Natural Products and Bioprospecting    2024, Vol. 14 Issue (6) : 49-49     DOI: 10.1007/s13659-024-00466-8
REVIEW |
Harnessing the power of Arctium lappa root: a review of its pharmacological properties and therapeutic applications
Mukul Shyam, Evan Prince Sabina
Department of Biotechnology, School of Biosciences and Technology, VIT University, SBST, VIT, Vellore 632014, Tamil Nadu, India
Download: PDF(2466 KB)   HTML ()  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Arctium lappa, widely recognized as burdock, is a perennial plant that is employed in the realm of traditional Chinese medicine for a wide range of medicinal applications. The herb is rich in bioactive metabolites with therapeutic potential, encompassing polyphenolic antioxidants in its leaves, and flavonoids and fructo-oligosaccharides in its underground parts. Nutraceuticals originating from botanical sources such as Arctium lappa provide supplementary health advantages alongside their nutritional content and have demonstrated effectiveness in the prevention and management of specific ailments. The utilization of Arctium lappa root extract has exhibited encouraging outcomes in addressing hepatotoxicity induced by cadmium, lead, chromium, and acetaminophen, ameliorating liver damage and oxidative stress. Additionally, the root extract displays properties such as antidiabetic, hypolipidemic, aphrodisiac, anti-rheumatic, anti-Alzheimer, and various other pharmacological actions.
Keywords Antioxidant      Anti-diabetic      Burdock root      Phytoconstituents      Traditional medicine     
Corresponding Authors: Evan Prince Sabina,E-mail:eps674@gmail.com,epsabina@vit.ac.in     E-mail: eps674@gmail.com,epsabina@vit.ac.in
Issue Date: 13 December 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mukul Shyam
Evan Prince Sabina
Trendmd:   
Cite this article:   
Mukul Shyam,Evan Prince Sabina. Harnessing the power of Arctium lappa root: a review of its pharmacological properties and therapeutic applications[J]. Natural Products and Bioprospecting, 2024, 14(6): 49-49.
URL:  
http://npb.kib.ac.cn/EN/10.1007/s13659-024-00466-8     OR     http://npb.kib.ac.cn/EN/Y2024/V14/I6/49
[1] Horng CT, Wu HC, Chiang NN, Lee CF, Huang YS, Wang HY, Yang JS, Chen FA. Inhibitory effect of burdock leaves on elastase and tyrosinase activity. Exp Ther Med. 2017;14(4):3375-80. https://doi.org/10.3892/ETM.2017.4880.
[2] Clerici MT. Retention of bioactive compounds and bifidogenic activity of burdock roots subjected to different processes. Int J Gastron Food Sci. 2022;27: 100448. https://doi.org/10.1016/j.ijgfs.2021.100448.
[3] Ishii T, Shimizu T, Imai M, Tamura M, Healy J, Fernandez J, Stock JB, Perez E, Fitzgerald CP. Arctigenin (ATG)-enriched burdock seed oil (ABSO): a new ATG-enriched botanical extract with skin-brightening properties. J Invest Dermatol. 2023;143(5):1226-34. https://doi.org/10.1016/j.jid.2023.03.1240.
[4] Ahangarpour A, Heidari H, Oroojan AA, Mirzavandi F, Esfehani KN, Mohammadi ZD. Antidiabetic, hypolipidemic and hepatoprotective effects of Arctium lappa root’s hydro-alcoholic extract on nicotinamide-streptozotocin induced type 2 model of diabetes in male mice. Adv Pharm Bull. 2017;7(2):245-51. https://doi.org/10.22038/AJP.2016.7843.
[5] Lee D, Kim CY. Inhibition of advanced glycation end product formation by burdock root extract. J Nutr Health. 2016;49(4):233-40. https://doi.org/10.4163/JNH.2016.49.4.233.
[6] Ghedira K, Goetz P. Arctium lappa L. (Asteraceae): Bardane. Phytothérapie. 2013;11(6):376-80. https://doi.org/10.1007/s10298-013-0827-1.
[7] Cao J, Zhang P, Xu C, Huang T, Bai Y, Chen KS. Effect of aqueous extract of Arctium lappa L. (burdock) roots on the sexual behavior of male rats. BMC Complement Altern Med. 2012;12(1):8. https://doi.org/10.1186/1472-6882-12-8.
[8] Yosri N, Alsharif SM, Xiao J, Musharraf SG, Zhao C, Saeed A, Gao R, Said NS, Di Minno A, Daglia M, Guo Z, Khalifa SAM, El-Seedi HR. Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine. Biol Pharm Bull. 2022;158: 114104. https://doi.org/10.1016/j.biopha.2022.114104.
[9] Santini A, Tenore GC, Novellino E. Nutraceuticals: a paradigm of proactive medicine. Eur J Pharm Sci. 2017;96:53-61. https://doi.org/10.1016/J.EJPS.2016.09.003.
[10] Ferracane R, Graziani G, Gallo M, Fogliano V, Ritieni A. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J Pharm Biomed Anal. 2010;51(2):380-6. https://doi.org/10.1016/J.JPBA.2009.03.018.
[11] Kim YS, Kim SH. Physicochemical and antioxidant characteristics of hot water extracts on pre-treatment conditions of burdock (Arctium lappa L.). Food Sci Technol. 2018;47(6):612-9. https://doi.org/10.3746/JKFN.2018.47.6.612.
[12] Azizov UM, Khadzhieva UA, Rakhimov DA, Mezhlumyan LG, Salikhov SA. Chemical composition of dry extract of Arctium lappa roots. Pharm Chem J. 2012;47(6):324-8. https://doi.org/10.1007/S10600-012-0142-3.
[13] Pandey J, Dev K, Chattopadhyay S, Kadan S, Sharma T, Maurya R, Sanyal S, Siddiqi MI, Zaid H, Tamrakar AK. β-Sitosterol-d-Glucopyranoside mimics estrogenic properties and stimulates glucose utilization in skeletal muscle cells. Molecules. 2021;26(11):3129. https://doi.org/10.3390/molecules26113129.
[14] Huang S, Dong S, Lin L, Ma QX, Xu M, Ni L, Fan Q. Inulin ameliorates metabolic syndrome in high-fat diet-fed mice by regulating gut microbiota and bile acid excretion. Front Pharmacol. 2023;14:1226448. https://doi.org/10.3389/fphar.2023.1226448.
[15] Yuan P, Shao T, Han J, Liu C, Wang G, He SG, Xu SX, Nian SH, Chen K. Burdock fructooligosaccharide as an α-glucosidase inhibitor and its antidiabetic effect on high-fat diet and streptozotocin-induced diabetic mice. J Funct Foods. 2021;86: 104703. https://doi.org/10.1016/J.JFF.2021.104703.
[16] Nisar MF, Nisar MF, Khadim M, Rafiq M, Chen J, Yang Y, Wan CC. Pharmacological properties and health benefits of eugenol: a comprehensive review. Evid Based Complement Alternat Med. 2021;2021:2497354. https://doi.org/10.1155/2021/2497354.
[17] Das A, Harshadha K, Kannan D, Hari Raja K, Jayaprakash B. Evaluation of therapeutic potential of eugenol—a natural derivative of Syzygium aromaticum on cervical cancer. Asian Pac J Cancer Prev. 2018;19(7):1977-83. https://doi.org/10.22034/APJCP.2018.19.7.1977.
[18] Arya SS, Arya SS, Rookes JE, Cahill DM, Lenka SK. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. Crit Rev Food Sci Nutr. 2021;21(3):304-19. https://doi.org/10.1007/S13596-020-00531-W.
[19] Taqvi S, Bhat EA, Sajjad N, Sabir JSM, Qureshi A, Rather IA, Rehman S. Protective effect of vanillic acid in hydrogen peroxide-induced oxidative stress in D.Mel-2 cell line. Saudi J Biol Sci. 2021;28(3):1952-9. https://doi.org/10.1016/J.SJBS.2020.12.023.
[20] Kim J, Wie MB, Ahn M, Tanaka A, Matsuda H, Shin T. Benefits of hesperidin in central nervous system disorders: a review. Arch Craniofacial Surg. 2019;52(4):230-9. https://doi.org/10.5115/ACB.19.119.
[21] Carević T, Kostić M, Nikolić B, Stojković D, Soković M, Ivanov M. Hesperetin—between the ability to diminish mono- and polymicrobial biofilms and toxicity. Molecules. 2022;27(20):6806. https://doi.org/10.3390/molecules27206806.
[22] Wang D, Hou J, Wan J, Yang Y, Liu S, Li X, Li W, Dai X, Zhou P, Liu W, Wang P. Dietary chlorogenic acid ameliorates oxidative stress and improves endothelial function in diabetic mice via Nrf2 activation. Food Sci Technol. 2021;49(1): e985363. https://doi.org/10.1177/0300060520985363.
[23] Pavlikova N. Caffeic acid and diseases—mechanisms of action. Int J Mol Sci. 2022;24(1):588. https://doi.org/10.3390/ijms24010588.
[24] Khorasanian AS, Fateh ST, Gholami F, Rasaei N, Gerami H, Khayyatzadeh SS, Shiraseb F, Asbaghi O. The effects of hesperidin supplementation on cardiovascular risk factors in adults: a systematic review and dose-response meta-analysis. Food Sci Technol. 2023;49: e1177708. https://doi.org/10.3389/fnut.2023.1177708.
[25] Al-Ashaal HA, El-Sheltawy ST. Antioxidant capacity of hesperidin from Citrus peel using electron spin resonance and cytotoxic activity against human carcinoma cell lines. Food Sci Technol. 2011;49(3): 509734. https://doi.org/10.3109/13880209.2010.509734.
[26] Topal M, Göçer H, Topal F, Kalın P, Polat Kose L, Gülçin İ, Cetin Cakmak K, Küçük M, Durmaz L, Gören AC, Alwasel S. Antioxidant, antiradical, and anticholinergic properties of cynarin purified from the Illyrian thistle (Onopordum illyricum L.). Food Sci Technol. 2016;31(2): e1018244. https://doi.org/10.3109/14756366.2015.1018244.
[27] Fahmi Elsebai M, Mocan A, Atanasov AG, Atanasov AG. Cynaropicrin: a comprehensive research review and therapeutic potential as an anti-hepatitis C virus agent. Food Sci Technol. 2016;7: e472. https://doi.org/10.3389/fphar.2016.00472.
[28] Anwar S, Shamsi A, Shahbaaz M, Queen A, Khan P, Hasan GM, Islam A, Alajmi MF, Hussain A, Ahmad F, Hassan MI. Rosmarinic acid exhibits anticancer effects via MARK4 inhibition. Food Sci Technol. 2020;10(1): e65648. https://doi.org/10.1038/s41598-020-65648-z.
[29] Singh M, Kapoor A, Bhatnagar A. Physiological and pathological roles of aldose reductase. Food Sci Technol. 2021;11(10): e655. https://doi.org/10.3390/metabo11100655.
[30] Park SY, Hong SS, Han XH, Hwang JS, Lee D, Ro JS, Hwang BY. Lignans from Arctium lappa and their inhibition of LPS-induced nitric oxide production. Food Sci Technol. 2007;55(1): e150. https://doi.org/10.1248/cpb.55.150.
[31] Chen GR, Li HF, Dou D, Xu Y, Jiang HS, Li FR, Kang TG. Arctigenin as a lead compound for anticancer agent. Food Sci Technol. 2013;27(23): e821120. https://doi.org/10.1080/14786419.2013.821120.
[32] Li L, Zhang Y, Xiao F, Wang Z, Liu J. Arctiin attenuates lipid accumulation, inflammation, and oxidative stress in nonalcoholic fatty liver disease through inhibiting MAPK pathway. Food Sci Technol. 2022;14(4): e1150. https://doi.org/10.15586/qas.v14i4.1150.
[33] Yang RY, Tan JY, Liu Z, Shen XL, Hu YJ. Lappaol F regulates the cell cycle by activating CDKN1C/p57 in human colorectal cancer cells. Food Sci Technol. 2023;61(1): e2172048. https://doi.org/10.1080/13880209.2023.2172048.
[34] Li X, Lin YY, Tan JY, Liu KL, Shen XL, Hu YJ, Yang RY. Lappaol F, an anticancer agent, inhibits YAP via transcriptional and post-translational regulation. Food Sci Technol. 2021;59(1): e1923759. https://doi.org/10.1080/13880209.2021.1923759.
[35] Wu Q, Wang Y, Li Q. Matairesinol exerts anti-inflammatory and antioxidant effects in sepsis-mediated brain injury by repressing the MAPK and NF-κB pathways through up-regulating AMPK. Food Sci Technol. 2021;13(20): e203649. https://doi.org/10.18632/aging.203649.
[36] Yoo JM, Park KI, Cho WK, Ma JY. Inhibitory effect of lappaol A on IgE/antigen-mediated allergic responses in in vitro and in vivo models. Food Sci Technol. 2019;52: e10. https://doi.org/10.1016/j.jff.2018.10.041.
[37] Su S, Cheng X, Wink M. Natural lignans from Arctium lappa modulate P-glycoprotein efflux function in multidrug resistant cancer cells. Food Sci Technol. 2015;22(2): e12009. https://doi.org/10.1016/j.phymed.2014.12.009.
[38] Dong SM, Tomlinson Guns ES, Eberding A, Towers GHN. Isolation and characterization of compounds with anti-prostate cancer activity from Arctium lappa L. using bioactivity-guided fractionation. Food Sci Technol. 2004;42(1): e05474. https://doi.org/10.1080/13880200490505474.
[39] Sun Y, Tan YJ, Lu ZZ, Li BB, Sun C, Li T, Zhao LL, Liu Z, Zhang GM, Yao JC, Li J. Arctigenin inhibits liver cancer tumorigenesis by inhibiting gankyrin expression via C/EBPα and PPARα. Food Sci Technol. 2018;9: e268. https://doi.org/10.3389/fphar.2018.00268.
[40] Kim BH, Hong SS, Kwon SW, Lee HY, Sung H, Lee IJ, Hwang BY, Song S, Lee CK, Chung D, Ahn B, Nam SY, Han SB, Kim Y. Diarctigenin, a lignan constituent from Arctium lappa, down-regulates zymosan-induced transcription of inflammatory genes through suppression of DNA binding ability of nuclear factor-kappaB in macrophages. Food Sci Technol. 2008;327(2): e140145. https://doi.org/10.1124/jpet.108.140145.
[41] Abdel-Raheem IT. Gastroprotective effect of rutin against indomethacin-induced ulcers in rats. Food Sci Technol. 2010;107(3): e568. https://doi.org/10.1111/j.1742-7843.2010.00568.x.
[42] Sharma N, Biswas S, Al-Dayan N, Alhegaili AS, Sarwat M. Antioxidant role of kaempferol in prevention of hepatocellular carcinoma. Antioxidant. 2021;10(9):1419. https://doi.org/10.3390/ANTIOX10091419.
[43] Fan X, Bai J, Hu M, Xu Y, Zhao S, Sun Y, Wang B, Hu J, Li Y. Drug interaction study of flavonoids toward OATP1B1 and their 3D structure activity relationship analysis for predicting hepatoprotective effects. Food Sci Technol. 2020;437: e152445. https://doi.org/10.1016/j.tox.2020.152445.
[44] Xu K, Yang Y, Lan M, Wang J, Liu B, Yan M, Wang H, Li W, Sun S, Zhu K, Zhang X, Hei M, Huang X, Dou L, Tang W, He Q, Li J, Shen T. Apigenin alleviates oxidative stress-induced myocardial injury by regulating SIRT1 signaling pathway. Food Sci Technol. 2023;944: e175584. https://doi.org/10.1016/j.ejphar.2023.175584.
[45] Nguyen TLA, Bhattacharya D. Antimicrobial activity of quercetin: an approach to its mechanistic principle. Food Sci Technol. 2022;27(8): e2494. https://doi.org/10.3390/molecules27082494.
[46] Qi S, Feng Z, Li Q, Qi Z, Zhang Y. Myricitrin modulates NADPH oxidase-dependent ROS production to inhibit endotoxin-mediated inflammation by blocking the JAK/STAT1 and NOX2/p47phox pathways. Food Sci Technol. 2017;2017: e9738745. https://doi.org/10.1155/2017/9738745.
[47] Sharma P, Panaiyadiyan S, Kurra S, Kumar R, Nayak B, Singh P, Ram P, Kumaraswamy S, Mandal S, Das M, Tripathy S, Nayak PK, Sharma PK, Panaiyadiyan S, Kurra S, Kumar R, Nayak B, Singh P, et al. Association of human papillomavirus in penile cancer: A single-center analysis. Food Sci Technol. 2022;38(4):e210-5. https://doi.org/10.4103/iju.iju_234_22.
[48] Ben-Azu B, Aderibigbe AO, Eneni AEO, Ajayi AM, Umukoro S, Iwalewa EO. Morin attenuates neurochemical changes and increased oxidative/nitrergic stress in brains of mice exposed to ketamine: prevention and reversal of schizophrenia-like symptoms. Food Sci Technol. 2018;43(9): e2590. https://doi.org/10.1007/s11064-018-2590-z.
[49] Maghsoumi-Norouzabad L, Maghsoumi-Norouzabad L, Shishehbor F, Abed R, Zare Javid A, Eftekharsadat B, Alipour B. Effect of Arctium lappa linne (Burdock) root tea consumption on lipid profile and blood pressure in patients with knee osteoarthritis. Food Sci Technol. 2019;17: e100266. https://doi.org/10.1016/j.hermed.2019.100266.
[50] Moro de TMA, Celegatti CM, Pereira APA, Lopes AS, Barbin DF, Pastore GM, Clerici MTPS. Use of burdock root flour as a prebiotic ingredient in cookies. Food Sci Technol. 2018;90: e1059. https://doi.org/10.1016/j.lwt.2017.12.059.
[51] Nikoomanesh N, Zandi M, Ganjloo A. Development of eco-friendly cellulose acetate films incorporated with burdock (Arctium lappa L.) root extract. Food Sci Technol. 2024;186: e108009. https://doi.org/10.1016/j.porgcoat.2023.108009.
[52] Nguyen TT-N, Vo TT, Nguyen BN-H, Nguyen DT, Dang V-S, Dang C-H, Nguyen T-D, Nguyen T-D. Silver and gold nanoparticles biosynthesized by aqueous extract of burdock root, Arctium lappa as antimicrobial agent and catalyst for degradation of pollutants. Food Sci Technol. 2018;25(34): e3322. https://doi.org/10.1007/s11356-018-3322-2.
[53] Hao M-L, Pan N, Zhang Q-H, Wang X. Therapeutic efficacy of chlorogenic acid on cadmium-induced oxidative neuropathy in a murine model. Food Sci Technol. 2015;9(5): e2367. https://doi.org/10.3892/etm.2015.2367.
[54] Salama SA, Mohamadin AM, Abdel-Bakky MS. Arctigenin alleviates cadmium-induced nephrotoxicity: targeting endoplasmic reticulum stress, Nrf2 signaling, and the associated inflammatory response. Food Sci Technol. 2021;287: 120121. https://doi.org/10.1016/j.lfs.2021.120121.
[55] Ji X, Wang B, Paudel YN, Li Z, Zhang S, Mou L, Liu K, Jin M. Protective effect of chlorogenic acid and its analogues on lead-induced developmental neurotoxicity through modulating oxidative stress and autophagy. Food Sci Technol. 2021;8: 655549. https://doi.org/10.3389/fmolb.2021.655549.
[56] Ghahhari J. The protective effect of chlorogenic acid on arsenic trioxide induced hepatotoxicity in mice. Food Sci Technol. 2017;10(2):29. https://doi.org/10.21786/bbrc/10.2/29.
[57] Wang Y, Su H, Song X, Kenston SSF, Zhao J, Gu Y. Luteolin inhibits multi-heavy metal mixture-induced HL7702 cell apoptosis through downregulation of ROS-activated mitochondrial pathway. Food Sci Technol. 2017;41(1): e3219. https://doi.org/10.3892/ijmm.2017.3219.
[58] Oyagbemi AA, Akinrinde AS, Adebiyi OE, Jarikre TA, Omobowale TO, Ola-Davies OE, Saba AB, Emikpe BO, Adedapo AA. Luteolin supplementation ameliorates cobalt-induced oxidative stress and inflammation by suppressing NF-кB/Kim-1 signaling in the heart and kidney of rats. Food Sci Technol. 2020;80: e103488. https://doi.org/10.1016/j.etap.2020.103488.
[59] AL-Megrin WA, Alkhuriji AF, Yousef AOS, Metwally DM, Habotta OA, Kassab RB, Moneim AEA, El-Khadragy MF. Antagonistic efficacy of luteolin against lead acetate exposure-associated hepatotoxicity is mediated via antioxidant, anti-inflammatory, and anti-apoptotic activities. Food Sci Technol. 2019;9(1): e0010. https://doi.org/10.3390/antiox9010010.
[60] Yang D, Tan X, Lv Z, Liu B, Baiyun R, Lu J, Zhang Z. Regulation of Sirt1/Nrf2/TNF-α signaling pathway by luteolin is critical to attenuate acute mercuric chloride exposure induced hepatotoxicity. Food Sci Technol. 2016;6(1): e37157. https://doi.org/10.1038/srep37157.
[61] Aja PM, Ekpono EU, Awoke JN, Famurewa AC, Izekwe FI, Okoro EJ, Okorie CF, Orji CL, Nwite F, Ale BA, Aku AF, Igwenyi IO, Nwali BU, Orji OU, Ani OG, Ozoemena CR, Anizoba GC. Hesperidin ameliorates hepatic dysfunction and dyslipidemia in male Wistar rats exposed to cadmium chloride. Tox Rep. 2020;7:1331-8. https://doi.org/10.1016/j.toxrep.2020.09.014.
[62] Wang J, Zhu H, Yang Z, Liu Z. Antioxidative effects of hesperetin against lead acetate-induced oxidative stress in rats. Indian J Pharmacol. 2013;45(4):395. https://doi.org/10.4103/0253-7613.115015.
[63] Bhardwaj JK, Panchal H. Quercetin mediated attenuation of cadmium-induced oxidative toxicity and apoptosis of spermatogenic cells in caprine testes in vitro. Environ Mol Mutagen. 2021;62(6):374-84. https://doi.org/10.1002/em.22450.
[64] Almeer R, Alyami N. The protective effect of apigenin against inorganic arsenic salt-induced toxicity in PC12 cells. Environ Sci Pollut Res Int. 2023. https://doi.org/10.1007/s11356-023-29884-w.
[65] Nordberg M, Nordberg GF. Metallothionein and cadmium toxicology—historical review and commentary. Biomolecules. 2022;12(3):360. https://doi.org/10.3390/biom12030360.
[66] Ohta H, Qi Y, Ohba K, Toyooka T, Wang RS. Role of metallothionein-like cadmium-binding protein (MTLCdBP) in the protective mechanism against cadmium toxicity in the testis. Ind Health. 2019;57(5):570. https://doi.org/10.2486/indhealth.2018-0177.
[67] Sabolić I, Breljak D, Skarica M, Herak-Kramberger CM. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals. 2010;23(5):897. https://doi.org/10.1007/s10534-010-9351-z.
[68] Huang X, Feng Y, Fan W, Jing D, Duan Y, Guanqing X, Wang K, Yongqiang D, Geng Y, Ouyang P, Chen D, Shiyong Y. Potential ability for metallothionein and vitamin E protection against cadmium immunotoxicity in head kidney and spleen of grass carp (Ctenopharyngodon idellus). Ecotoxicol Environ Saf. 2019;170:246. https://doi.org/10.1016/j.ecoenv.2018.11.134.
[69] Qu W, Pi J, Waalkes MP. Metallothionein blocks oxidative DNA damage in vitro. Arch Toxicol. 2013;87(2):311. https://doi.org/10.1007/s00204-012-0927-y.
[70] Kumar N, Kumari V, Ram C, Thakur K, Tomar SK. Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts. Appl Microbiol Biotechnol. 2018;102(4):1599. https://doi.org/10.1007/s00253-018-8743-9.
[71] Predes FS, Diamante MAS, Foglio MA, Camargo CA, Aoyama H, Miranda SC, Cruz B, Marcondes MCCG, Dolder H. Hepatoprotective effect of Arctium lappa root extract on cadmium toxicity in adult Wistar rats. J Appl Toxicol. 2014;34(2):250-7. https://doi.org/10.1007/s12011-014-0040-6.
[72] Gargouri M, Saad B, Amara I, Magné C, Feki E. Spirulina exhibits hepatoprotective effects against lead-induced oxidative injury in newborn rats. Environ Toxicol Pharmacol. 2016;62:85. https://doi.org/10.1016/j.etap.2016.08.011.
[73] Alhusaini AM, Fadda LM, Hasan IH, Ali HM, Orabi NFE, Badr AM, Zakaria EA, Alenazi AM, Mahmoud AM. Arctium lappa root extract prevents lead-induced liver injury by attenuating oxidative stress and inflammation, and activating Akt/GSK-3β signaling. Antioxidants. 2019;8(12):582. https://doi.org/10.3390/antiox8120582.
[74] Chakraborty R, Renu K, Eladl MA, El-Sherbiny M, Elsherbini DMA, Mirza A, Vellingiri B, Iyer M, Dey A, Gopalakrishnan AV. Mechanism of chromium-induced toxicity in lungs, liver, and kidney and their ameliorative agents. Biol Pharm Bull. 2022;151: 119113. https://doi.org/10.1016/j.biopha.2022.113119.
[75] Iztleuov M, Iztleuov Y, Saparbayev S, Temirbayeva A, Medeuova R, Aleuova Z, Ismailova I, Imanbayev NS. Effect of burdock root oil on oxidative stress induced by isolated and combined use of gamma radiation and hexavalent chromium. Biol Pharm Bull. 2022;15(1):421. https://doi.org/10.13005/bpj/2382.
[76] Yan M, Huo Y, Yin S, Hu H. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol. 2018;17:274. https://doi.org/10.1016/j.redox.2018.04.019.
[77] Hinson JA, Pohl LR, Monks TJ, Gillette JR. Acetaminophen-induced hepatotoxicity. Life Sci. 1981;29(2):1499. https://doi.org/10.1016/0024-3205(81)90278-2.
[78] Doi K, Ishida K. Diabetes and hypertriglyceridemia modify the mode of acetaminophen-induced hepatotoxicity and nephrotoxicity in rats and mice. J Toxicol Sci. 2009;34(1):1-11. https://doi.org/10.2131/jts.34.1.
[79] Yoon E, Babar A, Choudhary MM, Kutner M, Pyrsopoulos N. Acetaminophen-induced hepatotoxicity: a comprehensive update. J Clin Transl Hepatol. 2016;4(2):131. https://doi.org/10.14218/jcth.2015.00052.
[1] Geoffrey A. Cordell. The contemporary nexus of medicines security and bioprospecting: a future perspective for prioritizing the patient[J]. Natural Products and Bioprospecting, 2024, 14(2): 1-1.
[2] Srijan Banerjee, Gustavo Cabrera-Barjas, Jaime Tapia, João Paulo Fabi, Cedric Delattre, Aparna Banerjee. Characterization of Chilean hot spring-origin Staphylococcus sp. BSP3 produced exopolysaccharide as biological additive[J]. Natural Products and Bioprospecting, 2024, 14(2): 3-3.
[3] Li Wu, Ning Yang, Meng Guo, Didi Zhang, Reza A. Ghiladi, Hasan Bayram, Jun Wang. The role of sound stimulation in production of plant secondary metabolites[J]. Natural Products and Bioprospecting, 2023, 13(6): 40-40.
[4] Teresa S. Catalá, Linn G. Speidel, Arlette Wenzel-Storjohann, Thorsten Dittmar, Deniz Tasdemir. Bioactivity profile of dissolved organic matter and its relation to molecular composition[J]. Natural Products and Bioprospecting, 2023, 13(5): 32-32.
[5] Cintia Cristina Santi Martignago, Beatriz Soares-Silva, Julia Risso Parisi, Lais Caroline Souza e Silva, Renata Neves Granito, Alessandra Mussi Ribeiro, Ana Cláudia Muniz Renno, Lorena Ramos Freitas de Sousa, Anna Caroline Campos Aguiar. Terpenes extracted from marine sponges with antioxidant activity: a systematic review[J]. Natural Products and Bioprospecting, 2023, 13(4): 23-23.
[6] Atul R. Chopade, Prakash M. Somade, Pratik P. Somade, Suraj N. Mali. Identification of Anxiolytic Potential of Niranthin: In-vivo and Computational Investigations[J]. Natural Products and Bioprospecting, 2021, 11(2): 223-233.
[7] Xiao-Li Cheng, Han-Xiang Li, Juan Chen, Ping Wu, Jing-Hua Xue, Zhong-Yu Zhou, Nia-He Xia, Xiao-Yi Wei. Bioactive Diarylheptanoids from Alpinia coriandriodora[J]. Natural Products and Bioprospecting, 2021, 11(1): 63-72.
[8] Nay Lin Tun, Dong-Bao Hu, Meng-Yuan Xia, Dong-Dong Zhang, Jun Yang, Thaung Naing Oo, Yue-Hu Wang, Xue-Fei Yang. Chemical Constituents from Ethanoic Extracts of the Aerial Parts of Leea aequata L., a Traditional Folk Medicine of Myanmar[J]. Natural Products and Bioprospecting, 2019, 9(3): 243-249.
[9] Marines Marli Gniech Karasawa, Chakravarthi Mohan. Fruits as Prospective Reserves of bioactive Compounds: A Review[J]. Natural Products and Bioprospecting, 2018, 8(5): 335-346.
[10] Shan Zhang, Lu Xu, Yang-Xi Liu, Hai-Yan Fu, Zuo-Bing Xiao, Yuan-Bin She. Characterization of Aroma-Active Components and Antioxidant Activity Analysis of E-jiao (Colla Corii Asini) from Different Geographical Origins[J]. Natural Products and Bioprospecting, 2018, 8(2): 71-82.
[11] Manar Adam, Gihan O. M. Elhassan, Sakina Yagi, Fatma Sezer Senol, Ilkay Erdogan Orhan, Abdel Azim Ahmed, Thomas Efferth. In Vitro Antioxidant and Cytotoxic Activities of 18 Plants from the Erkowit Region, Eastern Sudan[J]. Natural Products and Bioprospecting, 2018, 8(2): 97-105.
[12] Fidele Ntie-Kang, Leonel E. Njume, Yvette I. Malange, Stefan Günther, Wolfgang Sippl, Joseph N. Yong. The Chemistry and Biological Activities of Natural Products from Northern African Plant Families: From Taccaceae to Zygophyllaceae[J]. Natural Products and Bioprospecting, 2016, 6(2): 63-96.
[13] Daniela Batista,Pedro L.Falé,Maria L.Serralheiro,Maria E.Araújo,Paulo J.A.Madeira,Carlos Borges,Isabel Torgal,Margarida Goulart,Jorge Justino,Alice Martins,Amélia P.Rauter. New In Vitro Studies on the Bioprofile of Genista tenera Antihyperglycemic Extract[J]. Natural Products and Bioprospecting, 2015, 5(6): 277-285.
[14] Lydia L. Lifongo, Conrad V. Simoben, Fidele Ntie-Kang, Smith B. Babiaka, Philip N. Judson. A Bioactivity Versus Ethnobotanical Survey of Medicinal Plants from Nigeria,West Africa[J]. Natural Products and Bioprospecting, 2014, 4(1): 1-19.
[15] Seema PATEL. Yucca: A medicinally significant genus with manifold therapeutic attributes[J]. Natural Products and Bioprospecting, 2012, 2(6): 231-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed