects of cholinesterase inhibitors are related to potency and targeting of action. Int J Clin Pract Suppl. 2002;127:6-19.
14. Fukuto TR. Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect. 1990;87:245.
15. Morisset S, Traiffort E, Schwartz J-C. Inhibition of histamine versus acetylcholine metabolism as a mechanism of tacrine activity. Eur J Pharmacol. 1996;315(1):R1-2.
16. Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase inhibitors:pharmacology and toxicology. Curr Neuropharmacol. 2013;11(3):315-35.
17. Di Santo SG, Prinelli F, Adorni F, Caltagirone C, Musicco M. A metaanalysis of the efficacy of donepezil, rivastigmine, galantamine, and memantine in relation to severity of Alzheimer's disease. J Alzheimers Dis. 2013;35(2):349-61.
18. Singh R, Sadiq NM. Cholinesterase inhibitors. StatPearls:StatPearls Publishing; 2019.
19. Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL. Acetylcholinesterase:from 3D structure to function. Chem Biol Interact. 2010;187(1-3):10-22.
20. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, et al. Atomic structure of acetylcholinesterase from Torpedo californica:a prototypic acetylcholine-binding protein. Science. 1991;253(5022):872-9.
21. Ordentlich A, Barak D, Kronman C, Ariel N, Segall Y, Velan B, et al. Functional characteristics of the oxyanion hole in human acetylcholinesterase. J Biol Chem. 1998;273(31):19509-17.
22. Bourne Y, Taylor P, Radić Z, Marchot P. Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. EMBO J. 2003;22(1):1-12.
23. Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci. 2014;35(2):63-75.
24. Clemente D, Porteros Á, Weruaga E, Alonso JR, Arenzana FJ, Aijón J, et al. Cholinergic elements in the zebrafish central nervous system:histochemical and immunohistochemical analysis. J Comp Neurol. 2004;474(1):75-107.
25. Bertrand C, Chatonnet A, Takke C, Yan Y, Postlethwait J, Toutant J-P, et al. Zebrafish acetylcholinesterase is encoded by a single gene localized on linkage group 7 gene structure and polymorphism; molecular forms and expression pattern during development. J Biol Chem. 2001;276(1):464-74.
26. Parveen M, Kumar S. Recent trends in the acetylcholinesterase system. Amsterdam:IOS Press; 2005.
27. Jin Y, Liu Z, Peng T, Fu Z. The toxicity of chlorpyrifos on the early life stage of zebrafish:a survey on the endpoints at development, locomotor behavior, oxidative stress and immunotoxicity. Fish Shellfish Immunol. 2015;43(2):405-14.
28. Holmberg A, Schwerte T, Pelster B, Holmgren S. Ontogeny of the gut motility control system in zebrafish Danio rerio embryos and larvae. J Exp Biol. 2004;207(23):4085-94.
29. Nahata A, Patil U, Dixit V. Anxiolytic activity of Evolvulus alsinoides and Convulvulus pluricaulis in rodents. Pharm Biol. 2009;47(5):444-51.
30. Bihaqi SW, Singh AP, Tiwari M. In vivo investigation of the neuroprotective property of Convolvulus pluricaulis in scopolamine-induced cognitive impairments in Wistar rats. Indian J Pharmacol. 2011;43(5):520.
31. Malik J, Karan M, Vasisht K. Attenuating effect of bioactive coumarins from Convolvulus pluricaulis on scopolamine-induced amnesia in mice. Nat Prod Res. 2016;30(5):578-82.
32. Bihaqi SW, Sharma M, Singh AP, Tiwari M. Neuroprotective role of Convolvulus pluricaulis on aluminium induced neurotoxicity in rat brain. J Ethnopharmacol. 2009;124(3):409-15.
33. Finney DJ, Tattersfield F. Probit analysis. Cambridge:Cambridge University Press; 1952.
34. Kopelman M, Corn T. Cholinergic ‘blockade’ as a model for cholinergic depletion:a comparison of the memory deficits with those of Alzheimer-type dementia and the alcoholic Korsakoff syndrome. Brain. 1988;111(5):1079-110.
35. Kim Y-H, Lee Y, Kim D, Jung MW, Lee C-J. Scopolamine-induced learning impairment reversed by physostigmine in zebrafish. Neurosci Res. 2010;67(2):156-61.
36.. !!! INVALID CITATION !!!.
37. Rangappa KS. New cholinesterase inhibitors:synthesis and structure-activity relationship studies of 1, 2-benzisoxazole series and novel imidazolyl-d2-isoxazolines. J Phys Org Chem. 2005;18(8):773-8.
38. Gutiérrez M, Matus MF, Poblete T, Amigo J, Vallejos G, Astudillo L. Isoxazoles:synthesis, evaluation and bioinformatic design as acetylcholinesterase inhibitors. J Pharm Pharmacol. 2013;65(12):1796-804.
39. Anand P, Singh B. Synthesis and evaluation of novel 4-[(3H, 3aH, 6aH)-3-phenyl)-4, 6-dioxo-2-phenyldihydro-2H-pyrrolo[3, 4-d] isoxazol-5 (3H, 6H, 6aH)-yl] benzoic acid derivatives as potent acetylcholinesterase inhibitors and anti-amnestic agents. Bioorg Med Chem. 2012;20(1):521-30.
40. Hamilton TJ, Morrill A, Lucas K, Gallup J, Harris M, Healey M, et al. Establishing zebrafish as a model to study the anxiolytic effects of scopolamine. Sci Rep. 2017;7(1):1-9.
41. Cho H, Lee C-J, Choi J, Hwang J, Lee Y. Anxiolytic effects of an acetylcholinesterase inhibitor, physostigmine, in the adult zebrafish. Anim Cells Syst. 2012;16(3):198-206.
42. Karnovsky MJ, Roots L. A "direct-coloring" thiocholine method for cholinesterases. J Histochem Cytochem. 1964;12(3):219-21.
43. Selvaraj V, Santhakumar K. Analyzing locomotor activity in Zebrafish larvae using wrMTrck. Zebrafish. 2017;14(3):287-91.
44. Nussbaum-Krammer CI, Neto MF, Brielmann RM, Pedersen JS, Morimoto RI. Investigating the spreading and toxicity of prion-like proteins using the metazoan model organism C. elegans. J Vis Exp. 2015;95:e52321.
45. Roberts AC, Bill BR, Glanzman DL. Learning and memory in zebrafish larvae. Front Neural Circuits. 2013;7:126.
46. Gerlai R. Associative learning in zebrafish (Danio rerio). Methods Cell Biol. 2011;101:249-70.
47. Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39(suppl_2):W270-7.
48. Rollinger JM, Hornick A, Langer T, Stuppner H, Prast H. Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products. J Med Chem. 2004;47(25):6248-54.
49. Hornick A, Lieb A, Vo N, Rollinger J, Stuppner H, Prast H. The coumarin scopoletin potentiates acetylcholine release from synaptosomes, amplifies hippocampal long-term potentiation and ameliorates anticholinergic-and age-impaired memory. Neuroscience. 2011;197:280-92.
50. Roseiro LB, Rauter AP, Serralheiro MLM. Polyphenols as acetylcholinesterase inhibitors:structural specificity and impact on human disease. Nutr Aging. 2012;1(2):99-111.
51. Balkis A, Tran K, Lee YZ, Balkis KN, Ng K. Screening flavonoids for inhibition of acetylcholinesterase identified baicalein as the most potent inhibitor. J Agric Sci. 2015;7(9):26.
52. Balkrishna A, Thakur P, Varshney A. Phytochemical profile, pharmacological attributes and medicinal properties of convolvulus prostrates-a cognitive enhancer herb for the management of neurodegenerative etiologies. Front Pharmacol. 2020;11:171.
53. Kato G, Tan E, Yung J. Acetylcholinesterase. Kinetic studies on the mechanism of atropine inhibition. J Biol Chem. 1972;247(10):3186-90.
54. Wetherell J, Hall T, Passingham S. Physostigmine and hyoscine improves protection against the lethal and incapacitating effects of nerve agent poisoning in the guinea-pig. Neurotoxicology. 2002;23(3):341-9.
55. Venkov L, Iancheva N. Effects of scopolamine and pilocarpine on the activity of acetylcholinesterase in rat brain synaptosomal fractions. Prog Brain Res. 1979;49:495.
56. Woodruff-Pak DS, Vogel RW, Wenk GL. Galantamine:effect on nicotinic receptor binding, acetylcholinesterase inhibition, and learning. Proc Natl Acad Sci. 2001;98(4):2089-94.
57. Ketchum JS, Sidell FR, Crowell EB, Aghajanian GK, Hayes AH. Atropine, scopolamine, and ditran:comparative pharmacology and antagonists in man. Psychopharmacologia. 1973;28(2):121-45.
58. Giarman N, Pepeu G. The influence of centrally acting cholinolytic drugs on brain acetylcholine levels. Br J Pharmacol Chemother. 1964;23(1):123-30.
59. Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS, et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish. 2013;10(1):70-86.
60. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253-310.
61. Busquet F, Strecker R, Rawlings JM, Belanger SE, Braunbeck T, Carr GJ, et al. OECD validation study to assess intra-and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing. Regul Toxicol Pharmacol. 2014;69(3):496-511.
62. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88-95.
63. Hestrin S. The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J Biol Chem. 1949;180(1):249-61.
64. Tilton FA, Bammler TK, Gallagher EP. Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures. Comp Biochem Physiol C:Toxicol Pharmacol. 2011;153(1):9-16.
65. Goodsell DS, Zardecki C, Di Costanzo L, Duarte JM, Hudson BP, Persikova I, et al. RCSB Protein Data Bank:enabling biomedical research and drug discovery. Protein Sci. 2020;29(1):52-65.
66. Čadež T, Kolić D, Šinko G, Kovarik Z. Assessment of four organophosphorus pesticides as inhibitors of human acetylcholinesterase and butyrylcholinesterase. Sci Rep. 2021;11(1):1-11.
67. Ghosh S, Jana K, Ganguly B. Revealing the mechanistic pathway of cholinergic inhibition of Alzheimer's disease by donepezil:a metadynamics simulation study. Phys Chem Chem Phys. 2019;21(25):13578-89.
68. Junaid M, Islam N, Hossain MK, Ullah MO, Halim MA. Metal based donepezil analogues designed to inhibit human acetylcholinesterase for Alzheimer's disease. PLoS ONE. 2019;14(2):e0211935.
69. Bosak A, Opsenica DM, Šinko G, Zlatar M, Kovarik Z. Structural aspects of 4-aminoquinolines as reversible inhibitors of human acetylcholinesterase and butyrylcholinesterase. Chem Biol Interact. 2019;308:101-9.
70. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-12.
71. Irwin JJ, Shoichet BK. ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005;45(1):177-82.
72. Ordentlich A, Barak D, Kronman C, Flashner Y, Leitner M, Segall Y, et al. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. J Biol Chem. 1993;268(23):17083-95.
73. Dannenberg J. An introduction to hydrogen bonding by George A. Jeffrey (University of Pittsburgh). New York:Oxford University Press. 1997. ix+303. pp. $60.00. ISBN 0-19-509549-9. ACS Publications; 1998.
[1] Fei Liu, Yu-Cheng Liu, Wei-Wei Jiang, Juan He, Xing-De Wu, Li-Yan Peng, Jia Su, Xiao Cheng, Qin-Shi Zhao. Carinatines A and B, Lycopodium Alkaloids from Phlegmariurus carinatus[J]. Natural Products and Bioprospecting, 2014, 4(4): 221-225.
[2] Bin WANG, Hong-Tao ZHU, Dong WANG, Chong-Ren YANG, Min XU, Ying-Jun ZHANG. New spinosin derivatives from the seeds of Ziziphus mauritiana[J]. Natural Products and Bioprospecting, 2013, 3(3): 93-98.
[3] Xue-Yuan ZHANG, Liao-Bin DONG, Fei LIU, Xing-De WU, Juan HE, Li-Yan PENG, Huai-Rong LUO, Qin-Shi ZHAO. New Lycopodium alkaloids from Lycopodium obscurum[J]. Natural Products and Bioprospecting, 2013, 3(2): 52-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed