Natural Products and Bioprospecting    2021, Vol. 11 Issue (3) : 345-356     DOI: 10.1007/s13659-020-00280-y
ORIGINAL ARTICLES |
Reversal of Tetracycline Resistance by Cepharanthine, Cinchonidine, Ellagic Acid and Propyl Gallate in a Multi-drug Resistant Escherichia coli
Darko Jenic1, Helen Waller2, Helen Collins3, Clett Erridge1
1 School of Life Sciences, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK;
2 Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester LE5 4PW, UK;
3 Department of Health Sciences, University of Leicester, University Rd, Leicester LE1 7RH, UK
Download: PDF(5162 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Bacterial resistance to antibiotics is an increasing threat to global healthcare systems. We therefore sought compounds with potential to reverse antibiotic resistance in a clinically relevant multi-drug resistant isolate of Escherichia coli (NCTC 13400). 200 natural compounds with a history of either safe oral use in man, or as a component of a traditional herb or medicine, were screened. Four compounds; ellagic acid, propyl gallate, cinchonidine and cepharanthine, lowered the minimum inhibitory concentrations (MICs) of tetracycline, chloramphenicol and tobramycin by up to fourfold, and when combined up to eightfold. These compounds had no impact on the MICs of ampicillin, erythromycin or trimethoprim. Mechanistic studies revealed that while cepharanthine potently suppressed efflux of the marker Nile red from bacterial cells, the other hit compounds slowed cellular accumulation of this marker, and/or slowed bacterial growth in the absence of antibiotic. Although cepharanthine showed some toxicity in a cultured HEK-293 mammalian cell-line model, the other hit compounds exhibited no toxicity at concentrations where they are active against E. coli NCTC 13400. The results suggest that phytochemicals with capacity to reverse antibiotic resistance may be more common in traditional medicines than previously appreciated, and may offer useful scaffolds for the development of antibiotic-sensitising drugs.
Keywords Antibiotic resistance      Natural products      Phytochemical      Screening      Efflux pump inhibitor     
Fund:This work was supported by an Erasmus+ Mobility Studentship (ref DK KOBENHA 57) awarded to DJ. The funder was not involved in the interpretation of results or writing of the article.
Corresponding Authors: Clett Erridge     E-mail: clett.erridge@aru.ac.uk
Issue Date: 04 June 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Darko Jenic
Helen Waller
Helen Collins
Clett Erridge
Trendmd:   
Cite this article:   
Darko Jenic,Helen Waller,Helen Collins, et al. Reversal of Tetracycline Resistance by Cepharanthine, Cinchonidine, Ellagic Acid and Propyl Gallate in a Multi-drug Resistant Escherichia coli[J]. Natural Products and Bioprospecting, 2021, 11(3): 345-356.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-020-00280-y     OR     http://npb.kib.ac.cn/EN/Y2021/V11/I3/345
1. J. Berdy, J. Antibiot. 65, 385-395 (2012)
2. C. Kourtesi, A.R. Ball, Y.Y. Huang, S.M. Jachak, D.M. Vera, P. Khondkar, S. Gibbons, M.R. Hamblin, G.P. Tegos, Open Microbiol. J. 7, 34-52 (2013)
3. M. Laws, A. Shaaban, K.M. Rahman, FEMS Microbiol. Rev. 43, 490-516 (2019)
4. W.K. Shiu, J.P. Malkinson, M.M. Rahman, J. Curry, P. Stapleton, M. Gunaratnam, S. Neidle, S. Mushtaq, M. Warner, D.M. Livermore, D. Evangelopoulos, C. Basavannacharya, S. Bhakta, B.D. Schindler, S.M. Seo, D. Coleman, G.W. Kaatz, S. Gibbons, Int. J. Antimicrob. Agents 42, 513-518 (2013)
5. B.M. Kyaw, S. Arora, C.S. Lim, Braz. J. Microbiol. 2012, 938-945 (2012)
6. M.I. Garvey, M.M. Rahman, S. Gibbons, L.J. Piddock, Int. J. Antimicrob. Agents 37, 145-151 (2011)
7. M.A. Prasad, C.P. Zolnik, J. Molina, Future Sci. 5, FSO407 (2019)
8. J. Davies, D. Davies, Microbiol. Mol. Biol. Rev. 74, 417-433 (2010)
9. S. Chusri, I. Villanueva, S.P. Voravuthikunchai, J. Davies, J. Antimicrob. Chemother. 64, 1203-1211 (2009)
10. P. Jayaraman, M.K. Sakharkar, C.S. Lim, T.H. Tang, K.R. Sakharkar, Int. J. Biol. Sci. 6, 556-568 (2010)
11. M. Stavri, L.J. Piddock, S. Gibbons, J. Antimicrob. Chemother. 59, 1247-1260 (2007)
12. B. Li, Q. Yao, X.C. Pan, N. Wang, R. Zhang, J. Li, G. Ding, X. Liu, C. Wu, D. Ran, J. Zheng, H. Zhou, J. Antimicrob. Chemother. 66, 769-777 (2011)
13. F. Su, J. Wang, Exp. Ther. Med. 15, 467-472 (2018)
14. J.A. Bohnert, B. Karamian, H. Nikaido, Antimicrob. Agents Chemother. 54, 3770-3775 (2010)
15. R. Ikeda, X.F. Che, T. Yamaguchi, M. Ushiyama, C.L. Zheng, H. Okumura, Y. Takeda, Y. Shibayama, K. Nakamura, H.C. Jeung, T. Furukawa, T. Sumizawa, M. Haraguchi, S. Akiyama, K. Yamada, Cancer Sci. 96, 372-376 (2005)
16. A. Moussatova, C. Kandt, M.L. O'Mara, P.D. Tieleman, Biochim. Biophys. Acta 1778, 1757-1771 (2008)
17. N. Woodford, A. Carattoli, E. Karisik, A. Underwood, M.J. Ellington, D.M. Livermore, Antimicrob. Agents Chemother. 53, 4472-4482 (2009)
18. D.I. Andersson, Curr. Opin. Microbiol. 9, 461-465 (2006)
19. J. Long, Y. Guo, J. Yang, S.M. Henning, R.P. Lee, A. Rasmussen, L. Zhang, Q.Y. Lu, D. Heber, L.Z. Zhaoping, Food Funct. 10, 6582-6588 (2019)
20. A.L. Harvey, Curr. Opin. Chem. Biol. 11, 480-484 (2007)
21. R.W. Robey, K.M. Pluchino, M.D. Hall, A.T. Fojo, S.E. Bates, M.M. Gottesman, Nat. Rev. Cancer 18, 452-464 (2018)
22. Z. Ma, X. Cao, X. Guo, M. Wang, X. Ren, R. Dong, R. Shao, Y. Zhu, Evid. Based Complement. Altern. Med. 2018, 2461915 (2018)
23. J. Van Meerloo, G.J.L. Kaspers, J. Cloos, Methods Mol. Biol. 731, 237-245 (2011)
[1] Christian Bailly. Anticancer Properties of Lobetyolin, an Essential Component of Radix Codonopsis (Dangshen)[J]. Natural Products and Bioprospecting, 2021, 11(2): 143-153.
[2] Min Huang, Jin-Jian Lu, Jian Ding. Natural Products in Cancer Therapy: Past, Present and Future[J]. Natural Products and Bioprospecting, 2021, 11(1): 5-13.
[3] Sumel Ashique, Navjot Kaur Sandhu, Sk. Niyamul Haque, Kartick Koley. A Systemic Review on Topical Marketed Formulations, Natural Products, and Oral Supplements to Prevent Androgenic Alopecia: A Review[J]. Natural Products and Bioprospecting, 2020, 10(6): 345-365.
[4] Christian Bailly. Anticancer Activities and Mechanism of Action of Nagilactones, a Group of Terpenoid Lactones Isolated from Podocarpus Species[J]. Natural Products and Bioprospecting, 2020, 10(6): 367-375.
[5] Pinaki Dey, Joginder Singh, Jagadish Kumar Suluvoy, Kevin Joseph Dilip, Jayato Nayak. Utilization of Swertia chirayita Plant Extracts for Management of Diabetes and Associated Disorders: Present Status, Future Prospects and Limitations[J]. Natural Products and Bioprospecting, 2020, 10(6): 431-443.
[6] Ilkay Erdogan Orhan, F. Sezer Senol Deniz. Natural Products as Potential Leads Against Coronaviruses: Could They be Encouraging Structural Models Against SARS-CoV-2?[J]. Natural Products and Bioprospecting, 2020, 10(4): 171-186.
[7] Shiying Yang, Qi Zhou, Baoxi Zhang, Li Zhang, Dezhi Yang, Haiguang Yang, Guanhua Du, Yang Lu. Screening, Characterization and Evaluation of Mangiferin Polymorphs[J]. Natural Products and Bioprospecting, 2020, 10(4): 187-200.
[8] Qi Zhao, Jia-Le Zhang, Fei Li. Application of Metabolomics in the Study of Natural Products[J]. Natural Products and Bioprospecting, 2018, 8(4): 321-334.
[9] Gao-Wei Li, Han Liu, Feng Qiu, Xiao-Juan Wang, Xin-Xiang Lei. Residual Dipolar Couplings in Structure Determination of Natural Products[J]. Natural Products and Bioprospecting, 2018, 8(4): 279-295.
[10] Yue-mao Shen, Duo-zhi Chen. An Explorer of Chemical Biology of Plant Natural Products in Southwest China, Xiaojiang Hao[J]. Natural Products and Bioprospecting, 2018, 8(4): 217-226.
[11] Conrad V. Simoben, Fidele Ntie-Kang, Sergi H. Akone, Wolfgang Sippl. Compounds from African Medicinal Plants with Activities Against Selected Parasitic Diseases: Schistosomiasis, Trypanosomiasis and Leishmaniasis[J]. Natural Products and Bioprospecting, 2018, 8(3): 151-169.
[12] Ai-Jun Ding, Shan-Qing Zheng, Xiao-Bing Huang, Ti-Kun Xing, Gui-Sheng Wu, Hua-Ying Sun, Shu-Hua Qi, Huai-Rong Luo. Current Perspective in the Discovery of Anti-aging Agents from Natural Products[J]. Natural Products and Bioprospecting, 2017, 7(5): 335-404.
[13] Fidele Ntie-Kang, Leonel E. Njume, Yvette I. Malange, Stefan Günther, Wolfgang Sippl, Joseph N. Yong. The Chemistry and Biological Activities of Natural Products from Northern African Plant Families: From Taccaceae to Zygophyllaceae[J]. Natural Products and Bioprospecting, 2016, 6(2): 63-96.
[14] Frank Surup, Eric Kuhnert, Elena Liscinskij, Marc Stadler. Silphiperfolene-Type Terpenoids and Other Metabolites from Cultures of the Tropical Ascomycete Hypoxylon rickii(Xylariaceae)[J]. Natural Products and Bioprospecting, 2015, 5(3): 167-173.
[15] Kun Wei, Gang-Qiang Wang, Xue Bai, Yan-Fen Niu, He-Ping Chen, Chun-Nan Wen, Zheng-Hui Li, Ze-Jun Dong, Zhi-Li Zuo, Wen-Yong Xiong, Ji-Kai Liu. Structure-Based Optimization and Biological Evaluation of Pancreatic Lipase Inhibitors as Novel Potential Antiobesity Agents[J]. Natural Products and Bioprospecting, 2015, 5(3): 129-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed