Natural Products and Bioprospecting    2024, Vol. 14 Issue (6) : 55-55     DOI: 10.1007/s13659-024-00477-5
REVIEW |
Expanding horizons of iminosugars as broad-spectrum anti-virals: mechanism, efficacy and novel developments
Qiantong Liu1, Yanyun Liu1, Tingting Liu1, Jinbao Fan1, Zanxian Xia2, Yingjun Zhou1,3, Xu Deng1,3
1. Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China;
2. School of Life Science, Central South University, Changsha 410013, Hunan, China;
3. Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, Hunan, China
Download: PDF(3987 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Iminosugars, a class of polyhydroxylated cyclic alkaloids with intriguing properties, hold promising therapeutic potentials against a broad spectrum of enveloped viruses, including DENV, HCV, HIV, and influenza viruses. Mechanistically, iminosugars act as the competitive inhibitors of host endoplasmic reticular α-glucosidases I and II to disrupt the proper folding of viral nascent glycoproteins, which thereby exerts antiviral effects. Remarkably, the glycoproteins of many enveloped viruses are significantly more dependent on the calnexin pathway of the protein folding than most host glycoproteins. Therefore, extensive interests and efforts have been devoted to exploit iminosugars as broad-spectrum antiviral agents. This review provides the summary and insights into the recent advancements in the development of novel iminosugars as effective and selective antiviral agents against a variety of enveloped viruses, as well as the understandings of their antiviral mechanisms.
Keywords Iminosugars      Broad-spectrum anti-virals      Mode of actions      Structure-activity relationships (SARs)     
Fund:We acknowledge the National Key Research and Development Program of China (Nos. 2023YFC2606500 to X. Deng), National Natural Science Foundation of China (Nos. 22377151 to X. Deng), the Hunan Provincial Key Research and Development Project (Nos. 2021WK2005 to X. Deng), the Hunan Provincial Science Fund for Distinguished Young Scholars (Nos.2023JJ10083 to X. Deng), Huxiang High-Level Talent Gathering Project (Nos. 2022RC4029) from the Science and Technology Department of Hunan province for the financial supports.
Corresponding Authors: Xu Deng,E-mail:dengxu3817@csu.edu.cn     E-mail: dengxu3817@csu.edu.cn
Issue Date: 13 December 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiantong Liu
Yanyun Liu
Tingting Liu
Jinbao Fan
Zanxian Xia
Yingjun Zhou
Xu Deng
Trendmd:   
Cite this article:   
Qiantong Liu,Yanyun Liu,Tingting Liu, et al. Expanding horizons of iminosugars as broad-spectrum anti-virals: mechanism, efficacy and novel developments[J]. Natural Products and Bioprospecting, 2024, 14(6): 55-55.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00477-5     OR     http://npb.kib.ac.cn/EN/Y2024/V14/I6/55
[1] Vankadari N, Shepherd DC, Carter SD, Ghosal D. Three-dimensional insights into human enveloped viruses in vitro and in situ. Biochem Soc Trans. 2022;50(1):95-105.
[2] Cheng N, Liu M, Li W, Sun BY, Liu D, Wang G, Shi J, Li L. Protein post-translational modification in SARS-CoV-2 and host interaction. Front Immunol. 2022;13:1068449.
[3] Chaudhuri S, Symons JA, Deval J. Innovation and trends in the development and approval of antiviral medicines: 1987-2017 and beyond. Antiviral Res. 2018;155:76-88.
[4] Namasivayam V, Palaniappan S, Vanangamudi M. Repurposing drugs targeting epidemic viruses. Drug Discov Today. 2022;27(7):1874-94.
[5] Boldescu V, Behnam MAM, Vasilakis N, Klein CD. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat Rev Drug Discov. 2017;16(8):565-86.
[6] Perera N, Brun J, Alonzi DS, Tyrrell BE, Miller JL, Zitzmann N. Antiviral effects of deoxynojirimycin (DNJ)-based iminosugars in dengue virus-infected primary dendritic cells. Antiviral Res. 2022;199: 105269.
[7] Kaufmann SHE, Dorhoi A, Hotchkiss RS, Bartenschlager R. Host-directed therapies for bacterial and viral infections. Nat Rev Drug Discov. 2018;17(1):35-56.
[8] Zheng Y, Li S, Song K, Ye J, Li W, Zhong Y, Feng Z, Liang S, Cai Z, Xu K. A broad antiviral strategy: inhibitors of human DHODH pave the way for host-targeting antivirals against emerging and re-emerging viruses. Viruses. 2022;14(5):928.
[9] Kumar N, Sharma S, Kumar R, Tripathi BN, Barua S, Ly H, Rouse BT. Host-directed antiviral therapy. Clin Microbiol Rev. 2020;33(3):168-90.
[10] Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj. 2019;1863(10):1480-97.
[11] Dhara D, Dhara A, Bennett J, Murphy PV. Cyclisations and strategies for stereoselective synthesis of piperidine iminosugars. Chem Rec. 2021;21(11):2958-79.
[12] Conforti I, Marra A. Iminosugars as glycosyltransferase inhibitors. Org Biomol Chem. 2021;19(25):5439-75.
[13] Miller JL, Tyrrell BE, Zitzmann N. Mechanisms of antiviral activity of iminosugars against dengue virus. Adv Exp Med Biol. 2018;1062:277-301.
[14] Evans DeWald L, Starr C, Butters T, Treston A, Warfield KL. Iminosugars: a host-targeted approach to combat Flaviviridae infections. Antiviral Res. 2020;184: 104881.
[15] Ferjancic Z, Bihelovic F, Vulovic B, Matovic R, Trmcic M, Jankovic A, Pavlovic M, Djurkovic F, Prodanovic R, Djurdjevic Djelmas A, et al. Development of iminosugar-based glycosidase inhibitors as drug candidates for SARS-CoV-2 virus via molecular modelling and in vitro studies. J Enzyme Inhib Med Chem. 2024;39(1):2289007.
[16] Miglani V, Sharma P, Kumar Narula A. Investigation of iminosugars as antiviral agents against SARS-CoV-2 main protease: inhibitor design and optimization, molecular docking, and molecular dynamics studies to explore potential inhibitory effect of 1-deoxynojirmycin series. Curr Comput Aided Drug Des. 2023.
[17] Tyrrell BE, Sayce AC, Warfield KL, Miller JL, Zitzmann N. Iminosugars: promising therapeutics for influenza infection. Crit Rev Microbiol. 2017;43(5):521-45.
[18] Li Y, Liu D, Wang Y, Su W, Liu G, Dong W. The importance of glycans of viral and host proteins in enveloped virus infection. Front Immunol. 2021;12: 638573.
[19] Schön K, Lepenies B, Goyette-Desjardins G. Impact of protein glycosylation on the design of viral vaccines. Adv Biochem Eng Biotechnol. 2021;175:319-54.
[20] Wang Q, Groenendyk J, Michalak M. Glycoprotein quality control and endoplasmic reticulum stress. Molecules. 2015;20(8):13689-704.
[21] Rey FA, Lok SM. Common features of enveloped viruses and implications for immunogen design for next-generation vaccines. Cell. 2018;172(6):1319-34.
[22] Mehta A, Ouzounov S, Jordan R, Simsek E, Lu X, Moriarty RM, Jacob G, Dwek RA, Block TM. Imino sugars that are less toxic but more potent as antivirals, in vitro, compared with N-n-nonyl DNJ. Antiviral Chem Chemother. 2002;13(5):299-304.
[23] Liu H, Chen C, Liao S, Sohaii DK, Cruz CRY, Burdo TH, Cradick TJ, Mehta A, Barrero C, Florez M, et al. Strategic self-limiting production of infectious HIV particles by CRISPR in permissive cells. Mol Ther Nucleic Acids. 2023;32:1010-25.
[24] Sadat MA, Moir S, Chun TW, Lusso P, Kaplan G, Wolfe L, Memoli MJ, He M, Vega H, Kim LJY, et al. Glycosylation, hypogammaglobulinemia, and resistance to viral infections. N Engl J Med. 2014;370(17):1615-25.
[25] Dobrica MO, Lazar C, Branza-Nichita N. N-glycosylation and N-glycan processing in HBV biology and pathogenesis. Cells. 2020;9(6):1404.
[26] Pralow A, Hoffmann M, Nguyen-Khuong T, Pioch M, Hennig R, Genzel Y, Rapp E, Reichl U. Comprehensive N-glycosylation analysis of the influenza A virus proteins HA and NA from adherent and suspension MDCK cells. FEBS J. 2021;288(16):4869-91.
[27] Galan MC, Benito-Alifonso D, Watt GM. Carbohydrate chemistry in drug discovery. Org Biomol Chem. 2011;9(10):3598-610.
[28] Karade SS, Hill ML, Kiappes JL, Manne R, Aakula B, Zitzmann N, Warfield KL, Treston AM, Mariuzza RA. N-substituted valiolamine derivatives as potent inhibitors of endoplasmic reticulum α-glucosidases I and II with antiviral activity. J Med Chem. 2021;64(24):18010-24.
[29] Karade SS, Kolesnikov A, Treston AM, Mariuzza RA. Identification of endoplasmic reticulum α-glucosidase I from a thermophilic fungus as a platform for structure-guided antiviral drug design. Biochemistry. 2022;61(10):822-32.
[30] Chapel C, Garcia C, Bartosch B, Roingeard P, Zitzmann N, Cosset F-L, Dubuisson J, Dwek RA, Trepo C, Zoulim F, et al. Reduction of the infectivity of hepatitis C virus pseudoparticles by incorporation of misfolded glycoproteins induced by glucosidase inhibitors. J Gen Virol. 2007;88(4):1133-43.
[31] Tani H, Komoda Y, Matsuo E, Suzuki K, Hamamoto I, Yamashita T, Moriishi K, Fujiyama K, Kanto T, Hayashi N, et al. Replication-competent recombinant vesicular stomatitis virus encoding hepatitis C virus envelope proteins. J Virol. 2007;81(16):8601-12.
[32] Clarke EC, Nofchissey RA, Ye C, Bradfute SB. The iminosugars celgosivir, castanospermine and UV-4 inhibit SARS-CoV-2 replication. Glycobiology. 2021;31(4):378-84.
[33] Fischer PB, Karlsson GB, Dwek RA, Platt FM. N-Butyldeoxynojirimycin-mediated inhibition of human immunodeficiency virus entry correlates with impaired gp120 shedding and gp41 exposure. J Virol. 1996;70(10):7153-60.
[34] Pollock S, Dwek RA, Burton DR, Zitzmann N. N-Butyldeoxynojirimycin is a broadly effective anti-HIV therapy significantly enhanced by targeted liposome delivery. AIDS. 2008;22(15):1961-9.
[35] Rajasekharan S, Bonotto RM, Alves LN, Kazungu Y, Poggianella M, Martinez-Orellana P, Skoko N, Polez S, Marcello A. Inhibitors of protein glycosylation are active against the coronavirus severe acute respiratory syndrome coronavirus SARS-CoV-2. Viruses. 2021;13(5):808.
[36] Nunes-Santos CJ, Kuehn HS, Rosenzweig SD. N-Glycan Modification in Covid-19 pathophysiology: in vitro structural changes with limited functional effects. J Clin Immunol. 2021;41(2):335-44.
[37] Lee HR, Cho YY, Lee GY, You DG, Yoo YD, Kim YJ. A direct role for hepatitis B virus X protein in inducing mitochondrial membrane permeabilization. J Viral Hepatitis. 2018;25(4):412-20.
[38] Lu X, Tran T, Simsek E, Block TM. The alkylated imino sugar, n-(n-Nonyl)deoxygalactonojirimycin, reduces the amount of hepatitis B virus nucleocapsid in tissue culture. J Virol. 2003;77(22):11933-40.
[39] Pavlovic D, Neville DCA, Argaud O, Blumberg B, Dwek RA, Fischer WB, Zitzmann N. The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc Natl Acad Sci U S A. 2003;100(10):6104-8.
[40] Mathew S, Fatima K, Fatmi MQ, Archunan G, Ilyas M, Begum N, Azhar E, Damanhouri G, Qadri I. Computational docking study of p7 ion channel from HCV genotype 3 and genotype 4 and its interaction with natural compounds. PLoS ONE. 2015;10(6):126511-26.
[41] Foster TL, Verow M, Wozniak AL, Bentham MJ, Thompson J, Atkins E, Weinman SA, Fishwick C, Foster R, Harris M, et al. Resistance mutations define specific antiviral effects for inhibitors of the hepatitis C virus p7 ion channel. Hepatology. 2011;54(1):79-90.
[42] Karlsson GB, Butters TD, Dwek RA, Platt FM. Effects of the imino sugar N-butyldeoxynojirimycin on the N-glycosylation of recombinant gp120. J Biol Chem. 1993;268(1):570-6.
[43] Fischer PB, Collin M, Karlsson GB, James W, Butters TD, Davis SJ, Gordon S, Dwek RA, Platt FM. The alpha-glucosidase inhibitor N-butyldeoxynojirimycin inhibits human immunodeficiency virus entry at the level of post-CD4 binding. J Virol. 1995;69(9):5791-7.
[44] Fischer PB, Karlsson GB, Butters TD, Dwek RA, Platt FM. N-butyldeoxynojirimycin-mediated inhibition of human immunodeficiency virus entry correlates with changes in antibody recognition of the V1/V2 region of gp120. J Virol. 1996;70(10):7143-52.
[45] Weber KT, Hammache D, Fantini J, Ganem B. Synthesis of glycolipid analogues that disrupt binding of HIV-1 gp120 to galactosylceramide. Bioorg Med Chem Lett. 2000;10(10):1011-4.
[46] Lyseng-Williamson KA. Miglustat: a review of its use in Niemann-Pick disease type C. Drugs. 2014;74(1):61-74.
[47] Gu X, Gupta V, Yang Y, Zhu JY, Carlson EJ, Kingsley C, Tash JS, Schönbrunn E, Hawkinson J, Georg GI. Structure-activity studies of N-Butyl-1-deoxynojirimycin (NB-DNJ) analogues: discovery of potent and selective aminocyclopentitol inhibitors of GBA1 and GBA2. ChemMedChem. 2017;12(23):1977-84.
[48] Misumi I, Li Z, Sun L, Das A, Shiota T, Cullen J, Zhang Q, Whitmire JK, Lemon SM. Iminosugar glucosidase inhibitors reduce hepatic inflammation in hepatitis a virus-infected Ifnar1(-/-) mice. J Virol. 2021;95(11): e0005821.
[49] Fantini J, Chahinian H, Yahi N. Convergent evolution dynamics of SARS-CoV-2 and HIV surface envelope glycoproteins driven by host cell surface receptors and lipid rafts: lessons for the future. Int J Mol Sci. 2023;24(3):1923.
[50] Konan KV, Ogbamikael SA, Yager E, Yamaji T, Cerone J, Monaco-Brown M, Barroso M, Hanada K. Modulation of Zika virus replication via glycosphingolipids. Virology. 2022;572:17-27.
[51] Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, Jiang C. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 2008;18(2):290-301.
[52] Vitner EB, Achdout H, Avraham R, Politi B, Cherry L, Tamir H, Yahalom-Ronen Y, Paran N, Melamed S, Erez N, et al. Glucosylceramide synthase inhibitors prevent replication of SARS-CoV-2 and influenza virus. J Biol Chem. 2021;296: 100470.
[53] Dwek RA, Fleet GWJ, Rademacher TW. Preparation of N-analogs of furanoses and pyranoses as inhibitors of human immunodeficiency virus. EP0322395A1, 1989.
[54] Zamoner LOB, Aragao-Leoneti V, Carvalho I. Iminosugars: effects of stereochemistry, ring size, and N-substituents on glucosidase activities. Pharmaceuticals. 2019;12(3):108.
[55] Barker MK, Rose DR. Specificity of Processing α-glucosidase I is guided by the substrate conformation: crystallographic and in silico studies. J Biol Chem. 2013;288(19):13563-74.
[56] Caputo AT, Alonzi DS, Marti L, Reca I-B, Kiappes JL, Struwe WB, Cross A, Basu S, Lowe ED, Darlot B, et al. Structures of mammalian ER α-glucosidase II capture the binding modes of broad-spectrum iminosugar antivirals. Proc Natl Acad Sci U S A. 2016;113(32):4630-8.
[57] Satoh T, Toshimori T, Yan G, Yamaguchi T, Kato K. Structural basis for two-step glucose trimming by glucosidase II involved in ER glycoprotein quality control. Sci Rep. 2016;6:20575.
[58] Caputo AT, Alonzi DS, Kiappes JL, Struwe WB, Cross A, Basu S, Darlot B, Roversi P, Zitzmann N. Structural insights into the broad-spectrum antiviral target endoplasmic reticulum alpha-glucosidase II. Adv Exp Med Biol. 2018;1062:265-76.
[59] Inouye STT, Nida T. The structure of nojirimycin, a piperidinose sugar antibiotic. J Antibiot. 1966;19:288-92.
[60] Ishida N, Kumagai K, Niida T, Hamamoto K, Shomura T. Nojirimycin, a new antibiotic. I. Taxonomy and fermentation. J Antibiot. 1967;20(2):62-5.
[61] Gao K, Zheng C, Wang T, Zhao H, Wang J, Wang Z, Zhai X, Jia Z, Chen J, Zhou Y, et al. 1-deoxynojirimycin: occurrence, extraction, chemistry, oral pharmacokinetics, biological activities and in silico target fishing. Molecules. 2016;21(11):1600.
[62] Iftikhar M, Lu Y, Zhou M. An overview of therapeutic potential of N-alkylated 1-deoxynojirimycin congeners. Carbohydr Res. 2021;504: 108317.
[63] Taylor DL, Fellows LE, Farrar GH, Nash RJ, Taylor-Robinson D, Mobberley MA, Ryder TA, Jeffries DJ, Tyms AS. Loss of cytomegalovirus infectivity after treatment with castanospermine or related plant alkaloids correlates with aberrant glycoprotein synthesis. Antiviral Res. 1988;10(1-3):11-26.
[64] Taylor DL, Sunkara PS, Liu PS, Kang MS, Bowlin TL, Tyms AS. 6-O-Butanoylcastanospermine (MDL 28,574) inhibits glycoprotein processing and the growth of HIVs. AIDS. 1991;5(6):693-8.
[65] Jordan R, Nikolaeva OV, Wang L, Conyers B, Mehta A, Dwek RA, Block TM. Inhibition of host ER glucosidase activity prevents Golgi processing of virion-associated bovine viral diarrhea virus E2 glycoproteins and reduces infectivity of secreted virions. Virology. 2002;295(1):10-9.
[66] Durantel D, Branza-Nichita N, Carrouee-Durantel S, Butters TD, Dwek RA, Zitzmann N. Study of the mechanism of antiviral action of iminosugar derivatives against bovine viral diarrhea virus. J Virol. 2001;75(19):8987-98.
[67] Hussain S, Miller JL, Harvey DJ, Gu Y, Rosenthal PB, Zitzmann N, McCauley JW. Strain-specific antiviral activity of iminosugars against human influenza A viruses. J Antimicrob Chemother. 2015;70(1):136-52.
[68] Warfield KL, Khaliq M, Sampath A, Treston AM, Plummer EM, Tang W, Buck MD, King K, Eddy W, Shresta S, et al. Inhibition of endoplasmic reticulum glucosidases is required for in vitro and in vivo dengue antiviral activity by the iminosugar UV-4. Antiviral Res. 2016;129:93-8.
[69] Miller JL, Hill ML, Brun J, Pountain A, Sayce AC, Zitzmann N. Iminosugars counteract the downregulation of the interferon γ receptor by dengue virus. Antiviral Res. 2019;170: 104551.
[70] Sayce AC, Martinez FO, Tyrrell BE, Perera N, Hill ML, Dwek RA, Miller JL, Zitzmann N. Pathogen-induced inflammation is attenuated by the iminosugar MON-DNJ via modulation of the unfolded protein response. Immunology. 2021;164(3):587-601.
[71] Perry ST, Buck MD, Plummer EM, Penmasta RA, Batra H, Stavale EJ, Warfield KL, Dwek RA, Butters TD, Alonzi DS, et al. An iminosugar with potent inhibition of dengue virus infection in vivo. Antiviral Res. 2013;98(1):35-43.
[72] Karade SS, Franco EJ, Rojas AC, Hanrahan KC, Kolesnikov A, Yu W, MacKerell AD, Hill DC, Weber DJ, Brown AN, et al. Structure-based design of potent iminosugar inhibitors of endoplasmic reticulum α-glucosidase I with anti-SARS-CoV-2 activity. J Med Chem. 2023;66(4):2744-60.
[73] Chang J, Wang L, Ma D, Qu X, Guo H, Xu X, Mason PM, Bourne N, Moriarty R, Gu B, et al. Novel imino sugar derivatives demonstrate potent antiviral activity against flaviviruses. Antimicrob Agents Chemother. 2009;53(4):1501-8.
[74] Yu W, Gill T, Wang L, Du Y, Ye H, Qu X, Guo J-T, Cuconati A, Zhao K, Block TM, et al. Design, synthesis, and biological evaluation of n-alkylated deoxynojirimycin (DNJ) derivatives for the treatment of dengue virus infection. J Med Chem. 2012;55(13):6061-75.
[75] Chang J, Warren TK, Zhao X, Gill T, Guo F, Wang L, Comunale MA, Du Y, Alonzi DS, Yu W, et al. Small molecule inhibitors of ER α-glucosidases are active against multiple hemorrhagic fever viruses. Antiviral Res. 2013;98(3):432-40.
[76] Du Y, Ye H, Gill T, Wang L, Guo F, Cuconati A, Guo J-T, Block TM, Chang J, Xu X. N-Alkyldeoxynojirimycin derivatives with novel terminal tertiary amide substitution for treatment of bovine viral diarrhea virus (BVDV), Dengue, and Tacaribe virus infections. Bioorg Med Chem Lett. 2013;23(7):2172-6.
[77] Du Y, Ye H, Guo F, Wang L, Gill T, Khan N, Cuconati A, Guo J-T, Block TM, Chang J, et al. Design and synthesis of N-alkyldeoxynojirimycin derivatives with improved metabolic stability as inhibitors of BVDV and Tacaribe virus. Bioorg Med Chem Lett. 2013;23(14):4258-62.
[78] Ma J, Zhang X, Soloveva V, Warren T, Guo F, Wu S, Lu H, Guo J, Su Q, Shen H, et al. Enhancing the antiviral potency of ER α-glucosidase inhibitor IHVR-19029 against hemorrhagic fever viruses in vitro and in vivo. Antiviral Res. 2018;150:112-22.
[79] Sayce AC, Alonzi DS, Tyrrell BE, Hill ML, Caputo AT, Kiappes JL, Dwek RA, Miller JL, Zitzmann N, Killingbeck SS, et al. Iminosugars inhibit dengue virus production via inhibition of ER alpha-glucosidases-not glycolipid processing enzymes. PLoS Negl Trop Dis. 2016;10(3):e0004524.
[80] Dwek RA, Butters TD, Platt FM, Zitzmann N. Targeting glycosylation as a therapeutic approach. Nat Rev Drug Discov. 2002;1(1):65-75.
[81] Horne G, Wilson FX, Tinsley J, Williams DH, Storer R. Iminosugars past, present and future: medicines for tomorrow. Drug Discov Today. 2011;16(3/4):107-18.
[82] van den Broek LAGM, Vermaas DJ, Heskamp BM, van Boeckel CAA, Tan MCAA, Bolscher JGM, Ploegh HL, van Kemenade FJ, de Goede REY, Miedema F. Chemical modification of azasugars, inhibitors of N-glycoprotein-processing glycosidases and of HIV-I infection: review and structure-activity relationships. Recl Trav Chim Pays-Bas. 1993;112(2):82-94.
[83] Callahan M, Treston AM, Lin G, Smith M, Kaufman B, Khaliq M, Evans DeWald L, Spurgers K, Warfield KL, Lowe P, et al. Randomized single oral dose phase 1 study of safety, tolerability, and pharmacokinetics of Iminosugar UV-4 Hydrochloride (UV-4B) in healthy subjects. PLoS Neglected Trop Dis. 2022;16(8):e0010636.
[84] Nash RJ, Carroll MW, Watson AA, Fleet GWJ, Horne G. Pyrrolidine derivatives as immunomodulators and antiviral agents. WO2007010266A1, 2007.
[85] Chapman TM, Davies IG, Gu B, Block TM, Scopes DIC, Hay PA, Courtney SM, McNeill LA, Schofield CJ, Davis BG. Glyco- and peptidomimetics from three-component Joullié-Ugi coupling show selective antiviral activity. J Am Chem Soc. 2005;127(2):506-7.
[86] Zhao X, Guo F, Comunale MA, Mehta A, Sehgal M, Jain P, Cuconati A, Lin H, Block TM, Chang J, et al. Inhibition of endoplasmic reticulum-resident glucosidases impairs severe acute respiratory syndrome coronavirus and human coronavirus NL63 spike protein-mediated entry by altering the glycan processing of angiotensin I-converting enzyme 2. Antimicrob Agents Chemother. 2015;59(1):206-16.
[87] Saito T, Yamaguchi I. Effect of glycosylation and glucose trimming inhibitors on the influenza A virus glycoproteins. J Vet Med Sci. 2000;62(6):575-81.
[88] Watanabe S, Rathore APS, Sung C, Lu F, Khoo YM, Connolly J, Low J, Ooi EE, Lee HS, Vasudevan SG. Dose- and schedule-dependent protective efficacy of celgosivir in a lethal mouse model for dengue virus infection informs dosing regimen for a proof of concept clinical trial. Antiviral Res. 2012;96(1):32-5.
[89] Low JG, Sung C, Wijaya L, Wei Y, Rathore APS, Watanabe S, Tan BH, Toh L, Chua LT, Hou YA, et al. Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect Dis. 2014;14(8):706-15.
[90] Sung C, Wei Y, Watanabe S, Lee HS, Khoo YM, Fan L, Rathore APS, Chan KW-K, Choy MM, Kamaraj US, et al. Extended evaluation of virological, immunological and pharmacokinetic endpoints of CELADEN: a randomized, placebo-controlled trial of celgosivir in dengue fever patients. PLoS Neglected Trop Dis. 2016;10(8):48511-485123.
[91] Rathore APS, Paradkar PN, Watanabe S, Tan KH, Sung C, Connolly JE, Low J, Ooi EE, Vasudevan SG. Celgosivir treatment misfolds dengue virus NS1 protein, induces cellular pro-survival genes and protects against lethal challenge mouse model. Antiviral Res. 2011;92(3):453-60.
[92] Tharappel AM, Cheng Y, Holmes EH, Ostrander GK, Tang H. Castanospermine reduces Zika virus infection-associated seizure by inhibiting both the viral load and inflammation in mouse models. Antiviral Res. 2020;183: 104935.
[93] Bhushan G, Lim L, Bird I, Chothe SK, Nissly RH, Kuchipudi SV. Iminosugars with endoplasmic reticulum α-glucosidase inhibitor activity inhibit ZIKV replication and reverse cytopathogenicity in vitro. Front Microbiol. 2020;11:531.
[94] Taylor DL, Kang MS, Brennan TM, Bridges CG, Sunkara PS, Tyms AS. Inhibition of alpha-glucosidase I of the glycoprotein-processing enzymes by 6-O-butanoyl castanospermine (MDL 28,574) and its consequences in human immunodeficiency virus-infected T cells. Antimicrob Agents Chemother. 1994;38(8):1780-7.
[95] Li X, Qin Z, Yang T, Zhang H, Wei S, Li C, Chen H, Meng M. Synthesis and biological activity of bi/tricyclic azasugars fused thiazolidin-4-one and thiazinan-4-one by microwave-assisted tandem Staudinger/aza-Wittig/cyclization. Bioorg Med Chem Lett. 2012;22(8):2712-6.
[96] Chen H, Yang T, Wei S, Zhang H, Li R, Qin Z, Li X. Synthetic bicyclic iminosugar derivatives fused thiazolidin-4-one as new potential HIV-RT inhibitors. Bioorg Med Chem Lett. 2012;22(23):7041-4.
[97] Chen H, Li R, Liu Z, Wei S, Zhang H, Li X. Synthesis of kifunensine thio-analogs and their inhibitory activities against HIV-RT and α-mannosidase. Carbohydr Res. 2013;365:1-8.
[98] Yin Z, Zhu M, Wei S, Shao J, Hou Y, Chen H, Li X. Synthesis of tetracyclic iminosugars fused benzo[e][1,3]thiazin-4-one and their HIV-RT inhibitory activity. Bioorg Med Chem Lett. 2016;26(7):1738-41.
[99] Chen H, Hao L, Zhu M, Yang T, Wei S, Qin Z, Zhang P, Li X. Synthesis of bi-/tricyclic azasugars fused thiazinan-4-one and their HIV-RT inhibitory activity. Bioorg Med Chem Lett. 2014;24(15):3426-9.
[100] Braakman I, van Anken E. Folding of viral envelope glycoproteins in the endoplasmic reticulum. Traffic. 2000;1(7):533-9.
[101] Block TM, Lu X, Mehta AS, Blumberg BS, Tennant B, Ebling M, Korba B, Lansky DM, Jacob GS, Dwek RA. Treatment of chronic hepadnavirus infection in a woodchuck animal model with an inhibitor of protein folding and trafficking. Nat Med. 1998;4(5):610-4.
[102] Rudd PM, Dwek RA. Glycosylation: Heterogeneity and the 3D structure of proteins. Crit Rev Biochem Mol Biol. 1997;32(1):1-100.
[103] Alonzi DS, Scott KA, Dwek RA, Zitzmann N. Iminosugar antivirals: the therapeutic sweet spot. Biochem Soc Trans. 2017;45(2):571-82.
[104] Lubas WA, Spiro RG. Evaluation of the role of rat liver Golgi endo-alpha-D-mannosidase in processing N-linked oligosaccharides. J Biol Chem. 1988;263(8):3990-8.
[105] Marx TK, Glavits R, Endres JR, Palmer PA, Clewell AE, Murbach TS, Hirka G, Pasics I. A 28-day repeated dose toxicological study of an aqueous extract of Morus alba L. Int J Toxicol. 2016;35(6):683-91.
[106] Heo H-S, Choi J-H, Oh J-J, Lee W-J, Kim S-S, Lee D-H, Lee H-K, Song S-W, Kim K-H, Choi Y-K, et al. Evaluation of general toxicity and genotoxicity of the silkworm extract powder. Toxicol Res. 2013;29(4):263-78.
[107] McCormack PL, Goa KL. Miglustat. Drugs. 2003;63(22):2427-34.
[108] Tierney M, Pottage J, Kessler H, Fischl M, Richman D, Merigan T, Powderly W, Smith S, Karim A. The tolerability and pharmacokinetics of N-butyl-deoxynojirimycin in patients with advanced HIV disease (ACTG 100). J Acquired Immune Defic Syndr Hum Retrovirol. 1995;10(5):549-53.
[109] Suganuma R, Walden CM, Butters TD, Platt FM, Dwek RA, Yanagimachi R, Van der Spoel AC. Alkylated imino sugars, reversible male infertility-inducing agents, do not affect the genetic integrity of male mouse germ cells during short-term treatment despite induction of sperm deformities. Biol Reprod. 2005;72(4):805-13.
[110] van der Spoel SAC, Jeyakumar M, Butters TD, Charlton HM, Moore HD, Dwek RA, Platt FM. Reversible infertility in male mice after oral administration of alkylated imino sugars: a nonhormonal approach to male contraception. Proc Natl Acad Sci U S A. 2002;99(26):17173-8.
[111] Gupta V, Hild SA, Jakkaraj SR, Carlson EJ, Wong HL, Allen CL, Georg GI, Tash JS. N-butyldeoxygalactonojirimycin induces reversible infertility in male CD rats. Int J Mol Sci. 2020;21(1):301.
[112] Ridley CM, Thur KE, Shanahan J, Thillaiappan NB, Shen A, Uhl K, Walden CM, Rahim AA, Waddington SN, Platt FM, et al. β-Glucosidase 2 (GBA2) activity and imino sugar pharmacology. J Biol Chem. 2013;288(36):26052-66.
[113] Shearer J, Wolfe G, Sampath A, Warfield KL, Kaufman B, Ramstedt U, Treston A. Investigational new drug enabling nonclinical safety assessment of the iminosugar UV-4, a broad-spectrum host-targeted antiviral agent. Int J Toxicol. 2022;41(3):182-200.
[114] Shearer J, Wolfe G, Khaliq M, Kaufman B, Sampath A, Warfield KL, Ramstedt U, Treston A. Reproductive and developmental toxicology studies of iminosugar UV-4. Reprod Toxicol. 2022;114:9-21.
[115] Warfield KL, Treston AM, Warren TK, Wells J, Stuthman KS, Garza NL, Van TSA, Shurtleff AC, Qiu X, Mire CE, et al. Assessment of the potential for host-targeted iminosugars UV-4 and UV-5 activity against filovirus infections in vitro and in vivo. Antiviral Res. 2017;138:22-31.
[116] Ruprecht RM, Mullaney S, Andersen J, Bronson R. In vivo analysis of castanospermine, a candidate antiretroviral agent. J Acquired Immune Defic Syndr. 1989;2(2):149-57.
[117] Durantel D. Celgosivir, an alpha-glucosidase I inhibitor for the potential treatment of HCV infection. Curr Opin Investig Drugs. 2009;10(8):860-70.
[118] Miller JL, Lachica R, Sayce AC, Williams JP, Bapat M, Dwek R, Beatty PR, Harris E, Zitzmann N. Liposome-mediated delivery of iminosugars enhances efficacy against dengue virus in vivo. Antimicrob Agents Chemother. 2012;56(12):6379-86.
[119] Ghisaidoobe A, Bikker P, de Bruijn ACJ, Godschalk FD, Rogaar E, Guijt MC, Hagens P, Halma JM, van’t Hart SM, Luitjens SB, et al. Identification of potent and selective glucosylceramide synthase inhibitors from a library of N-alkylated iminosugars. ACS Med Chem Lett. 2011;2(2):119-23.
[120] Wennekes T, Meijer AJ, Groen AK, Boot RG, Groener JE, van Eijk M, Ottenhoff R, Bijl N, Ghauharali K, Song H, et al. Dual-action lipophilic iminosugar improves glycemic control in obese rodents by reduction of visceral glycosphingolipids and buffering of carbohydrate assimilation. J Med Chem. 2010;53(2):689-98.
[121] Zitzmann N, Mehta AS, Carrouee S, Butters TD, Platt FM, McCauley J, Blumberg BS, Dwek RA, Block TM. Imino sugars inhibit the formation and secretion of bovine viral diarrhea virus, a pestivirus model of hepatitis C virus: implications for the development of broad spectrum anti-hepatitis virus agents. Proc Natl Acad Sci U S A. 1999;96(21):11878-82.
[122] Kim JY, Kwon HJ, Jung JY, Kwon HY, Baek JG, Kim Y-S, Kwon O. Comparison of absorption of 1-deoxynojirimycin from mulberry water extract in rats. J Agric Food Chem. 2010;58(11):6666-71.
[123] Nakagawa K, Kubota H, Kimura T, Yamashita S, Tsuzuki T, Oikawa S, Miyazawa T. Occurrence of orally administered mulberry 1-deoxynojirimycin in rat plasma. J Agric Food Chem. 2007;55(22):8928-33.
[124] Ahr HJ, Boberg M, Krause HP, Maul W, Mueller FO, Ploschke HJ, Weber H, Wuensche C. Pharmacokinetics of acarbose. Part I. Absorption, concentration in plasma, metabolism and excretion after single administration of [14C]acarbose to rats, dogs and man. Arzneimittelforschung. 1989;39(10):1254-60.
[125] Faber ED, Oosting R, Neefjes JJ, Ploegh HL, Meijer DKF. Distribution and elimination of the glycosidase inhibitors 1-deoxymannojirimycin and N-methyl-1-deoxynojirimycin in the rat in vivo. Pharm Res. 1992;9(11):1442-50.
[126] Li X, Wang Y, Wang J, Fawcett JP, Zhao L, Gu J. Determination of miglitol in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2007;21(2):247-51.
[127] Ahr HJ, Boberg M, Brendel E, Krause HP, Steinke W. Pharmacokinetics of miglitol. Absorption, distribution, metabolism, and excretion following administration to rats, dogs, and man. Arzneimittelforschung. 1997;47(6):734-45.
[128] Guerard N, Oder D, Nordbeck P, Zwingelstein C, Morand O, Welford RWD, Dingemanse J, Wanner C. Lucerastat, an iminosugar for substrate reduction therapy: tolerability, pharmacodynamics, and pharmacokinetics in patients with fabry disease on enzyme replacement. Clin Pharmacol Ther. 2018;103(4):703-11.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed