ORIGINAL ARTICLES |
|
|
|
|
|
Xuesanqi ameliorates DSS-induced colitis in mice by mediating gut microbiota dysbiosis and modulating MAPK/ERK/JNK pathway |
Qiyuan Su1, Qian Hu2, Songtao Wu3, Suqin Yang4, Hanwen Su5, Zhengjun Zhang6,7, Chengxiu Ling1 |
1. Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, People's Republic of China; 2. Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, Hubei, People's Republic of China; 3. Faculty of Pharmacy, Hubei University of Chinese Medicine, No. 16, Huangjiahu West Road, Hongshan District, Wuhan 430065, Hubei, People's Republic of China; 4. School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, Hubei, People's Republic of China; 5. Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China; 6. Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706-1481, USA; 7. School of Economics and Management, and MOE Social Science Laboratory of Digital Economic Forecasts and Policy Simulation, University of Chinese Academy of Sciences, Center for Forecasting Sciences, Chinese Academy of Sciences, Beijing 100049, People's Republic of China |
|
|
Abstract This study aimed to evaluate the therapeutic properties of the traditional Chinese medicine Xuesanqi (XSQ, from the rhizome of Polygonum amplexicaule D. Don) in treating ulcerative colitis. We hypothesized that its many active components can alleviate symptoms of colitis by regulating the gut microbiota, its metabolites, and various signaling pathways. To test our hypotheses, we designed a DSS- induced colitis model in C57BL/6 male mice. Apparent metrics were evaluated in each group of mice and performed histological analysis of relevant tissues. The gut microbial composition was analyzed by 16S rRNA sequencing of bacteria. Simultaneously, the SCFAs content was detected by gas chromatography, inflammatory factor secretion was evaluated by ELISA or western-blot, the expression of tight junction protein and key proteins of the MAPK signaling pathway were analyzed by western-blot. Our result showed that the treatment with XSQ alleviated significant various symptoms such as weight loss, blood in stool, and shortening of colon. In addition, XSQ treatment restored the dysregulated gut microbiota in colitis mice, increased short chain fatty acids (SCFAs) and normalized the MAPK/ERK/JNK signaling pathways, promoted expression of tight junction protein Occludin, Claudin-1, and E-cadherin proteins. Furthermore, we also observed a dose-dependent pattern in these treatment responses. These findings demonstrated the active components of XSQ is a promising new treatment platform for ulcerative colitis.
|
Keywords
Colitis
Xuesanqi
Gut microbiota
Short chain fatty acids (SCFas)
MAPK/ERK/JNK signaling pathway
Tight junction (T.J.) protein
|
Fund:This work was supported by the Natural Science Foundation of Hubei Province (2024AFD252); the Fundamental Research Funds for the Central Universities South-Central Minzu University (Grant Numbers: CZZ24017); and the Fundamental Research Funds for Health Commission of Hubei Province (ZY2023M022). |
Corresponding Authors:
Hanwen Su,E-mail:hanwensu@whu.edu.cn;Zhengjun Zhang,E-mail:zjz@stat.wisc.edu;Chengxiu Ling,E-mail:Chengxiu.ling@xjtlu.edu.cn
E-mail: hanwensu@whu.edu.cn;zjz@stat.wisc.edu;Chengxiu.ling@xjtlu.edu.cn
|
Issue Date: 13 December 2024
|
|
|
[1] Le Berre C, Honap S, Peyrin-Biroulet L. Ulcerative colitis. Lancet. 2023;402(10401):571-84. https://doi.org/10.1016/S0140-6736(23)00966-2. [2] Gros B, Kaplan GG. Ulcerative colitis in adults: a review. JAMA. 2023;330(10):951-65. https://doi.org/10.1001/jama.2023.15389. [3] Kobayashi T, Siegmund B, Le Berre C, Wei SC, Ferrante M, Shen B, et al. Ulcerative colitis. Nat Rev Dis Primers. 2020;6(1):74. https://doi.org/10.1038/s41572-020-00215-4. [4] Maaser C, Langholz E, Gordon H, Burisch J, Ellul P, Ramirez VH, et al. European Crohn’s and colitis organisation topical review on environmental factors in IBD. J Crohns Colitis. 2017;11(8):905-20. https://doi.org/10.1093/ecco-jcc/jjw223. [5] Park JH, Peyrin-Biroulet L, Eisenhut M, Shin JI. IBD immunopathogenesis: a comprehensive review of inflammatory molecules. Autoimmun Rev. 2017;16(4):416-26. https://doi.org/10.1016/j.autrev.2017.02.013. [6] Feuerstein JD, Cheifetz AS. Ulcerative colitis: epidemiology, diagnosis, and management. Mayo Clin Proc. 2014;89(11):1553-63. https://doi.org/10.1016/j.mayocp.2014.07.002. [7] Magro F, Gionchetti P, Eliakim R, Ardizzone S, Armuzzi A, Barreiro-de Acosta M, et al. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, Diagnosis, Extra-intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-anal Pouch Disorders. J Crohns Colitis. 2017;11(6):649-70. https://doi.org/10.1093/ecco-jcc/jjx008. [8] Veltkamp C, Tonkonogy SL, de Jong YP, Albright C, Grenther WB, Balish E, et al. Continuous stimulation by normal luminal bacteria is essential for the development and perpetuation of colitis in Tg∈26 mice. Gastroenterology. 2001;120(4):900-13. https://doi.org/10.1053/gast.2001.22547. [9] Kim KJ, Kyung S, Jin H, Im M, Kim JW, Kim HS, et al. Lactic acid bacteria isolated from human breast milk improve colitis induced by 2,4,6-trinitrobenzene sulfonic acid by inhibiting NF-κB signaling in mice. J Microbiol Biotechnol. 2023;33(8):1057-65. https://doi.org/10.4014/jmb.2303.03018. [10] Huang G. 中医单方应用大全 (Encyclopedia of Traditional Chinese Medicine Application Case Studies). China Medico Pharmaceutical Science & Technology Publishing House; 2019. [11] Estaki M, Jiang L, Bokulich NA, McDonald D, Gonzalez A, Kosciolek T, et al. QIIME 2 enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data. Curr Protoc Bioinformatics. 2020;70(1): e100. https://doi.org/10.1002/cpbi.100. [12] Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60. [13] Ma Y, Nicolet J. Specificity models in MAPK cascade signaling. FEBS Open Bio. 2023;13(7):1177-92. https://doi.org/10.1002/2211-5463.13619. [14] Luitel P, Paudel S, Thapaliya I, Dev B, Dev S. Emergency surgery for acute rectal bleeding in a newly diagnosed case of fulminant ulcerative colitis. Int J Surg Case Rep. 2024;121: 109901. https://doi.org/10.1016/j.ijscr.2024.109901. [15] Azadbakht S, Seighali M, Azadbakht S, Azadbakht M. Effectiveness of adalimumab in severe ulcerative colitis: a systematic review and a meta-analysis. Health Sci Rep. 2024;7(7): e2210. https://doi.org/10.1002/hsr2.2210. [16] Wang Y, Hao Y, Yuan L, Tian H, Sun X, Zhang Y. Ferroptosis: a new mechanism of traditional Chinese medicine for treating ulcerative colitis. Front Pharmacol. 2024;15:1379058. https://doi.org/10.3389/fphar.2024.1379058. [17] Zeng X, Tang S, Dong X, Dong M, Shao R, Liu R, et al. Analysis of metagenome and metabolome disclosed the mechanisms of Dendrobium officinale polysaccharide on DSS-induced ulcerative colitis-affected mice. Int J Biol Macromol. 2024;277(Pt 2): 134229. https://doi.org/10.1016/j.ijbiomac.2024.134229. [18] Wang T, Guo R, Zhou G, Zhou X, Kou Z, Sui F, et al. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: a review. J Ethnopharmacol. 2016;188:234-58. https://doi.org/10.1016/j.jep.2016.05.005. [19] Hu Y, Fan Q, Qiao B, Xu O, Lv B, Han N, et al. Alleviatory role of panax notoginseng saponins in modulating inflammation and pulmonary vascular remodeling in chronic obstructive pulmonary disease: mechanisms and Implications. COPD. 2024;21(1):2329282. https://doi.org/10.1080/15412555.2024.2329282. [20] Gao J, Yao M, Zhang W, Yang B, Yuan G, Liu JX, et al. Panax notoginseng saponins alleviates inflammation induced by microglial activation and protects against ischemic brain injury via inhibiting HIF-1alpha/PKM2/STAT3 signaling. Biomed Pharmacother. 2022;155: 113479. https://doi.org/10.1016/j.biopha.2022.113479. [21] Liang ZW, Guan YH, Lv Z, Yang SC, Zhang GH, Zhao YH, et al. Optimization of saponin extraction from the leaves of Panax notoginseng and Panax quinquefolium and evaluation of their antioxidant, antihypertensive, hypoglycemic and anti-inflammatory activities. Food Chem X. 2024;23: 101642. https://doi.org/10.1016/j.fochx.2024.101642. [22] Yan X, Zhang A, Guan Y, Jiao J, Ghanim M, Zhang Y, et al. Comparative metabolome and transcriptome analyses reveal differential enrichment of metabolites with age in panax notoginseng roots. Plants (Basel). 2024. https://doi.org/10.3390/plants13111441. [23] Wu Y, Wang W, Kou N, Wang M, Yang L, Miao Y, et al. Panax notoginseng saponins combined with dual antiplatelet drugs potentiates anti-thrombotic effect with alleviated gastric injury in A carotid artery thrombosis rat model. J Stroke Cerebrovasc Dis. 2022;31(8): 106597. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106597. [24] Xu L, Liu JT, Liu N, Lu PP, Pang XM. Effects of Panax notoginseng saponins on proliferation and apoptosis of vascular smooth muscle cells. J Ethnopharmacol. 2011;137(1):226-30. https://doi.org/10.1016/j.jep.2011.05.020. [25] Gherboudj O, Boutaghane N, Kabouche Z, Djeblia L, Zerrougui L, Bekrar M. Phytochemical profiles and evaluation of the biological potential of ethyl acetate and n-butanol fractions of the aerial parts of Cistus albidus L. Nat Prod Res. 2024. https://doi.org/10.1080/14786419.2024.2324116. [26] Nxumalo KA, Aremu AO, Fawole OA. Metabolite profiling, antioxidant and antibacterial properties of four medicinal plants from Eswatini and their relevance in food preservation. S Afr J Bot. 2023;162:719-29. https://doi.org/10.1016/j.sajb.2023.10.008. [27] Zdunska K, Dana A, Kolodziejczak A, Rotsztejn H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol. 2018;31(6):332-6. https://doi.org/10.1159/000491755. [28] Li D, Chen L, Qiu X. Rapid synthesis of ferulic acid-derived lignin coated silver nanoparticles with low cytotoxicity and high antibacterial activity. Int J Biol Macromol. 2024;277(Pt 3): 134471. https://doi.org/10.1016/j.ijbiomac.2024.134471. [29] Yang Y, Zhao Y, Lai R, Xian L, Lei Q, Xu J, et al. An emerging role of proanthocyanidins on psoriasis: evidence from a psoriasis-like mouse model. Oxid Med Cell Longev. 2022;2022:5800586. https://doi.org/10.1155/2022/5800586. [30] Paiva L, Lima E, Motta M, Marcone M, Baptista J. Influence of seasonal and yearly variation on phenolic profiles, caffeine, and antioxidant activities of green tea ((L.) Kuntze) from Azores. Appl Sci-Basel. 2021. https://doi.org/10.3390/app11167439. [31] Zhu W, Xiong L, Oteiza PI. Structure-dependent capacity of procyanidin dimers to inhibit inflammation-induced barrier dysfunction in a cell model of intestinal epithelium. Redox Biol. 2024. https://doi.org/10.1016/j.redox.2024.103275. [32] Wen XD, Wang CZ, Yu CH, Zhao L, Zhang ZY, Matin A, et al. Panax notoginseng attenuates experimental colitis in the azoxymethane/dextran sulfate sodium mouse model. Phytother Res. 2014;28(6):892-8. https://doi.org/10.1002/ptr.5066. [33] He W, Pan HF, Tao P, Lin J, Zhang BP, Wang SY. Panax notoginseng attenuates hypoxia-induced glycolysis in colonic mucosal epithelial cells in DSS-induced colitis. Ann Transl Med. 2022. https://doi.org/10.21037/atm-22-566. [34] Luo B, Yang F, Chen P, Zuo HY, Liang YF, Xian MH, et al. A novel polysaccharide separated from residue ameliorates restraint stress- and lipopolysaccharide-induced enteritis in mice. Chem Biodivers. 2023. https://doi.org/10.1002/cbdv.202300648. [35] Luo H, Vong CT, Tan DC, Zhang JM, Yu H, Yang L, et al. Saponins modulate the inflammatory response and improve IBD-like symptoms via TLR/NF-κB and MAPK signaling pathways. Am J Chin Med. 2021;49(04):925-39. https://doi.org/10.1142/s0192415x21500440. [36] Jiang XL, Ma GF, Zhao BB, Meng Y, Chen LL. Structural characterization and immunomodulatory activity of a novel polysaccharide from. Front Pharmacol. 2023. https://doi.org/10.3389/fphar.2023.1190233. [37] Ambat A, Antony L, Maji A, Ghimire S, Mattiello S, Kashyap PC, et al. Enhancing recovery from gut microbiome dysbiosis and alleviating DSS-induced colitis in mice with a consortium of rare short-chain fatty acid-producing bacteria. Gut Microbes. 2024. https://doi.org/10.1080/19490976.2024.2382324. [38] Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy. 2020;16(1):38-51. https://doi.org/10.1080/15548627.2019.1635384. [39] Yang HR, Li X, Liu H, Zhao DR, Zeng YJ. Novel polysaccharide from with immunoregulation and prebiotic effects. Food Biosci. 2023. https://doi.org/10.1016/j.fbio.2022.102310. [40] Yi LL, Zhu JH, Li QY, Guan XC, Cheng WJ, Xie YX, et al. Panax notoginseng stems and leaves affect microbial community and function in cecum of duzang pigs. Transl Anim Sci. 2024. https://doi.org/10.1093/tas/txad142. [41] Yu X, Ou JZ, Wang LZ, Li ZY, Ren YX, Xie L, et al. Gut microbiota modulate CD8+T cell immunity in gastric cancer through Butyrate/GPR109A/HOPX. Gut Microbes. 2024. https://doi.org/10.1080/19490976.2024.2307542. [42] Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi HD, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40(1):128-39. https://doi.org/10.1016/j.immuni.2013.12.007. [43] Xu Y, Ou JY, Zhang CH, Chen JY, Chen JS, Li AM, et al. Rapamycin promotes the intestinal barrier repair in ulcerative colitis via the mTOR/PBLD/AMOT signaling pathway. Bba-Mol Basis Dis. 2024. https://doi.org/10.1016/j.bbadis.2024.167287. [44] Liu HY, Yan RR, Li YZ, Wang JP, Deng YL, Li YJ. Dragon’s blood attenuates LPS-induced intestinal epithelial barrier dysfunction via upregulation of FAK-DOCK180-Rac1-WAVE2-Arp3 and downregulation of TLR4/NF-κB signaling pathways. J Nat Med-Tokyo. 2024. https://doi.org/10.1007/s11418-024-01824-z. [45] Jones-Bolin S. Guidelines for the care and use of laboratory animals in biomedical research. Curr Protoc Pharmacol. 2012. https://doi.org/10.1002/0471141755.pha04bs59. [46] Hidalgo Cantabrana C, Algieri F, Nogales A, Vezza T, Martínez-Camblor P, Margolles A, et al. Effect of a ropy exopolysaccharide-producing Bifidobacterium animalis subsp. lactis strain orally administered on DSS-induced colitis mice model. Front Microbiol. 2016. https://doi.org/10.3389/fmicb.2016.00868. [47] Erben U, Loddenkemper C, Doerfel K, Spieckermann S, Haller D, Heimesaat MM, et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol. 2014;7(8):4557-76. [48] Arjun OK, Sethi M, Parida D, Dash J, Kumar Das S, Prakash T, et al. Comprehensive physiological and genomic characterization of a potential probiotic strain, Lactiplantibacillus plantarum ILSF15, isolated from the gut of tribes of Odisha, India. Gene. 2024;931: 148882. https://doi.org/10.1016/j.gene.2024.148882. [49] Li J, Jiang N, Zheng H, Zheng X, Xu Y, Weng Y, et al. Investigation of gut microbiota disorders in norovirus infected children patients based on 16s rRNA sequencing. Ann Med. 2024;56(1):2412834. https://doi.org/10.1080/07853890.2024.2412834. [50] Feng X, Liu N, Yang Y, Feng S, Wang J, Meng Q. Isotope-coded chemical derivatization method for highly accurately and sensitively quantifying short-chain fatty acids. J Agric Food Chem. 2022;70(20):6253-63. https://doi.org/10.1021/acs.jafc.2c01836. [51] Wu F, Ji P, Hu Y, Li C, He J. Study on the hepatoprotective effect mechanism of polysaccharides from charred Angelica sinensis on the layer chickens based on the detection of the intestinal floras and short-chain fatty acids of cecal contents and association analysis. Vet Sci. 2023. https://doi.org/10.3390/vetsci10030224. [52] Gundry RL, White MY, Murray CI, Kane LA, Fu Q, Stanley BA, et al. Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr Protoc Mol Biol. 2009. https://doi.org/10.1002/0471142727.mb1025s88. [53] Nowakowski AB, Wobig WJ, Petering DH. Native SDS-PAGE: high resolution electrophoretic separation of proteins with retention of native properties including bound metal ions. Metallomics. 2014;6(5):1068-78. https://doi.org/10.1039/c4mt00033a. [54] Mruk DD, Cheng CY. Enhanced chemiluminescence (ECL) for routine immunoblotting: an inexpensive alternative to commercially available kits. Spermatogenesis. 2011;1(2):121-2. https://doi.org/10.4161/spmg.1.2.16606. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|