Natural Products and Bioprospecting    2017, Vol. 7 Issue (6) : 433-443     DOI: 10.1007/s13659-017-0142-x
ORIGINAL ARTICLES |
Computational Analysis of Artimisinin Derivatives on the Antitumor Activities
Hui Liu, Xingyong Liu, Li Zhang
School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
Download: PDF(5569 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The study on antitumor activities of artemisinin and its derivatives has been closely focused on in recent years. Herein, 2D and 3D QSAR analysis was performed on the basis of a series of artemisinin derivatives with known bioactivities against the non-small-cell lung adenocarcinoma A549 cells. Four QSAR models were successfully established by CoMSIA, CoMFA, topomer CoMFA and HQSAR approaches with respective characteristic values q2=0.567, R2=0.968, ONC=5; q2=0.547, R2=0.980, ONC=7; q2=0.559, R2=0.921, ONC=7 and q2=0.527, R2=0.921, ONC=6. The predictive ability of CoMSIA with r2=0.991 is the best one compared with the other three approaches, such as CoMFA (r2=0.787), topomer CoMFA (r2=0.819) and HQSAR (r2=0.743). The final QSAR models can provide guidance in structural modification of artemisinin derivatives to improve their anticancer activities.
Keywords QSAR      CoMFA      CoMSIA      Topomer CoMFA      HQSAR      Artemisinin     
Fund:We gratefully thank financial assistance from the Science and Technology Innovation Talent Project of Sichuan province (Grant Number 2016073).
Corresponding Authors: Hui Liu     E-mail: 18227755087@163.com
Issue Date: 09 December 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui Liu
Xingyong Liu
Li Zhang
Trendmd:   
Cite this article:   
Hui Liu,Xingyong Liu,Li Zhang. Computational Analysis of Artimisinin Derivatives on the Antitumor Activities[J]. Natural Products and Bioprospecting, 2017, 7(6): 433-443.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-017-0142-x     OR     http://npb.kib.ac.cn/EN/Y2017/V7/I6/433
1. W. Chen, R. Zheng, P.D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X.Q. Yu, J. He, CA Cancer J. Clin. 66, 115–132 (2016)2. D.A. Deng, J.C. Cai, Youji Huaxue 11, 540–543 (1991)3. H. Lai, N.P. Singh, Cancer Lett. 91, 41–46 (1995)4. N.P. Singh, H. Lai, Life Sci. 70, 49–56 (2001)5. L.H. Binh, N.T.T. Van, V.T. Kien, N.T.T. My, L. Van Chinh, N.T. Nga, H.X. Tien, D.T. Thao, T.K. Vu, Med. Chem. Res. 25, 738–750 (2016)6. C.C. Xu, T. Deng, M.L. Fan, W.B. Lv, J.H. Liu, B.Y. Yu, Eur. J. Med. Chem. 107, 192–203 (2016)7. A.G. Blazquez, M. Fernandez-Dolon, L. Sanchez-Vicente, A.D. Maestre, A.B. Gomez-San Miguel, M. Alvarez, M.A. Serrano, H. Jansen, T. Efferth, J.J. Marin, M.R. Romero, Bioorg. Med. Chem. 21, 4432–4441 (2013)8. M.P. Crespo-Ortiz, M.Q. Wei, J. Biomed. Biotechnol. 2012, 247597 (2012)9. G.H. Posner, S.B. Park, L. Gonzalez, D. Wang, J.N. Cumming, D. Klinedinst, T.A. Shapiro, M.D. Bachi, J. Am. Chem. Soc. 118, 3537–3538 (1996)10. F. Cheng, J. Shen, X. Luo, W. Zhu, J. Gu, R. Ji, H. Jiang, K. Chen, Bioorg. Med. Chem. 10, 2883–2891 (2002)11. M.E. Saeed, O. Kadioglu, E.J. Seo, H.J. Greten, R. Brenk, T. Efferth, Anticancer Res. 35, 1929–1934 (2015)12. R.D. Cramer, J. Med. Chem. 46, 374–388 (2003)13. W. Tong, D.R. Lowis, R. Perkins, Y. Chen, W.J. Welsh, D.W. Goddette, T.W. Heritage, D.M. Sheehan, J. Chem. Inf. Comput. Sci. 38, 669–677 (1998)14. M.A. Avery, M. Alvim-Gaston, C.R. Rodrigues, E.J. Barreiro, F.E. Cohen, Y.A. Sabnis, J.R. Woolfrey, J. Med. Chem. 45, 292–303 (2002)15. D.K. Yadav, S. Dhawan, A. Chauhan, T. Qidwai, P. Sharma, R.S. Bhakuni, O.P. Dhawan, F. Khan, Curr. Drug Targets 15, 753–761 (2014)16. Y. Li, J.-M. Wu, F. Shan, G.-S. Wu, J. Ding, D. Xiao, J.-X. Han, G. Atassi, S. Leonce, D.-H. Caignard, P. Renard, Biorg. Med. Chem. 11, 977–984 (2003)17. J.M. Wu, F. Shan, G.S. Wu, Y. Li, J. Ding, D. Xiao, J.X. Han, G. Atassi, S. Leonce, D.H. Caignard, P. Renard, Eur. J. Med. Chem. 36, 469–479 (2001)18. K. Roy, Exp. Opin Drug Discov. 2, 1567–1577 (2007)19. A. Gaurav, R. Singh, Med. Chem. (Shariqah (United Arab Emirates)) 8, 894–912 (2012)20. M. Lalit, R.P. Gangwal, G.V. Dhoke, M.V. Damre, K. Khandelwal, A.T. Sangamwar, J. Mol. Struct. 1049, 315–325 (2013)21. A. Heidari, M.H. Fatemi, Chem. Biol. Drug Des. 89, 918–931 (2017)22. K.Z. Myint, X.Q. Xie, Int. J. Mol. Sci. 11, 3846–3866 (2010)
[1] Mounir Tilaoui, Hassan Ait Mouse, Abdeslam Jaafari, Abdelmajid Zyad. Differential Effect of Artemisinin Against Cancer Cell Lines[J]. Natural Products and Bioprospecting, 2014, 4(3): 189-196.
[2] Elmar Breuer, Thomas Efferth. Treatment of Iron-Loaded Veterinary Sarcoma by Artemisia annua[J]. Natural Products and Bioprospecting, 2014, 4(2): 113-118.
[3] Shilpi PAUL, Madan M GUPTA, Suman P S KHANUJA. Maintaining the artemisinin content through direct and indirect in vitro regeneration and their assessment of variations with the field grown mother plants of Artemisia annua L.[J]. Natural Products and Bioprospecting, 2012, 2(5): 194-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed