Natural Products and Bioprospecting    2025, Vol. 15 Issue (1) : 3-3     DOI: 10.1007/s13659-024-00486-4
ORIGINAL ARTICLES |
Unveiling the mechanism of action of a novel natural dual inhibitor of SARS-CoV-2 Mpro and PLpro with molecular dynamics simulations
Xiaoxia Gu, Xiaotian Zhang, Xueke Zhang, Xinyu Wang, Weiguang Sun, Yonghui Zhang, Zhengxi Hu
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
Download: PDF(9388 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In the twenty-first century, we have witnessed multiple coronavirus pandemics. Despite declining SARS-CoV-2 cases, continued research remains vital. We report the discovery of sydowiol B, a natural product, as a dual inhibitor of SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro). Sydowiol B interacts with the nano-channel at the Mpro dimer interface and the PLpro active site. Molecular dynamics simulations suggest that sydowiol B inhibits Mpro by limiting active site expansion rather than inducing collapse. Furthermore, sydowiol B binding may amplify the fluctuation of two loops coordinating with the structural Zn2+ in PLpro, displacing Zn2+ from the zinc finger domain to the S2 helix. Sydowiol B and its analogue, violaceol I, exhibit broad-spectrum antiviral activity against homologous coronaviruses. Given the conservation of Mpro and PLpro, sydowiol B and violaceol I are promising leads for designing and developing anti-coronavirus therapies.
Keywords SARS-CoV-2      PLpro      Mpro      Natural product      Dual inhibitor      Nano-channel      Antiviral agent     
Fund:Thanks for the technical support by the Medical Subcenter of HUST Analytical & Testing Center. This research was financially supported by the National Program for Support of Top-notch Young Professionals (No. 0106514050), the National Natural Science Foundation of China (Nos. 82273811 and U22A20380), the Hubei Provincial Natural Science Foundation of China (No. 2024AFA028), the National Key Research and Development Program of China (No. 2021YFA0910500), the Major Science and Technology Project of Hubei Province (No. 2021ACA012), and TongjiRongcheng Center for Biomedicine, Huazhong University of Science and Technology.
Corresponding Authors: Weiguang SUN,E-mail:weiguang_sun@hust.edu.cn;Yonghui ZHANG,E-mail:zhangyh@mails.tjmu.edu.cn;Zhengxi HU,E-mail:hzx616@126.com     E-mail: weiguang_sun@hust.edu.cn;zhangyh@mails.tjmu.edu.cn;hzx616@126.com
Issue Date: 15 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaoxia Gu
Xiaotian Zhang
Xueke Zhang
Xinyu Wang
Weiguang Sun
Yonghui Zhang
Zhengxi Hu
Trendmd:   
Cite this article:   
Xiaoxia Gu,Xiaotian Zhang,Xueke Zhang, et al. Unveiling the mechanism of action of a novel natural dual inhibitor of SARS-CoV-2 Mpro and PLpro with molecular dynamics simulations[J]. Natural Products and Bioprospecting, 2025, 15(1): 3-3.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00486-4     OR     http://npb.kib.ac.cn/EN/Y2025/V15/I1/3
[1] World Health Organization. World health statistics 2023: monitoring health for the SDGs, Sustainable Development Goals, 2023. https://www.who.int/publications/i/item/9789240074323
[2] Yang H, Rao Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol. 2021;19:685–700. https://doi.org/10.1038/s41579-021-00630-8.
[3] Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther. 2022;7:26. https://doi.org/10.1038/s41392-022-00884-5.
[4] Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10:766–88. https://doi.org/10.1016/j.apsb.2020.02.008.
[5] Tahirul Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020;10:313–9. https://doi.org/10.1016/j.jpha.2020.03.009.
[6] Su HX, Yao S, Zhao WF, Li MJ, Liu J, Shang WJ, et al. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol Sin. 2020;41:1167–77. https://doi.org/10.1038/s41401-020-0483-6.
[7] Zhu H, Chen C, Xue Y, Tong Q, Li XN, Chen X, et al. Asperchalasine A, a cytochalasan dimer with an unprecedented decacyclic ring system, from Aspergillus flavipes. Angew Chem Int Ed. 2015;54:13374–8. https://doi.org/10.1002/anie.201506264.
[8] Liu M, Sun W, Shen L, He Y, Liu J, Wang J, et al. Bipolarolides A-G: ophiobolin-derived sesterterpenes with three new carbon skeletons from Bipolaris sp. TJ403-B1. Angew Chem Int Ed. 2019;58:12091–5. https://doi.org/10.1002/anie.201905966.
[9] Guo Y, Huang F, Sun W, Zhou Y, Chen C, Qi C, et al. Unprecedented polycyclic polyprenylated acylphloroglucinols with anti-Alzheimer’s activity from St. John’s wort. Chem Sci. 2021;12:11438–46. https://doi.org/10.1039/d1sc03356e.
[10] Zang Y, Genta-Jouve G, Zheng Y, Zhang Q, Chen C, Zhou Q, et al. Griseofamines A and B: two indole-tetramic acid alkaloids with 6/5/6/5 and 6/5/7/5 ring systems from Penicillium griseofulvum. Org Lett. 2018;20:2046–50. https://doi.org/10.1021/acs.orglett.8b00584.
[11] Kumari A, Mittal L, Srivastava M, Asthana S. Binding mode characterization of 13b in the monomeric and dimeric states of SARS-CoV-2 main protease using molecular dynamics simulations. J Biomol Struct Dyn. 2022;40:9287–305. https://doi.org/10.1080/07391102.2021.1927844.
[12] El-Baba TJ, Lutomski CA, Kantsadi AL, Malla TR, John T, Mikhailov V, et al. Allosteric inhibition of the SARS-CoV-2 main protease: insights from mass spectrometry based assays**. Angew Chem Int Ed. 2020;59:23544–8. https://doi.org/10.1002/anie.202010316.
[13] Suárez D, Díaz N. SARS-CoV-2 main protease: a molecular dynamics study. J Chem Inf Model. 2020;60:5815–31. https://doi.org/10.1021/acs.jcim.0c00575.
[14] Sun Z, Wang L, Li X, Fan C, Xu J, Shi Z, et al. An extended conformation of SARS-CoV-2 main protease reveals allosteric targets. Proc Natl Acad Sci U S A. 2022;119: e2120913119. https://doi.org/10.1073/pnas.2120913119.
[15] Davis DA, Bulut H, Shrestha P, Yaparla A, Jaeger HK, Hattori SI, et al. Regulation of the dimerization and activity of SARS-CoV-2 main protease through reversible glutathionylation of cysteine 300. MBio. 2021;12: e0209421. https://doi.org/10.1128/mBio.02094-21.
[16] Kidera A, Moritsugu K, Ekimoto T, Ikeguchi M. Allosteric regulation of 3CL protease of SARS-CoV-2 and SARS-CoV observed in the crystal structure ensemble. J Mol Biol. 2021;433: 167324. https://doi.org/10.1016/j.jmb.2021.167324.
[17] Shi J, Song J. The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain. FEBS J. 2006;273:1035–45. https://doi.org/10.1111/j.1742-4658.2006.05130.x.
[18] Jaffrelot Inizan T, Célerse F, Adjoua O, El Ahdab D, Jolly LH, Liu C, et al. High-resolution mining of the SARS-CoV-2 main protease conformational space: supercomputer-driven unsupervised adaptive sampling. Chem Sci. 2021;12:4889–907. https://doi.org/10.1039/d1sc00145k.
[19] Chen H, Wei P, Huang C, Tan L, Liu Y, Lai L. Only one protomer is active in the dimer of SARS 3C-like proteinase. J Biol Chem. 2006;281:13894–8. https://doi.org/10.1074/jbc.M510745200.
[20] Kneller DW, Li H, Phillips G, Weiss KL, Zhang Q, Arnould MA, et al. Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease. Nat Commun. 2022;13:2268. https://doi.org/10.1038/s41467-022-29915-z.
[21] Kneller DW, Phillips G, O’Neill HM, Jedrzejczak R, Stols L, Langan P, et al. Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Nat Commun. 2020;11:3202. https://doi.org/10.1038/s41467-020-16954-7.
[22] Noske GD, Song Y, Fernandes RS, Chalk R, Elmassoudi H, Koekemoer L, et al. An in-solution snapshot of SARS-COV-2 main protease maturation process and inhibition. Nat Commun. 2023;14:1545. https://doi.org/10.1038/s41467-023-37035-5.
[23] Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science. 2020;368:409–12. https://doi.org/10.1126/science.abb3405.
[24] Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 2020;587:657–62. https://doi.org/10.1038/s41586-020-2601-5.
[25] Srinivasan V, Brognaro H, Prabhu PR, de Souza EE, Günther S, Reinke PYA, et al. Antiviral activity of natural phenolic compounds in complex at an allosteric site of SARS-CoV-2 papain-like protease. Commun Biol. 2022;5:805. https://doi.org/10.1038/s42003-022-03737-7.
[26] Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antiviral Res. 2018;149:58–74. https://doi.org/10.1016/j.antiviral.2017.11.001.
[27] Zhong ED, Bepler T, Berger B, Davis JH. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat Methods. 2021;18:176–85. https://doi.org/10.1038/s41592-020-01049-4.
[28] Young G, Hundt N, Cole D, Fineberg A, Andrecka J, Tyler A, et al. Quantitative mass imaging of single biological macromolecules. Science. 2018;360:423–7. https://doi.org/10.1126/science.aar5839.
[29] Grum-Tokars V, Ratia K, Begaye A, Baker SC, Mesecar AD. Evaluating the 3C-like protease activity of SARS-Coronavirus: recommendations for standardized assays for drug discovery. Virus Res. 2008;133:63–73. https://doi.org/10.1016/j.virusres.2007.02.015.
[30] Xue X, Yang H, Shen W, Zhao Q, Li J, Yang K, et al. Production of authentic SARS-CoV M-pro with enhanced activity: application as a novel tag-cleavage endopeptidase for protein overproduction. J Mol Biol. 2007;366:965–75. https://doi.org/10.1016/j.jmb.2006.11.073.
[31] Pekel H, Ilter M, Sensoy O. Inhibition of SARS-CoV-2 main protease: a repurposing study that targets the dimer interface of the protein. J Biomol Struct. 2022;40:7167–82. https://doi.org/10.1080/07391102.2021.1910571.
[32] Novak J, Rimac H, Kandagalla S, Pathak P, Naumovich V, Grishina M, et al. Proposition of a new allosteric binding site for potential SARS-CoV-2 3CL protease inhibitors by utilizing molecular dynamics simulations and ensemble docking. J Biomol Struct Dyn. 2022;40:9347–60. https://doi.org/10.1080/07391102.2021.1927845.
[33] Gorgulla C, Padmanabha Das KM, Leigh KE, Cespugli M, Fischer PD, Wang ZF, et al. A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. iScience. 2021;24:102021. https://doi.org/10.1016/j.isci.2020.102021.
[34] Noske GD, Silva EDS, de Godoy MO, Dolci I, Fernandes RS, Guido RVC, et al. Structural basis of nirmatrelvir and ensitrelvir activity against naturally occurring polymorphisms of the SARS-CoV-2 main protease. J Biol Chem. 2023;299:103004. https://doi.org/10.1016/j.jbc.2023.103004.
[35] Ou J, Lewandowski E, Hu Y, Lipinski A, Morgan R, Jacobs L, et al. A yeast-based system to study SARS-CoV-2 Mpro structure and to identify nirmatrelvir resistant mutations. PLoS Pathog. 2023;19: e1011592. https://doi.org/10.1371/journal.ppat.1011592.
[36] Ferreira JC, Fadl S, Rabeh WM. Key dimer interface residues impact the catalytic activity of 3CLpro, the main protease of SARS-CoV-2. J Biol Chem. 2022;298: 102023. https://doi.org/10.1016/j.jbc.2022.102023.
[37] Yuce M, Cicek E, Inan T, Dag AB, Kurkcuoglu O, Sungur FA. Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease. Proteins. 2021;89:1425–41. https://doi.org/10.1002/prot.26164.
[38] Liang J, Karagiannis C, Pitsillou E, Darmawan KK, Ng K, Hung A, et al. Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface. Comput Biol Chem. 2020;89: 107372. https://doi.org/10.1016/j.compbiolchem.2020.107372.
[39] Strömich L, Wu N, Barahona M, Yaliraki SN. Allosteric hotspots in the main protease of SARS-CoV-2. J Mol Biol. 2022;434: 167748. https://doi.org/10.1016/j.jmb.2022.167748.
[40] DasGupta D, Chan WKB, Carlson HA. Computational identification of possible allosteric sites and modulators of the SARS-CoV-2 main protease. J Chem Inf Model. 2022;62:618–26. https://doi.org/10.1021/acs.jcim.1c01223.
[41] El Ahdab D, Lagardère L, Inizan TJ, Célerse F, Liu C, Adjoua O, et al. Interfacial water many-body effects drive structural dynamics and allosteric interactions in SARS-CoV-2 main protease dimerization interface. J Phys Chem Lett. 2021;12:6218–26. https://doi.org/10.1021/acs.jpclett.1c01460.
[42] Alzyoud L, Ghattas MA, Atatreh N. Allosteric binding sites of the SARS-CoV-2 main protease: Potential targets for broad-spectrum anti-coronavirus agents. Drug Des Devel Ther. 2022;16:2463–78. https://doi.org/10.2147/DDDT.S370574.
[43] Krishnamoorthy N, Fakhro K. Identification of mutation resistance coldspots for targeting the SARS-CoV-2 main protease. IUBMB Life. 2021;73:670–5. https://doi.org/10.1002/iub.2465.
[44] Arutyunova E, Khan MB, Fischer C, Lu J, Lamer T, Vuong W, et al. N-terminal finger stabilizes the S1 pocket for the reversible feline drug GC376 in the SARS-CoV-2 mpro dimer. J Mol Biol. 2021;433: 167003. https://doi.org/10.1016/j.jmb.2021.167003.
[45] Lin MH, Moses DC, Hsieh CH, Cheng SC, Chen YH, Sun CY, et al. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res. 2018;150:155–63. https://doi.org/10.1016/j.antiviral.2017.12.015.
[46] Klemm T, Ebert G, Calleja DJ, Allison CC, Richardson LW, Bernardini JP, et al. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. 2020;39: e106275. https://doi.org/10.15252/embj.2020106275.
[47] Baez-Santos YM, St John SE, Mesecar AD. The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Res. 2015;115:21–38. https://doi.org/10.1016/j.antiviral.2014.12.015.
[48] Qiao J, Li YS, Zeng R, Liu FL, Luo RH, Huang C, et al. SARS-CoV-2 M-pro inhibitors with antiviral activity in a transgenic mouse model. Science. 2021;371:1374–8. https://doi.org/10.1126/science.abf1611.
[49] Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of M-pro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582:289–93. https://doi.org/10.1038/s41586-020-2223-y.
[50] Fu L, Shi S, Yi J, Wang N, He Y, Wu Z, et al. ADMETlab 30: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024;52(W1):W422–31. https://doi.org/10.1093/nar/gkae236.
[51] Raghavendra NM, Pingili D, Kadasi S, Mettu A, Prasad SVUM. Dual or multi-targeting inhibitors: the next generation anticancer agents. Eur J Med Chem. 2018;143:1277–300. https://doi.org/10.1016/j.ejmech.2017.10.021.
[52] Kabir A, Muth A. Polypharmacology: the science of multi-targeting molecules. Pharmacol Res. 2022;176: 106055. https://doi.org/10.1016/j.phrs.2021.106055.
[53] Korcsmáros T, Szalay MS, Böde C, Kovács IA, Csermely P. How to design multi-target drugs. Expert Opin Drug Discov. 2007;2:799–808. https://doi.org/10.1517/17460441.2.6.799.
[54] Berendsen HJC, Postma JPM, van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–90. https://doi.org/10.1063/1.448118.
[55] Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950–8. https://doi.org/10.1002/prot.22711.
[56] Sousa da Silva AW, Vranken WF. ACPYPE-AnteChamber PYthon Parser interfacE. BMC Res Notes. 2012;5:367. https://doi.org/10.1186/1756-0500-5-367
[57] Valdés-Tresanco MS, Valdés-Tresanco ME, et al. gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput. 2021;17:6281–91. https://doi.org/10.1021/acs.jctc.1c00645.
[58] Felline A, Seeber M, Fanelli F. webPSN v2.0: a webserver to infer fingerprints of structural communication in biomacromolecules. Nucleic Acids Res. 2020;48:W94–103. https://doi.org/10.1093/nar/gkaa397.
[1] Song-Yu Hou, Bing-Chao Yan, Han-Dong Sun, Pema-Tenzin Puno. Recent advances in the application of [2+2] cycloaddition in the chemical synthesis of cyclobutane-containing natural products[J]. Natural Products and Bioprospecting, 2024, 14(5): 37-37.
[2] Felaine Anne Sumang, Alan Ward, Jeff Errington, Yousef Dashti. Hibiscus acid and hydroxycitric acid dimethyl esters from Hibiscus flowers induce production of dithiolopyrrolone antibiotics by Streptomyces Strain MBN2-2[J]. Natural Products and Bioprospecting, 2024, 14(5): 40-40.
[3] Chunsong Hu. Marine natural products and human immunity: novel biomedical resources for anti-infection of SARS-CoV-2 and related cardiovascular disease[J]. Natural Products and Bioprospecting, 2024, 14(2): 2-2.
[4] Shohreh Ariaeenejad, Javad Gharechahi, Mehdi Foroozandeh Shahraki, Fereshteh Fallah Atanaki, Jian-Lin Han, Xue-Zhi Ding, Falk Hildebrand, Mohammad Bahram, Kaveh Kavousi, Ghasem Hosseini Salekdeh. Precision enzyme discovery through targeted mining of metagenomic data[J]. Natural Products and Bioprospecting, 2024, 14(1): 7-7.
[5] Daniel W. Armstrong, Alain Berthod. Occurrence of D-amino acids in natural products[J]. Natural Products and Bioprospecting, 2023, 13(6): 47-47.
[6] Xinxin Li, Runlu Shi, Lingchen Yan, Weiwei Chu, Ruishuang Sun, Binkai Zheng, Shuai Wang, Hui Tan, Xusheng Wang, Ying Gao. Natural product rhynchophylline prevents stress-induced hair graying by preserving melanocyte stem cells via the β2 adrenergic pathway suppression[J]. Natural Products and Bioprospecting, 2023, 13(6): 54-54.
[7] Dalila Carbone, Carmela Gallo, Genoveffa Nuzzo, Giusi Barra, Mario Dell'Isola, Mario Affuso, Olimpia Follero, Federica Albiani, Clementina Sansone, Emiliano Manzo, Giuliana d'Ippolito, Angelo Fontana. Marine natural product lepadin A as a novel inducer of immunogenic cell death via CD91-dependent pathway[J]. Natural Products and Bioprospecting, 2023, 13(5): 34-34.
[8] Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Warren A. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Leveraging off higher plant phylogenetic insights for antiplasmodial drug discovery[J]. Natural Products and Bioprospecting, 2023, 13(5): 35-35.
[9] Phanankosi Moyo, Luke Invernizzi, Sephora M. Mianda, Wiehan Rudolph, Andrew W. Andayi, Mingxun Wang, Neil R. Crouch, Vinesh J. Maharaj. Prioritised identification of structural classes of natural products from higher plants in the expedition of antimalarial drug discovery[J]. Natural Products and Bioprospecting, 2023, 13(5): 37-37.
[10] Shah Faisal, Syed Lal Badshah, Bibi Kubra, Abdul, Hamid Emwas, and Mariusz Jaremko. Alkaloids as potential antivirals. A comprehensive review[J]. Natural Products and Bioprospecting, 2023, 13(1): 4-4.
[11] Ji-Kai Liu. Natural products in cosmetics[J]. Natural Products and Bioprospecting, 2022, 12(6): 40-40.
[12] Si-Yuan Luo, Jun-Yu Zhu, Ming-Feng Zou, Sheng Yin, Gui-Hua Tang. Mulberry Diels–Alder-type adducts: isolation, structure, bioactivity, and synthesis[J]. Natural Products and Bioprospecting, 2022, 12(5): 31-31.
[13] Yulian Lv, Tian Tian, Yong-Jiang Wang, Jian-Ping Huang, Sheng-Xiong Huang. Advances in chemistry and bioactivity of the genus Erythroxylum[J]. Natural Products and Bioprospecting, 2022, 12(3): 15-15.
[14] Ji-Kai Liu. Antiaging agents: safe interventions to slow aging and healthy life span extension[J]. Natural Products and Bioprospecting, 2022, 12(3): 18-18.
[15] Wenting Liu, Weikang Zheng, Liping Cheng, Ming Li, Jie Huang, Shuzheng Bao, Qiang Xu, Zhaocheng Ma. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2[J]. Natural Products and Bioprospecting, 2022, 12(1): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed