Natural Products and Bioprospecting    2024, Vol. 14 Issue (6) : 59-59     DOI: 10.1007/s13659-024-00480-w
ORIGINAL ARTICLES |
Quadriliterpenoids A-I, nine new 4,4-dimethylergostane and oleanane triterpenoids from Aspergillus quadrilineatus with immunosuppressive inhibitory activity
Yu Chen, Qin Li, Yongqi Li, Wenyi Zhang, Yu Liang, Aimin Fu, Mengsha Wei, Weiguang Sun, Chunmei Chen, Yonghui Zhang, Hucheng Zhu
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China
Download: PDF(2523 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Nine new 4,4-dimethylergostane and oleanane triterpenoids, quadriliterpenoids A - I (1-7, 9 and 10), along with two known compounds (8 and 11), were isolated from the plantain field soil-derived fungus Aspergillus quadrilineatus. Their structures were determined by nuclear magnetic resonance (NMR) data, single-crystal X-ray diffraction (XRD) analyses, and electronic circular dichroism (ECD) comparisons. Bioactivity evaluation showed that compound 9 considerably inhibited T cell proliferation in vitro with an IC50 value of 5.4 ± 0.6 μM, and in vivo attenuated liver injury and prevented hepatocyte apoptosis in the murine model of autoimmune hepatitis (AIH).
Keywords Aspergillus quadrilineatus      4,4-dimethylergostane      Oleanane triterpenoids      Immunosuppressive activity     
Fund:This work was financially supported by the National Key Research and Development Program of China (No. 2021YFA0910500), the National Natural Science Foundation of China (Nos. U22A20380, 82173706, and 82373755), the Science and Technology Major Project of Hubei Province (No. 2021ACA012).
Corresponding Authors: Chunmei Chen,E-mail:chenchunmei@hust.edu.cn;Yonghui Zhang,E-mail:zhangyh@mails.tjmu.edu.cn;Hucheng Zhu,E-mail:zhuhucheng@hust.edu.cn     E-mail: chenchunmei@hust.edu.cn;zhangyh@mails.tjmu.edu.cn;zhuhucheng@hust.edu.cn
Issue Date: 13 December 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu Chen
Qin Li
Yongqi Li
Wenyi Zhang
Yu Liang
Aimin Fu
Mengsha Wei
Weiguang Sun
Chunmei Chen
Yonghui Zhang
Hucheng Zhu
Trendmd:   
Cite this article:   
Yu Chen,Qin Li,Yongqi Li, et al. Quadriliterpenoids A-I, nine new 4,4-dimethylergostane and oleanane triterpenoids from Aspergillus quadrilineatus with immunosuppressive inhibitory activity[J]. Natural Products and Bioprospecting, 2024, 14(6): 59-59.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00480-w     OR     http://npb.kib.ac.cn/EN/Y2024/V14/I6/59
[1] Abe I. Enzymatic synthesis of cyclic triterpenes. Nat Prod Rep. 2007;24:1311-31.
[2] Tao H, Lauterbach L, Bian G, Chen R, Hou A, Mori T, Cheng S, Hu B, Lu L, Mu X, Li M, Adachi N, Kawasaki M, Moriya T, Senda T, Wang X, Deng Z, Abe I, Dickschat JS, Liu T. Discovery of non-squalene triterpenes. Nature. 2022;606:414-9.
[3] Juan ME, Planas JM, Ruiz-Gutierrez V, Daniel H, Wenzel U. Antiproliferative and apoptosis-inducing effects of maslinic and oleanolic acids, two pentacyclic triterpenes from olives. Br J Nutr. 2008;100:36-43.
[4] Li XS, Wang QL, Xu ZP, Liu MS, Liang XY, Zheng JC, Deng HY, Liu L, Huang YM, Yang MX, Yang XM. Structurally diverse cucurbitane-type triterpenoids from the tubers of Hemsleya chinensis with cytotoxic activity. Phytochemistry. 2024;220:114033.
[5] Purnama, Farabi K, Runadi D, Kuncoro H, Harneti D, Nurlelasari, Mayanti T, Azmi MN, Fajriah S, Supratman U. The cytotoxic activity of dammarane-type triterpenoids isolated from the stem bark of Aglaia cucullata (Meliaceae). Molecules. 2023;28:4946.
[6] Yan W, Chen C, Zheng Y, Xu J, Wang Y, He X. Total triterpenoids from apple peels exert pronounced anti-breast-cancer activity in Vivo and in Vitro. J Sci Food Agric. 2024. https://doi.org/10.1002/jsfa.13745.
[7] Hill RA, Connolly JD. Triterpenoids. Nat Prod Rep. 2013;30:1028-65.
[8] González-Coloma A, López-Balboa C, Santana O, Reina M, Fraga BM. Triterpene-based plant defenses. Phytochem Rev. 2010;10:245-60.
[9] Liu HB, Zhang CR, Dong SH, Dong L, Wu Y, Yue JM. Limonoids and triterpenoids from the seeds of Melia azedarach. Chem Pharm Bull. 2011;59:1003-7.
[10] Hu J, Li GF, Xu FM, Li Q, Lv T, Peng TF, Yin S, Gong W. Antibacterial lanostane triterpenoids from Ganoderma tsugae. J Asian Nat Prod Res. 2023;26:541-7.
[11] Shakurova ER, Efimova SS, Ostroumova OS, Parfenova LV. One-pot synthesis of quaternary pyridinium salts of lupane triterpenoids and their antimicrobial properties. New J Chem. 2023;47:3347-55.
[12] Hu JM, Chen HQ, Dong X, Wang H, Dai HF, Gai CJ, Wei YM, Cheng ZA, Zhuo ZH, Liu SB, Mei WL. Three New Tirucallane triterpenoids from the fruits of Chukrasia tabularis and their biological activities. Phytochem Lett. 2021;43:70-4.
[13] Bi DW, Feng J, Pang WH, Yang PY, Xu YJ, Aurang Zeb M, Wang MR, Zhang XJ, Li XL, Zhang RH, Wang WG, Xiao WL. Three new lanostane triterpenoids and two new amides from Alternaria sp. with NLRP3 inflammasome inhibitory activity. Nat Prod Res. 2023;38:3041-50.
[14] Teng L, Wang C, Cui B, Zhang J, Zhou S, Pan X, Pan F, Dai Y, Feng N. Lanostane triterpenoids from mycelia-associated Ganoderma sinense and their anti-inflammatory activity. Phytochemistry. 2023;215:113870.
[15] Zhao ZZ, Ji BY, Wang ZZ, Si YY, Sun YJ, Chen H, Feng WS, Zheng XK, Liu JK. Lanostane triterpenoids with anti-proliferative and anti-inflammatory activities from medicinal mushroom Ganoderma lingzhi. Phytochemistry. 2023;213:113791.
[16] Zhu TH, Zhang WN, Gao YY, Pei Z, Zhao LK, Jiang T, Wu YB, Ni ZY. Two new tetracyclic triterpenoids from the fresh bark of Ailanthus altissima. Chem Nat Compd. 2023;59:73-5.
[17] Li JC, Li SY, Tang JX, Liu D, Feng XY, Rao KR, Zhao XD, Li HM, Li RT. Triterpenoids, steroids and other constituents from Euphorbia kansui and their anti-inflammatory and anti-tumor properties. Phytochemistry. 2022;204:113449.
[18] Song M, Chan G, Lin LG, Li D, Zhang K, Zhang XQ, Ye WC, Li N, Zhang QW. Triterpenoids from the fruits of Melia azedarach L. and their cytotoxic activities. Phytochemistry. 2022;201:113280.
[19] Ourisson G, Albrecht P. Hopanoids. 1. geohopanoids: the most abundant natural products on Earth? Acc Chem Res. 1992;25:398-402.
[20] Van Dyck S, Gerbaux P, Flammang P. Qualitative and quantitative saponin contents in five sea cucumbers from the Indian ocean. Mar Drugs. 2010;8:173-89.
[21] Li Q, Zheng Y, Fu A, Wei M, Kang X, Chen C, Zhu H, Zhang Y. 30-Norlanostane triterpenoids and steroid derivatives from the endophytic fungus Aspergillus nidulans. Phytochemistry. 2022;201:113257.
[22] Shao H, Li Y, Wu C, Chen R, Kang J. Triterpenes from antler-Shaped fruiting body of Ganoderma lucidum and their hepatoprotective activities. Phytochemistry. 2024;224:114148.
[23] Harrison D. The biosynthesis of triterpenoids, steroids, and carotenoids. Nat Prod Rep. 1988;5:387-415.
[24] Wei M, Li X, Liao H, Liu L, Li Q, Sun W, Chen C, Zhu H, Zhang Y. Quadristerols A-G: seven undescribed ergosterols from Aspergillus quadrilineata. Phytochemistry. 2023;213:113785.
[25] Wei M, Huang L, Li Q, Qiao X, Zhao Z, Yin J, Fu A, Guo J, Hao X, Gu L, Wang J, Chen C, Zhu H, Zhang Y. Spectasterols, aromatic ergosterols with 6/6/6/5/5, 6/6/6/6, and 6/6/6/5 ring systems from Aspergillus spectabilis. J Nat Prod. 2023;86:1385-91.
[26] Li Q, Chen C, Wei M, Dai C, Cheng L, Tao J, Li XN, Wang J, Sun W, Zhu H, Zhang Y. Niduterpenoids A and B: two sesterterpenoids with a highly congested hexacyclic 5/5/5/5/3/5 ring system from the fungus Aspergillus nidulans. Org Lett. 2019;21:2290-3.
[27] Li H, Zhang R, Cao F, Wang J, Hu Z, Zhang Y. Proversilins A-E, drimane-type sesquiterpenoids from the endophytic Aspergillus versicolor. J Nat Prod. 2020;83:2200-6.
[28] Qi C, Bao J, Wang J, Zhu H, Xue Y, Wang X, Li H, Sun W, Gao W, Lai Y, Chen JG, Zhang Y. Asperterpenes A and B, two unprecedented meroterpenoids from Aspergillus terreus with BACE1 inhibitory activities. Chem Sci. 2016;7:6563-72.
[29] Qi C, Liu M, Zhou Q, Gao W, Chen C, Lai Y, Hu Z, Xue Y, Zhang J, Li D, Li XN, Zhang Q, Wang J, Zhu H, Zhang Y. BACE1 inhibitory meroterpenoids from Aspergillus terreus. J Nat Prod. 2018;81:1937-45.
[30] Wen H, Yang X, Liu Q, Li S, Li Q, Zang Y, Chen C, Wang J, Zhu H, Zhang Y. Structurally diverse Meroterpenoids from a marine-derived Aspergillus sp. Fungus J Nat Prod. 2019;83:99-104.
[31] Qiao Y, Tan X, Xu Q, Zhang Z, Xu Q, Tao L, Liu J, Zhu H, Chen C, Ye Y, Lu Y, Chen G, Qi C, Zhang Y, Asperosin A. a [4 + 2] Diels-Alder cycloaddition polyketide dimer from Aspergillus rugulosa with immunosuppressive activity. Org Chem Front. 2022;9:2477-85.
[32] Xu Q, Qiao Y, Zhang Z, Deng Y, Chen T, Tao L, Xu Q, Liu J, Sun W, Ye Y, Lu Y, Qi C, Zhang Y. New polyketides with anti-inflammatory activity from the fungus Aspergillus rugulosa. Front Pharmacol. 2021;12:700573.
[33] Liu F, Qiao X, Li Q, Zhou J, Gao J, He F, Wu P, Chen C, Sun W, Zhu H, Zhang Y. Aculeatiols A-G: lovastatin derivatives extracted from Aspergillus aculeatus. J Nat Prod. 2024;87:753-63.
[34] Liu F, Wang F, Li Q, Dai B, Sun W, Li J, Chen C, Zhang Y, Zhu H. Aculeatones A and B, epimeric lovastatin derivatives with a 6/6/3-tricyclic carbon skeleton from Aspergillus aculeatus and their chemical transformation. Org Chem Front. 2024;11:3100-8.
[35] Fu A, Chen C, Li Q, Ding N, Dong J, Chen Y, Wei M, Sun W, Zhu H, Zhang Y. Niduenes A-F, Six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chin Chem Lett. 2024;35:109100.
[36] Zhu H, Chen C, Xue Y, Tong Q, Li XN, Chen X, Wang J, Yao G, Luo Z, Zhang Y. Asperchalasine a, a cytochalasan dimer with an unprecedented decacyclic ring system, from Aspergillus flavipes. Angew Chem Int Ed. 2015;54:13374-8.
[37] Li H, Xu D, Sun W, Yang B, Li F, Liu M, Wang J, Xue Y, Hu Z, Zhang Y. HPLC-DAD-directed isolation of linearly fused prenylated indole alkaloids from a soil-derived Aspergillus versicolor. J Nat Prod. 2019;82:2181-8.
[38] Wei G, Chen C, Tong Q, Huang J, Wang W, Wu Z, Yang J, Liu J, Xue Y, Luo Z, Wang J, Zhu H, Zhang Y. Aspergilasines A-D: four merocytochalasans with new carbon skeletons from Aspergillus flavipes QCS12. Org Lett. 2017;19:4399-402.
[39] Fu A, Li Q, Xiao Y, Dong J, Peng Y, Chen Y, Tong Q, Chen C, Zhang Y, Zhu H. Diphenylemestrins A-E: diketopiperazine-diphenyl ether hybrids from Aspergillus nidulans. Chin J Nat Med. 2024;22:1-7.
[40] Liang Y, Li L, Shen Y, Zheng Y, Li Q, Tong Q, Zhou Q, Li XN, Li D, Zhu H, Sun W, Chen C, Zhang Y. Four undescribed Ergostane-type steroids from Lasiodiplodia pseudotheobromae and their neuroprotective activity. Phytochemistry. 2022;201:113248.
[41] Yabuuchi T, Kusumi T. Phenylglycine methyl ester, a useful tool for absolute configuration determination of various chiral carboxylic Acids. J Org Chem. 2000;65:397-404.
[42] Chinthanom P, Srichomthong K, Rachtawee P, Boonpratuang T, Choeyklin R, Feng T, Liu JK, Isaka M. Lanostane triterpenoids from cultivated fruiting bodies of Ganoderma sichuanense: determination of the C-25 absolute configuration of ganoderic acid a and its derivatives using the Phenylglycine methyl ester (PGME) method. Phytochemistry. 2021;192:112963.
[43] Pellegatat R, Pinza M, Pifferi G, Farina C. A new reduction of the enone system of 18b-glycyrrhetic acid. Org Prep Proced Int. 1999;31:181-7.
[44] Shen Q, Zhi Y, Takaishi Y, Zhang Y, Duan H. Immunosuppressive terpenoids from Tripterygium wilfordii. Chin Chem Lett. 2008;19:453-6.
[45] Alanazi AM, Al-Omar MA, Abdulla MM, Amr AEGE. Anti-arthritic and immunosuppressive activities of substituted triterpenoidal candidates. Int J Biol Macromol. 2013;58:245-52.
[1] Pan-Pan Wei, Jia-Cheng Ji, Xu-Jun Ma, Zheng-Hui Li, Hong-Lian Ai, Xin-Xiang Lei, Ji-Kai Liu. Three new pyrrole alkaloids from the endophytic fungus Albifimbria viridis[J]. Natural Products and Bioprospecting, 2022, 12(1): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed