Natural Products and Bioprospecting    2023, Vol. 13 Issue (2) : 10-10     DOI: 10.1007/s13659-023-00374-3
Original Article |
Antifungal alkaloids from Mahonia fortunei against pathogens of postharvest fruit
Xiao-Na Wang1, Zhao-Jie Wang1, Yun Zhao2, Huan Wang1, Mei-Ling Xiang1, Yang-Yang Liu1, Li-Xing Zhao1, Xiao-Dong Luo1,2
1. Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China;
2. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming, Kunming, 650201, People's Republic of China
Download: PDF(3293 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Postharvest pathogens can affect a wide range of fresh fruit and vegetables, including grapes, resulting in significant profit loss. Isoquinoline alkaloids of Mahonia fortunei, a Chinese herbal medicine, have been used to treat infectious microbes, which might be effective against postharvest pathogens. The phytochemical and bioactive investigation of this plant led to the isolation of 18 alkaloids, of which 9 compounds inhibited the growth of Botrytis cinerea and 4 compounds against Penicillium italicum. The antifungal alkaloids could change the mycelium morphology, the total lipid content, and leak the cell contents of B. cinerea. Furthermore, the two most potent antifungal alkaloids, berberine (13) completely inhibited effect on gray mold of table grape at 512 mg L-1, while jatrorrhizine (18) exhibited an inhibition rate > 90% on grape rot at the same concentration, with lower cytotoxicity and residue than chlorothalonil, which suggested that ingredients of M. fortunei might be a low-toxicity, low-residue, eco-friendly botanical fungicide against postharvest pathogens.
Keywords Mahonia fortunei      Chemical constituents      Botrytis cinerea      Penicillium italicum      Anti-postharvest pathogens     
Fund:This work was supported by NSFC (32170405), the High-level Talent Promotion and Training Project of Kunming (2022SCP003), Project of Yunnan Characteristic Plant Screening and R&D Service CXO Platform (2022YKZY001), and Scientific and Technological Innovation Team of Yunnan Province (202105AE160006). We thank the Advanced Analysis and Measurement Center of Yunnan University for technical support.
Corresponding Authors: Li-Xing Zhao,E-mail:lixingzhao@ynu.edu.cn;Xiao-Dong Luo,E-mail:xdluo@ynu.edu.cn     E-mail: lixingzhao@ynu.edu.cn;xdluo@ynu.edu.cn
Issue Date: 18 May 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Na Wang
Zhao-Jie Wang
Yun Zhao
Huan Wang
Mei-Ling Xiang
Yang-Yang Liu
Li-Xing Zhao
Xiao-Dong Luo
Trendmd:   
Cite this article:   
Xiao-Na Wang,Zhao-Jie Wang,Yun Zhao, et al. Antifungal alkaloids from Mahonia fortunei against pathogens of postharvest fruit[J]. Natural Products and Bioprospecting, 2023, 13(2): 10-10.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-023-00374-3     OR     http://npb.kib.ac.cn/EN/Y2023/V13/I2/10
1 An B, Li BQ, Li H, Zhang ZQ, Qin GZ, Tian SP. Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea. New Phytol. 2016;209(4):1668-80.
2 Shen Y, Yang H. Effect of preharvest chitosan-g-salicylic acid treatment on postharvest table grape quality, shelf life, and resistance to Botrytis cinerea-induced spoilage. Sci Hortic. 2017;224:367-73.
3 Shao X, Cheng S, Wang H, Yu D, Mungai C. The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea. J Appl Microbiol. 2013;114(6):1642-9.
4 Yourman LF, Jeffers SN, Dean RA. Genetic analysis of isolates of Botrytis cinerea sensitive and resistant to benzimidazole and dicarboximide fungicides. Phytopathology. 2000;90(8):851-9.
5 Breda CA, Gasperini AM, Garcia VL, Monteiro KM, Bataglion GA, Eberlin MN, Duarte MCT. Phytochemical analysis and antifungal activity of extracts from leaves and fruit residues of Brazilian savanna plants aiming its use as safe fungicides. Nat Prod Bioprospect. 2016;6(4):195-204.
6 Shang XF, Yang CJ, Morris-Natschke SL, Li JC, Yin XD, Liu YJ, Guo X, Peng JW, GoTo M, Zhang JY, Lee KH. Biologically active isoquinoline alkaloids covering 2014-2018. Med Res Rev. 2020;40:1-78.
7 Li Y, Wei J, Yang H, Dai J, Ge X. Molecular dynamics investigation of the interaction between Colletotrichum capsici cutinase and berberine suggested a mechanism for reduced enzyme activity. PLoS ONE. 2021;16(2):e0247236.
8 Yang R, Gao ZF, Zhao JY, Li WB, Zhou L, Miao F. New class of 2-aryl-6-chloro-3,4-dihydroisoquinolinium salts as potential antifungal agents for plant protection:synthesis, bioactivity and structure-activity relationships. J Agric Food Chem. 2015;63(7):1906-14.
9 Jae-Cheon S, Margarita PA. A new species of Atemelia (Lepidoptera, Yponomeutoidea, Praydidae) feeding on the ornamental shrub Mahonia (Ranunculales:Berberidaceae) in Chile. Ann Entomol Soc Am. 2014;107(2):339-46.
10 Li AR, Zhu Y, Li XN, Tian XJ. Antimicrobial activity of four species of Berberidaceae. Fitoterapia. 2007;78(7):379-81.
11 Pfoze NL, Kumar Y, Myrboh B, Bhagobaty RK, Joshi SR. In vitro antibacterial activity of alkaloid extract from stem bark of Mahonia manipurensis Takeda. J Med Plant Res. 2011;5(5):859-61.
12 Slobodníková L, KoSt'álová D, Labudová D, Kotulová D, Kettmann V. Antimicrobial activity of Mahonia aquifoliumcrude extract and its major isolated alkaloids. Phytother Res. 2004;18(8):674-6.
13 Yuan GQ, Chen YY, Li FJ, Zhou RJ, Li QQ, Lin W, Huang LH. Isolation of an antibacterial substance from Mahonia fortunei and its biological activity against Xanthomonas oryzae pv. oryzicola. J Phytopathol. 2017;165(5):289-96.
14 Cai XH, Tan QG, Liu YP, Feng T, Du ZZ, Li WQ, Luo XD. A cage-monoterpene indole alkaloid from Alstonia scholaris. Org Lett. 2008;10(4):577-80.
15 Wang Z, Bai H, Lu C, Hou C, Qiu Y, Zhang P, Duan J, Mu H. Light controllable chitosan micelles with ROS generation and essential oil release for the treatment of bacterial biofilm. Carbohyd Polym. 2018;205:533-9.
16 Danac R, Mangalagiu II. Antimycobacterial activity of nitrogen heterocycles derivatives:bipyridine derivatives. Part III[13,14]. Eur J Med Chem. 2014;74:664-70.
17 Benincasa M, Zahariev S, Pelillo C, Milan A, Gennaro R, Scocchi M. PEGylation of the peptide Bac7(1-35) reduces renal clearance while retaining antibacterial activity and bacterial cell penetration capacity. Eur J Med Chem. 2015;95:210-9.
18 Wang Y, Liu X, Chen T, Xu Y, Tian S. Antifungal effects of hinokitiol on development of Botrytis cinerea in vitro and in vivo. Postharvest Biol Technol. 2020;159:111038.
19 Zhao Y, Yang YH, Ye M, Wang KB, Su FW. Chemical composition and antifungal activity of essential oil from Origanum vulgare against Botrytis cinerea. Food Chem. 2021;365(2):130506.
20 Zhao Y, Qin XJ, Wang ZJ, Jin Q, Wang XN, Chen SS, Luo XD. Amphotericin B and 5-flucytosine as fungicides against Penicillium italicum for citrus fruit rot. Postharvest Biol Technol. 2022;193:112058.
21 Paul S, Dubey RC, Maheswari DK, Kang SC. Trachyspermum ammi (L.) fruit essential oil influencing on membrane permeability and surface characteristics in inhibiting food-borne pathogens. Food Control. 2011;22(5):725-31.
22 Helal GA, Sarhan MM, Abu Shahla ANK, Abou El-Khair EKA. Effects of Cymbopogon citratus L. essential oil on the growth, lipid content and morphogenesis of Aspergillus niger ML2-strain. J Basic Microbiol. 2010;46(6):456-69.
23 Xu D, Deng Y, Han T, Jiang L, Xi P, Wang Q, Jiang Z, Gao L. In vitro and in vivo effectiveness of phenolic compounds for the control of postharvest gray mold of table grapes. Postharvest Biol Technol. 2018;139:106-14.
24 Lu YH, Chen MC, Liu F, Xu Z, Tian XT, Xie Y, Huang CG. Synthesis and cytotoxic activity of novel C-23-modified asiatic acid derivatives. Molecules. 2020;25(16):3709.
25 Wang J, Chow W, Leung D, Chang J. Application of ultrahigh-performance liquid chromatography and electrospray ionization quadrupole orbitrap high-resolution mass spectrometry for determination of 166 pesticides in fruits and vegetables. J Agric Food Chem. 2012;60(49):12088-104.
26 Lyu HN, Zeng KW, Cao NK, Zhao MB, Jiang Y, Tu PF. Alkaloids from the stems and rhizomes of Sinomenium acutum from the Qinling Mountains, China. Phytochemistry. 2018;156:241-9.
27 Lin LZ, Shieh HL, Angerhofer CK, Pezzuto JM, Ruangrungsi N. Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from Cyclea barbata. J Nat Prod. 1993;56:22-9.
28 Cheng X, Wang D, Jiang L, Yang D. DNA topoisomerase I inhibitory alkaloids from Corydalis saxicola. Chem Biodivers. 2008;5(7):1335-44.
29 Cruz PEOD, Costa EV, Moraesa VRDS, Nogueiraa PCDL, Vendraminb ME. Chemical constituents from the bark of Annona salzmannii (Annonaceae). Biochem Syst Ecol. 2011;39:872-5.
30 Hostalkova A, Marikova J, Opletal L, Korabecny J, Hulcova D, Kunes J, Novakova L, Perez DI, Jun D, Kucera T, Andrisano V, Siatka T, Cahlikova L. Isoquinoline alkaloids from Berberis vulgaris as potential lead compounds for the treatment of Alzheimer's disease. J Nat Prod. 2019;82(2):239-48.
31 Ogino T, Sato T, Sasaki H, Chin M, Mitsuhashi H. Four new bisbenzylisoquinoline alkaloids from the root of Stephania tetrandra (Fen-Fang Ji). Heterocycles. 1988;27(5):1149-54.
32 Sulaiman SN, Mukhtar MR, Hadi AH, Awang K, Hazni H, Zahari A, Litaudon M, Zaima K, Morita H. Lancifoliaine, a new bisbenzylisoquinoline from the bark of Litsea lancifolia. Molecules. 2011;16(4):3119-27.
33 Tanahashi T, Su Y, Nagakura N, Nayeshiro H. Quaternary isoquinoline alkaloids from Stephania cepharantha. Chem Pharm Bull. 2000;48(3):370-3.
34 Chawla AS, Chunchatprasert S, Jackson AH. Studies of erythrina alkaloids:VII-13C NMR spectral studies of some erythina alkaloids. Organ Magn Reson. 1983;21(1):39-41.
35 Wang R, Liu Y, Shi G, Zhou J, Yu D. Bioactive bisbenzylisoquinoline alkaloids from the roots of Stephania tetrandra. Bioorg Chem. 2020;98:103697.
36 Yang TC, Chao HF, Shi LS, Chang TC, Lin HC, Chang WL. Alkaloids from Coptis chinensis root promote glucose uptake in C2C12 myotubes. Fitoterapia. 2014;93:239-44.
37 Janssen RHAM, Lousberg RJJC, Wijkens P, Kruk C, Theuns HG. Assignment of 1H and 13C NMR resonances of some isoquinoline alkaloids. Phytochemistry. 1989;28(10):2833-9.
38 Lee JK, Cho JG, Song MC, Yoo JS, Lee DY, Yang HJ, Han KM, Kim DH, Oh YJ, Jeong TS. Isolation of isoquinoline alkaloids from the tuber of Corydalis turtschaninovii and their inhibition activity on low density lipoprotein oxidation. J Korean Soc Appl Biol Chem. 2009;52(6):646-54.
39 Tojo E, Dominguez D, Castedo L. Alkaloids from Sarcocapnos-Enneaphylla. Phytochemistry. 1991;30(3):1005-10.
40 Lei Y, Wu LJ, Bi D, Sun JW, Tu PF. Isolation and identification of chemical constituents from stems of Miliusa balansae Fin. et Gag. J Shenyang Pharm Univ. 2009;26:104-7.
41 Imenshahidi M, Hosseinzadeh H. Berberis vulgaris and berberine:an update review. Phytother Res. 2016;30:1745-64.
42 Hu Y, Chen X, Duan H, Hu Y, Mu X. Chinese herbal medicinal ingredients inhibit secretion of IL-6, IL-8, E-selectin and TXB2 in LPS-induced rat intestinal microvascular endothelial cells. Immunopharmacol Immunotoxicol. 2009;31(4):550-5.
43 Park HJ, Jung EY, Shim I. Berberine for appetite suppressant and prevention of obesity. Biomed Res Int. 2020;2020(4):1-7.
44 Zhao ZM, Shang XF, Lawoe R, Liu YQ, Yang CJ. Anti-phytopathogenic activity and the possible mechanisms of action of isoquinoline alkaloid sanguinarine. Pestic Biochem Physiol. 2019;159:51-8.
45 Fisher K, Phillips C. Potential antimicrobial uses of essential oils in food:is citrus the answer. Trends Food Sci Technol. 2008;19(3):156-64.
46 Liu K, Zhou X, Fu M. Inhibiting effects of epsilon-poly-lysine (ε-PL) on Pencillium digitatum and its involved mechanism. Postharvest Biol Technol. 2017;123:94-101.
47 Tao N, Jia L, Zhou H, He X. Effect of octanal on the mycelial growth of Penicillium italicum and P. digitatum. World J Microbiol Biotechnol. 2013;30(4):1169-75.
48 Helal GA, Sarhan MM, Abu Shahla ANK, Abou El-Khair EK. Effects of Cymbopogon citratus L. essential oil on the growth, morphogenesis and aflatoxin production of Aspergillus flavus ML2-strain. J Basic Microbiol. 2007;47:5-15.
[1] Jin-Tao Ma, Da-Wei Li, Ji-Kai Liu, Juan He. Advances in Research on Chemical Constituents and Their Biological Activities of the Genus Actinidia[J]. Natural Products and Bioprospecting, 2021, 11(6): 573-609.
[2] Yan-Jie Huang, Xing-Rong Peng, Ming-Hua Qiu. Progress on the Chemical Constituents Derived from Glucosinolates in Maca (Lepidium meyenii)[J]. Natural Products and Bioprospecting, 2018, 8(6): 405-412.
[3] Ya-Mei Pan, Yu Zhang, Xiao-Nan Wang, He-Ping Chen, Shun-Lin Li, Ying-Tong Di, Duo-Zhi Chen, Ling-Li Guo, Xiao-Jiang Hao, Hong-Ping He. Chemical Constituents from the Stems of Manihot esculenta[J]. Natural Products and Bioprospecting, 2015, 5(1): 55-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed